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Abstract: Spatially explicit information on the species composition and structure of forest vegetation is needed at
broad spatial scales for natural resource policy analysis and ecological research. We present a method for predictive
vegetation mapping that applies direct gradient analysis and nearest-neighbor imputation to ascribe detailed ground at-
tributes of vegetation to each pixel in a digital landscape map. The gradient nearest neighbor method integrates vegeta-
tion measurements from regional grids of field plots, mapped environmental data, and Landsat Thematic Mapper (TM)
imagery. In the Oregon coastal province, species gradients were most strongly associated with regional climate and
geographic location, whereas variation in forest structure was best explained by Landsat TM variables. At the regional
level, mapped predictions represented the range of variability in the sample data, and predicted area by vegetation type
closely matched sample-based estimates. At the site level, mapped predictions maintained the covariance structure
among multiple response variables. Prediction accuracy for tree species occurrence and several measures of vegetation
structure and composition was good to moderate. Vegetation maps produced with the gradient nearest neighbor method
are appropriately used for regional-level planning, policy analysis, and research, not to guide local management deci-
sions.

Résumé : Afin d’effectuer l’analyse des politiques touchant les ressources naturelles et appuyer la recherche écolo-
gique, il est nécessaire d’obtenir une information spatiale précise sur la structure de la végétation forestière et sur la
composition des espèces et ce, à une vaste échelle spatiale. Nous présentons une méthode de cartographie prévision-
nelle de la végétation qui intègre l’analyse de gradient directe et l’application au plus proche voisin pour attribuer des
caractéristiques détaillées de la végétation à chaque pixel sur une carte numérique du paysage. L’analyse de gradient du
plus proche voisin intègre des mesures de la végétation provenant de réseaux régionaux de parcelles sur le terrain, des
données environnementales cartographiées et l’imagerie Landsat capteur TM. Dans la province côtière de l’Oregon, les
gradients des espèces sont plus fortement corrélés au climat régional et à la localisation géographique, tandis que les
variations dans la structure de la forêt sont mieux expliquées par des variables provenant de Landsat TM. À l’échelle
régionale, les prédictions cartographiées représentent bien l’intervalle de variabilité qui caractérise les données échantil-
lonnées et la prédiction des zones par type de végétation correspond bien aux estimations basées sur les échantillons. À
l’échelle du site, les prédictions cartographiées maintiennent la structure de covariance parmi les variables à réponses
multiples. La précision est bonne à modérée pour les prédictions sur la présence des espèces et ainsi que sur plusieurs
mesures de la structure et de la composition de la végétation. L’utilisation des cartes de végétation produites avec la
méthode de gradient du plus proche voisin est appropriée pour une planification à l’échelle régionale, pour l’analyse
des politiques et pour la recherche environnementale. Elle se prête cependant moins bien aux décisions locales
d’aménagement.
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Introduction

Issues in forest management grow increasingly complex,
involving an array of ecological and commodity values and
their interactions. Issues such as biodiversity conservation,
long-term productivity and sustainability, and global climate

change require consideration of broad geographic scales
(landscapes to regions) and long time frames (decades to
centuries). Policy analysis often must address the distribu-
tion of forest resources and uses across multiple-ownership
regions, as well as changes in landscape patterns and forest
conditions over time. Recently, forest assessments have ap-
plied simulation models to forest stands in a geographic in-
formation system (GIS) to examine regional landscape
change (He et al. 1998; Spies et al. 2002). These analyses
demand regional-scale information about forest vegetation
that is spatially explicit, spans all ownerships and land uses,
and describes multiple attributes of composition and struc-
ture. Because regional assessments consider multiple com-
ponents of forest ecosystems and their interactions, it is
important that the covariance among vegetation components
be realistically portrayed at the local level and that the full

Can. J. For. Res. 32: 725–741 (2002) DOI: 10.1139/X02-011 © 2002 NRC Canada

725

Received 10 February 2001. Accepted 8 January 2002.
Published on the NRC Research Press Web site at
http://cjfr.nrc.ca on 12 April 2002.

J.L. Ohmann.1 USDA Forest Service, Pacific Northwest
Research Station, 3200 SW Jefferson Way, Corvallis, OR
97331, U.S.A.
M.J. Gregory. Department of Forest Science, Oregon State
University, Corvallis, OR 97331 U.S.A.

1Corresponding author (e-mail: johmann@fs.fed.us).

I:\cjfr\cjfr32\cjfr-04\X02-011.vp
Tuesday, April 09, 2002 2:49:40 PM

Color profile: Generic CMYK printer profile
Composite  Default screen



range of variability in each component be represented across
the region. Vegetation maps with these characteristics also
are needed for basic ecological research on distributions of
plant species and communities and on stand and landscape
processes.

In this paper we present a method for predictive vegeta-
tion mapping (sensu Franklin 1995) that combines direct
gradient analysis (Gauch 1982) with nearest-neighbor impu-
tation to produce digital maps that are rich in floristic and
physiognomic information, spatially explicit, and regional in
scope. Direct gradient analysis is used to quantify relations
between vegetation and environment for a sample of field
plot locations, and imputation is used to make spatial predic-
tions that can be displayed in a GIS. Imputation is a statisti-
cal analysis tool for incomplete data, whereby measured
values are assigned to observations that lack such data (see
Van Deusen 1997). We demonstrate the mapping method,
which we call gradient nearest neighbor (GNN), for the
coastal province of Oregon, U.S.A. (Fig. 1). We developed
this approach concurrently with, and independently from,
Gottfried et al. (1998), who mapped alpine vegetation in
Austria.

Predictive vegetation mapping rests on the premise that
vegetation pattern can be predicted from mapped environ-
mental data (Franklin 1995). Predictive models are based on
various hypotheses as to how environmental factors control
the distribution of species and communities (Guisan and
Zimmerman 2000). In our analysis we chose to use canoni-
cal correspondence analysis (CCA) (ter Braak 1986; ter
Braak and Prentice 1988), a method of gradient analysis, for
several reasons. CCA is used widely by ecologists, is
multivariate, and can be used for prediction. CCA directly
quantifies relations between two multivariate matrices repre-
senting the vegetation and environmental data. The ordering
of plots is constrained in a regression step, so that resulting
plot scores on CCA axes are linear combinations of the envi-
ronmental variables, and the canonical coefficients can be
used for prediction. CCA has been shown to be robust to
multicollinearity among explanatory variables (Palmer
1993). Furthermore, the weighted averaging algorithm of
CCA implies unimodal response curves of species to the en-
vironment. Species distributions along environmental gradi-
ents often are nonlinear (Austin et al. 1994), especially
along long gradients typical of regional studies like ours. Re-
gional data matrices also typically are sparse (contain many
zeros), and CCA is robust to these data. In contrast, linear
methods such as principal components analysis and canoni-
cal correlation analysis are considered appropriate to data
with monotonic species distributions (Jongman et al. 1987).
Lastly, CCA is consistent with a conceptual model of vege-
tation that varies continuously in space in response to envi-
ronmental and disturbance gradients.

Existing methods for regional vegetation mapping and
characterization

Most existing regional maps of forest cover are based on
classified satellite imagery. Although these data are spatially
complete, information content is limited to general charac-
teristics of the upper forest canopy (Cohen et al. 2001;
Wolter et al. 1995; Woodcock et al. 1994). Few examples
exist of integrating imagery with field plot and environmen-

tal data for ecological modeling and characterization at the
regional scale (but see Tomppo 1990; Moeur and Stage
1995; Nilsson 1997). He et al. (1998) used field plot data to
populate digital forest cover maps, but assignment of plot
data to mapped polygons was done probabilistically rather
than based on empirically derived relationships between
ground and mapped variables. Our study differs conceptu-
ally from image classification, in which plots may be used
for training sites and accuracy assessment, and from tradi-
tional forest inventories, where plot and remotely sensed
data are used in regression or stratified sampling designed to
estimate collective measures of a population or stratum.
Sample-based inventories can be used to make estimates of
known precision for vegetation attributes such as species
abundance, tree size distributions, or dead wood characteris-
tics (e.g., see Ohmann et al. 1994); however, within-stratum
variation cannot be accurately mapped, and information
about variance may be lost (Moeur and Stage 1995). In addi-
tion, if individual ground attributes are predicted independ-
ently, the joint distribution of estimated ground attributes is
distorted if at least one variable is difficult to predict (Moeur
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Fig. 1. The Oregon coastal province, showing locations of field
plots. See Table 1 for descriptions of plot data sets.
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and Stage 1995). Geostatistical methods such as kriging
(Isaacs and Srivastava 1990) preserve the spatial structure
and variability inherent in the sample data but usually pre-
dict a univariate response (e.g., see Ohmann and Spies 1998;
Lister et al. 2000), often do not utilize ancillary data layers
to improve results, and may truncate the distributions of pre-
dicted attributes (Moeur and Hershey 1999).

Franklin (1995) reviewed methods for predictive vegeta-
tion mapping of individual plant species or communities but
did not address modeling of multivariate responses. Cur-
rently, statistical methods of proven utility in predicting re-
sponses of multiple, continuous biotic response variables
(usually species) are limited to direct ordination, usually
CCA (Guisan and Zimmerman 2000). A handful of recent
studies have used CCA in predictive vegetation mapping
(Hill 1991; Gottfried et al. 1998; Guisan et al. 1999), but we
know of only one (Gottfried et al. 1998) that has combined
CCA with nearest-neighbor imputation to map multiple re-
sponse variables. Two imputation methods have been devel-
oped for estimating multiple forest variables simultaneously:
k Nearest Neighbor (kNN) (Tomppo 1990; Nilsson 1997)
and most similar neighbor (MSN) (Moeur and Stage 1995).
In kNN, multiple forest variables are simultaneously calcu-
lated for unsampled pixels as weighted averages of k nearby
samples. The sample weights are proportional to distances in
feature space defined by spectral (Landsat Thematic Mapper
(TM)) data, and all independent variables are given equal
weights. Larger values of k improve the predicted response
for a given pixel but reduce the resemblance between the
predicted and actual covariance structures (Nilsson 1997;
Tokola et al. 1996). Values of k > 1 result in unrealistic as-
semblages of species or structures, and such estimates can
be biased (Moeur and Stage 1995; Nilsson 1997).

The MSN procedure (Moeur and Stage 1995) populates
unsampled stands having only mapped data with the detailed
ground attributes of the most similar stand for which ground
data are available. The similarity measure, which is derived
from canonical correlation analysis, weights mapped ele-
ments according to their predictive power for all ground ele-
ments simultaneously and incorporates the covariance
among ground elements. Although MSN has performed well
at predicting measures of stand structure (Moeur and Stage
1995), its efficacy for mapping species composition is un-
known. Linear methods such as canonical correlation analy-
sis can perform poorly on species relative abundance data
across long gradients (Jongman et al. 1987), since species
response to environment often is nonlinear (Austin et al.
1994) and data matrices contain many zeros (species ab-
sences).

Study objectives
The purpose of our study was to characterize, both quanti-

tatively and spatially, the current patterns of forest vegeta-
tion in the Oregon coastal province. Specific objectives were
to (i) quantify spectral, environmental, and disturbance fac-
tors associated with regional gradients of tree species com-
position and structure; (ii) develop GIS-based analytical
tools and models to integrate field plot, remotely sensed, and
mapped environmental data to map current vegetation; and
(iii) produce vegetation maps that are model predictions.
The maps were needed to describe initial landscape condi-

tions as input to a simulation model for the coastal land-
scape analysis and modeling study (CLAMS) (Spies et al.
2002). The simulation model required mapped data on tree
density by species and diameter at breast height (DBH), at
25-m pixel resolution to characterize fine-scale heterogene-
ity needed for wildlife habitat suitability models. To be eco-
logically realistic, we sought a multivariate method that
would predict the co-occurrence of assemblages of tree spe-
cies and stand structures and maintain their covariance struc-
ture. We also wanted mapped predictions to represent the
full range of variability in forest vegetation present in the
study area. We were interested in simultaneously mapping
multiple vegetation attributes that vary continuously, rather
than discrete vegetation classes.

Methods

The study area
The Oregon coastal province spans 3 × 106 ha between

42.6 and 46.3°N and 122.6 and 124.5°W and is bounded on
the west by the Pacific Ocean (Fig. 1). The rugged terrain
ranges from sea level to 1249 m in elevation (Fig. 2). Geo-
logic formations are primarily marine sandstones and shales,
basaltic volcanic rocks, and related intrusives (Fig. 2). Most
soils are well drained and have poorly developed horizons,
dark surface horizons high in organic matter, and high ca-
pacity to hold exchangeable cations. Soils on steep slopes
tend to be shallow and stony loam-textured, whereas soils on
uneven, benchy, and unstable slopes are deeper and derived
from colluvium. The overall climate is maritime, with mild
wet winters and cool dry summers, but climate varies geo-
graphically with proximity to the ocean, latitude, and
orographic effects (Fig. 2).

Regional gradients in species composition in the Pacific
Northwest are associated primarily with climate (Ohmann
and Spies 1998), whereas patterns of forest structure vary
with history of wildfire (Wimberly and Spies 2001a) and
timber management and, thus, land ownership (Cohen et al.
2002). National Forests retain landscape patterns created by
decades of staggering small harvest units in space. Lands
managed by the Bureau of Land Management occur in a
“checkerboard” pattern interspersed with private lands, and
contain a mix of old and young forest. Forest industry lands
typically occur in large blocks that are intensively managed
for timber production. Virtually all private forest lands have
been harvested at least once and are less than 80 years old.
Forests are dominated by coniferous trees, but disturbed
sites can be occupied by pioneer broad-leaved trees or
shrubs. Broad-leaved trees also occur in riparian areas and in
woodlands at the Willamette Valley margin. See Franklin
and Dyrness (1973) and Ohmann and Spies (1998) for more
detailed descriptions of vegetation and environment.

Vegetation data from field plots
We obtained vegetation data collected on field plots estab-

lished in regional forest inventories and research studies: the
Natural Resource Inventory (NRI) of the Bureau of Land
Management; the Current Vegetation Survey (CVS) of the
USDA Forest Service, Pacific Northwest Region (Max et al.
1996); the Forest Inventory and Analysis (FIA) of the USDA
Forest Service, Pacific Northwest Research Station; and the
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Old Growth Study (OGS) of the USDA Forest Service, Pa-
cific Northwest Research Station (Spies and Franklin 1991)
(Table 1, Fig. 1). The field plots sampled all forest lands in
the province; inventory plots on nonforest land were not
measured in the field. All plots were installed on systematic
grids except the OGS plots, which were selected subjec-
tively to sample older forests.

The inventory plots averaged about 1 ha in area. The OGS
plots sampled irregularly shaped stands of 7–60 ha, but sub-

plots were clustered within a smaller portion of the stand.
Within each plot, trees ≥2.54 cm diameter at breast height
(DBH) were sampled on a series of 1–10 nested fixed- and
variable-radius plots, and the species and DBH of each tree
were recorded. We combined data from the four data sets
into a consistent format and computed the basal area and
number of trees per hectare represented by each tree. For
each plot we summarized basal area by species (Table 2)
and size class. Size classes were based on tree DBH: 2.5–
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Fig. 2. Geographic patterns of selected explanatory variables used in the gradient nearest neighbor method. See Table 3 for variable
descriptions.
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25.4 cm, 25.5–50.4 cm, 50.5–75.4 cm, 75.5–100.4 cm, and
≥100.5 cm. We computed a variety of plot-level measures of
vegetation structure and composition from the basic tree
data for use in vegetation mapping and accuracy assessment.

Landsat 5 TM imagery
We developed 10 data layers from bands 1–5 and 7 of

Landsat 5 TM imagery (Table 3). Because the plots were
measured across a wide range of dates (1984–1997), we de-
veloped TM data for 2 years, 1988 and 1996. Portions of

five TM scenes were needed to cover the study area. We
normalized values for the TM bands among adjacent and
overlapping scenes within each year, then between the
2 years, using a histogram equalization function (Lillesand
and Kiefer 1994) in Erdas Imagine. Before normalizing the
images, we excluded pixels that changed significantly be-
tween dates, primarily clear-cut timber harvests. We trans-
formed each mosaiced image into tasseled cap brightness,
greenness, and wetness indices (Kauth and Thomas 1976),
which have demonstrated utility for mapping forest cover in
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Data set Ownerships sampled
Years
measured Sample design

No. of
plots

No. of
pixels per
plot

Natural Resources Inventory Bureau of Land Management 1997 Systematic grid: 5.5 km 99 13
Current Vegetation Survey Siskiyou and Siuslaw National

Forests
1993–1996 Systematic grid: 2.7 km

outside wilderness,
5.5 km in wilderness

304 13

Forest Inventory and Analysis Nonfederal lands 1984–1986 Systematic grid: 5.5 km 381 9 or 22
Old Growth Study Federal lands 1984 Located subjectively in

forest >80 years old
39 112–963

Table 1. Sources of field plot data on forest vegetation.

Scientific name Code
Frequency
(n = 823)

Abies amabilis (Dougl.) Forbes ABAM 2
Abies grandis (Dougl.) Forbes and Abies concolor

(Gord. & Glend.) Lindl.
ABGR 62

Abies procera Rehder ABPR 11
Acer macrophyllum Pursh ACMA 258
Alnus rubra Bong. ALRU 470
Arbutus menziesii Pursh ARME 67
Calocedrus decurrens (Torr.) Florin. CADE 23
Castanopsis chrysophylla (Dougl.) DC. CHCH 75
Chamaecyparis lawsoniana A. Murray CHLA 53
Cornus nuttallii Aud. CONU 48
Fraxinus latifolia Benth. FRLA 12
Lithocarpus densiflorus (Hook. & Arn.) Rehder LIDE 54
Picea sitchensis S. Watson PISI 127
Pinus attenuata Lemmon PIAT 2
Pinus contorta var. latifolia Engelm. PICO 3
Pinus lambertiana Dougl. PILA 6
Pinus monticola Dougl. PIMO 1
Pinus ponderosa Dougl. PIPO 4
Prunus emarginata (Dougl.) Walp. PREM 52
Prunus virginiana L. PRVI 2
Pseudotsuga menziesii (Mirb.) Franco PSME 722
Quercus garryana Dougl. QUGA 38
Quercus chrysolepis Liebm. QUCH 12
Quercus kelloggii Newberry QUKE 12
Rhamnus purshiana DC. RHPU 15
Salix spp. L. SALIX 22
Taxus brevifolia Nutt. TABR 21
Thuja plicata Donn THPL 176
Tsuga heterophylla (Raf.) Sarg. TSHE 408
Umbellularia californica (Hook. & Arn.) Nutt. UMCA 44

Note: Nomenclature is from Little (1979).

Table 2. Tree species in this study.
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our region (Cohen and Spies 1992; Cohen et al. 1995, 2001).
We filtered each of these TM grids twice in succession, us-
ing a 3 × 3 pixel window and assigning the median value to
the center pixel. This filtering reduced fine-scale heterogene-
ity, retained vegetation boundaries, and improved prediction
accuracy. We also obtained maps of clear-cut harvests from

1972 to 1995 developed by Cohen et al. (2002) from multi-
temporal TM data, which we converted to maps of number
of years since harvest.

To assign values from the TM-based grids to plots, we
represented each plot as a template of pixels with a configu-
ration that approximated the plot’s layout on the ground, an-
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Variable class
and code Definition

Ownership
PUB Public land ownership (federal, state, or local government)
Topography
ELEV Elevation (m), from 30-m digital elevation model (DEM)
ASPECT Cosine transformation of aspect (degrees) (Beers et al. 1966), 0.0 (southwest)

to 2.0 (northeast), from 30-m DEM
SLOPE Slope (percent), from 30-m DEM
SLPOS Slope position, from 0 (bottom of drainage) to 100 (ridgetop), from

SLOPEPOSITION macro in ArcInfo on 30-m DEM
SOLAR Solar radiation (cal/cm2) from program SolarImg (Harmon and Marks 1995)

and 100-m DEM
Geology
VOLC Volcanic and intrusive rocks
MAFO Mafic rocks (basalt, basaltic andesite, andesite, gabbro); Miocene and older
SEDR Siltstones, sandstones, mudstones, conglomerates (sedimentary)
TUFO Tuffaceous rocks and tuffs, pumicites, silicic flows; Miocene and older
DEPO Depositional (dune sand, alluvial, glacial, glaciofluvial, loess, landslide and

debris flow, playa, lacustrine, fluvial)
Climate
ANNPRE Mean annual precipitation (natural logarithm, mm)
SMRPRE Mean precipitation from May to September (natural logarithm, mm)
CVPRE Coefficient of variation of mean monthly precipitation of December and July

(wettest and driest months)
SMRTP Moisture stress during the growing season, computed as SMRTMP/SMRPRE,

where SMRTMP is the mean temperature (°C) in May–September
ANNTMP Mean annual temperature (°C)
AUGMAXT Mean maximum temperature in August (°C) (hottest month)
DIFTMP Difference between AUGMAXT and DECMINT (°C), where DECMINT is

the mean minimum temperature in December (coldest month)
STRATUS Percentage of the hours in July with cloud ceiling of marine stratus <1524 m

and visibility <8 km
Landsat TM
B1 Band 1 (blue)
B2 Band 2 (green)
B3 Band 3 (red)
B4 Band 4 (near-infrared)
B5 Band 5 (mid-infrared)
B7 Band 7 (mid-infrared)
R43 Ratio of B4 to B3
R54 Ratio of B5 to B4
R57 Ratio of B5 to B7
BRT Brightness axis from tasseled cap transformation
GRN Greenness axis from tasseled cap transformation
WET Wetness axis from tasseled cap transformation
DISTURB No. of years since clear-cut harvest, from multitemporal Landsat TM analysis

(Cohen et al. 2002)
Location
X Longitude (decimal degrees)
Y Latitude (decimal degrees)

Table 3. Mapped explanatory variables used in the gradient nearest neighbor method.
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chored by its X and Y coordinates. We used an ArcInfo
macro to overlay the plot templates on each TM grid and re-
trieve the mean values associated with each plot. For the dis-
turbance grid we used the majority value. We assigned TM
data from both 1988 and 1996 to each plot, but in the analy-
ses we used TM data from the year most closely matching
the date of ground measurement. We eliminated the follow-
ing kinds of plots from all analyses: plots in shadow, water,
or cloud in the imagery; plots with obvious mismatches be-
tween ground and spectral data (due to location errors or to
harvesting between date of imagery and date of field mea-
surement); and plots on obvious edges such as harvest units,
roads, or streams.

Mapped data on climate, topography, geology, and
location

We obtained map layers for climatic, topographic, and
geologic variables (Table 3) that are available in digital for-
mat and that have been shown to be associated with patterns
of forest vegetation in the Pacific Northwest (Ohmann and
Spies 1998). We converted the layers to grids as needed,
resampled them to 25 × 25 m (the resolution of our predic-
tions), and assigned mean or majority values for each grid to
the plots using the procedure described above for the TM
data.

We derived climate data from mean annual and mean
monthly precipitation and temperature surfaces generated by
the precipitation–elevation regressions on independent
slopes model (PRISM) (Daly et al. 1994). PRISM uses
DEMs to account for topographic effects in interpolating
weather measurements from an irregular network of weather
stations to a uniform grid. The PRISM surfaces were gener-
ated at 4.7-km resolution from 1961–1990 weather data. We
log transformed all precipitation surfaces, because vegeta-
tion does not respond linearly to amount of precipitation.
From the mean monthly PRISM grids we computed several
climatic indices that approximate growing season conditions,
seasonal variability, and continentality (Table 3). We also ac-
quired a map of July frequency of low stratus clouds (C.
Daly, Spatial Climate Analysis Service, Oregon State Uni-
versity, Corvallis, OR 97331, unpublished data) (Table 3).
Summer fog, common along the Pacific coast, is thought to
influence plant species distributions by reducing moisture
stress during the growing season.

We derived several topographic measures from a 30-m
DEM (Table 3). We derived 14 generalized geologic types
from a digital version of the geologic map of Oregon
(Walker and MacLeod 1991), five of which occurred in the
study area (Table 3). Lastly, we used the latitude (Y) and
longitude (X) coordinates for each plot as explanatory vari-
ables.

The gradient nearest neighbor method of predictive
vegetation mapping

Our method for predictive vegetation mapping involves
the following steps (Fig. 3), which we refer to collectively as
the gradient nearest neighbor (GNN) method:
(1) Conduct direct gradient analysis using stepwise CCA

(ter Braak 1986; ter Braak and Prentice 1988) to de-
velop a model that quantifies relations between ground
(response) data and mapped (explanatory) data.

(2) For each mapped 25 × 25 m pixel (the spatial resolution
of our mapped predictions), predict scores for the first
eight CCA axes by applying coefficients from the model
developed in step 1 to the mapped values for the explan-
atory variables.

(3) For each mapped pixel, identify the single plot that is
nearest in eight-dimensional gradient space, where dis-
tance is Euclidean and axis scores are weighted by their
eigenvalues. Also identify the second-nearest plot for
accuracy-assessment purposes (see below).

(4) Impute the ground attributes of the nearest-neighbor
plot to the mapped pixel. Following imputation, maps
can be constructed for any vegetation attribute measured
on the field plots.

We ran CCA in the program CANOCO, version 4 (ter
Braak and Smilauer 1998), using 823 plots. We used infor-
mation listed by CANOCO to identify explanatory variables
that were highly correlated (variance inflation factors >20).
We used the forward stepwise procedure in CANOCO to
identify and retain those among the collinear variables that
explained the most variation in the species data. In this way
we identified a subset of variables that avoided collinearity
between variables but retained as much environmental infor-
mation as possible. Response variables were basal area
(m2/ha) by species (Table 2) and size classes described pre-
viously. Within species, we combined size classes that had
very low frequencies of occurrence. We square-root trans-
formed basal area values to dampen the influence of domi-
nant species and because square root transformed values
were most strongly correlated with the explanatory vari-
ables. In CANOCO, we downweighted rare species and se-
lected species scores as weighted mean sample scores. We
added explanatory variables to the stepwise CCA models in
the order of greatest additional contribution to explained
variation. Variables were added only if they were significant
(P < 0.01), where significance was determined by a Monte
Carlo permutation test using 99 permutations (H0: additional
influence of variable on vegetation is not significantly differ-
ent from random) and only if adding the variable did not
cause any variance inflation factors to exceed 20, which in-
dicates strong multicollinearity (ter Braak and Smilauer
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Fig. 3. Steps in the gradient nearest neighbor method (pixel size
not to scale).
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1998). We excluded X and Y from the stepwise procedure,
because they are strongly correlated with several of the ex-
planatory variables and do not directly measure environmen-
tal factors that influence plants. However, we added X and Y
to the final model so that geographic location would be con-
sidered in the selection of nearest-neighbor plots. This
constrained the nearest-neighbor distances and slightly im-
proved prediction accuracy.

Nillson (1997) compared several distance measures in the
kNN method and determined that Euclidean distance was ap-
propriate for applications similar to ours. We used eight
CCA axes, because they accounted for almost all (94%) of
the total variation explained, and because prediction accu-
racy was better than with fewer axes. By weighting the axes
by their eigenvalues in the distance calculations, we gave
more weight to axes with greater explanatory power. In addi-
tion, use of unweighted axes resulted in overfitting of the
model and reduced prediction accuracy for independent ob-
servations.

We produced two versions of the GNN predictions, for
1988 and 1996, the 2 years for which we had Landsat TM
imagery. Only one CCA model was developed from analysis
of the plot data, using TM variables for the year closest to
each plot’s measurement date. The CCA coefficients were
then applied to both years to make the GNN predictions. Be-
cause our model was applicable only to forested areas where
plot data were available, we masked out nonforest areas (wa-
ter, urban, agriculture, sand dunes, etc.) from our GNN pre-
dictions and accuracy assessments using a locally developed
land-use map.

Model evaluation and accuracy assessment
We evaluated performance of the GNN method in several

ways. At the aggregate, regional level, we compared relative
proportions of mapped vegetation classes predicted by GNN
with those estimated from the systematic grids of field plots.
We also compared overall means and ranges of variability of
the mapped GNN predictions to those of the plot data for
several vegetation attributes, to evaluate how well GNN re-
tained the variability present in the observed data.

We assessed the site-level accuracy of GNN by comparing
predicted to observed (ground-measured) values for the 823
plot locations. These comparisons also indicated how well
GNN maintained the known variability in the plot data
across the site-specific locations. The plot data were re-
garded as truth and assumed to be measured and geo-
referenced without error. For each of several vegetation
attributes, means of the GNN-predicted, pixel-level values
corresponding to each plot location were calculated. For
each plot location we used the predicted value associated
with the second-nearest neighbor, rather than the nearest
neighbor (which would be the plot itself). We expected this
method to be effectively the same as a data-splitting analysis
where 823 versions of the model are run, each time leaving
out one plot, but it was computationally much more effi-
cient. Although the substitution of the second-nearest neigh-
bor is not mathematically equivalent to a run that omits the
ith observation, since each CCA model is influenced by the
ith observation, it is extremely unlikely that omitting one
plot would cause a large change in the CCA model. A 10-
fold crossvalidation analysis supported our assumption that

the CCA model is robust to changes in plot input data. We
divided the 823 plots into 10 random subsets and developed
10 CCA models, each time leaving out a different 10% of
the plots and developing the model using the other 90%.
Comparisons of predicted to observed for the 10 models
were nearly identical to results from the second-nearest-
neighbor approach. We also assessed accuracy by reserving
25% of the plots and developing the GNN model with the
remaining 75% of the plots. Again, results were nearly the
same as those from the second-nearest-neighbor analysis.
For these reasons, we present accuracy results only from the
second-nearest-neighbor analysis in this paper.

We used the kappa coefficient of agreement (Cohen
1960), a measure of classification accuracy that discounts
chance agreement, to compare predicted to observed values
for vegetation classes and species occurrence. The formula
for kappa (κ ) is κ = (po – pc)/(1 – pc), where po is the overall
classification accuracy (probability, over all classes, that the
predicted and observed values agree) and pc is the chance
agreement between predicted and observed values. Errors of
omission and commission are treated equally.

To reduce bias in our accuracy assessment caused by tem-
poral differences between the TM imagery and plot mea-
surement, we compared observed and predicted values for a
given plot for either 1988 or 1996, whichever year was
closer to the year of plot measurement. Thus, our summaries
of accuracy actually reflect a composite of the 1988 and
1996 predictions.

Finally, we mapped the nearest-neighbor distances from
GNN as a measure of the geographic distribution of confi-
dence in the GNN predictions. Shorter distances indicate ar-
eas of greater confidence in the results, and greater distances
represent potential areas of poorer accuracy, as well as envi-
ronmental conditions that may be undersampled by field
plots (Moeur and Stage 1995).

Results

Gradients in species composition and structure
Overall gradients in the species composition and structure

of forest vegetation were most strongly associated with
Landsat TM variables and climate and, secondarily, with lo-
cation, topography, ownership, and geology in decreasing
order of importance (Table 4). The primary gradient (axis 1)
was in forest structure (tree size and density), which varied
with TM wetness and ownership (Figs. 4 and 5). Low scores
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Subset of explanatory
variable

Percentage of
total inertia

Ownership 2.2
Topography 4.5
Geology 1.8
Climate 8.0
Landsat TM 15.2
Location 5.2

Note: See Table 3 for variable membership
in subsets.

Table 4. Variation explained by subsets
of variables in canonical correspon-
dence analysis.
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Fig. 5. Geographic patterns of dominant gradients in forest vege-
tation and environment, which are predicted scores on axis 1 and
2 from canonical correspondence analysis.
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Fig. 4. Biplots (see ter Braak and Smilauer 1998) showing asso-
ciations between vegetation and explanatory variables for the
dominant gradients in the Oregon coastal province from canoni-
cal correspondence analysis (CCA). (a) Explanatory variables.
See Table 3 for variable definitions. Arrow length and position
of the arrowhead indicate the correlation between the explanatory
variable and the CCA axes, and smaller angles between arrows
indicate stronger correlations between variables. (b) Species cen-
troids (circles) in relation to the CCA axes and explanatory vari-
ables in Fig. 4a. Lines connect size classes of a given species.
See Table 2 for species codes (not shown: CADE, CHLA,
CONU, PICO, PILA, PIMO, PRVI) Size-class codes are as fol-
lows: (1) small (2.5–25.4 cm diameter at breast height (DBH));
(2) medium (25.5–50.4 cm DBH); (3) large (50.5–75.4 cm DBH);
(4) very large (75.5–100.4 cm DBH); and (5) ≥100.5 cm DBH.
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on axis 1 were stands of large trees on public lands, and
high scores were younger stands on private lands. Axis 2
differentiated species along a climatic gradient from coastal
areas with frequent summer fog and more summer rainfall to
inland areas with greater summer moisture stress and less
maritime influence (Figs. 4 and 5). Axis 2 also was associ-
ated with variation in TM wetness. Species were arranged
on axis 2 from Picea sitchensis and Abies amabilis, species
found along the coast and at higher elevations, to Quercus
garryana and Quercus kellogii, species found in the driest
and least maritime habitats in the eastern and southern parts
of the study area (Fig. 4). Axis 3 was correlated with eleva-
tion, TM brightness, and TM bands 2 and 3, and separated
evergreen species of southwestern Oregon (lowest scores)
and broadleaf deciduous species (highest scores). Subse-
quent axes were difficult to interpret.

Overall performance of GNN
The relative proportions of forest conditions across the

province predicted by GNN very closely matched those esti-
mated by systematic grids of inventory plots (Fig. 6). This
agreement was not necessarily expected, even though GNN
used a subset of the inventory plots (see Discussion). In ad-
dition, the mapped GNN predictions reproduced the sampled
range of variability in vegetation across the province very
closely. The means and standard deviations of several vege-
tation attributes predicted by GNN nearly exactly matched
those observed on the 823 plots (Table 5). The ranges of pre-
dicted and observed values matched exactly, because all
plots were selected as nearest neighbors at least once. Note
that, in these comparisons of predicted and observed, it can-
not be determined whether differences are due to errors of
prediction or to real change between the dates of plot mea-
surement and GNN prediction. The overall geographic pat-
terns of the GNN predictions appeared reasonable (Figs. 7
and 8) except in some areas along the coast and Willamette
Valley margin, which contained the fewest field plots and
the longest nearest-neighbor distances (Fig. 9).

Accuracy of GNN predictions at the site level
At the site level, overall classification accuracy for 10

classes defined by vegetation density, species composition,
and size class was 45% (Table 6). Accuracies were 0–54%
better than chance for individual classes, with a mean κ of
0.31 (Table 7). The κ = –0.03 for the mixed conifer–
broadleaf, very-large class can be attributed to the very small
sample size (n = 5). Most misclassification errors were mi-
nor: the overall classification was 87% correct within one
class (Table 6) and 72–98% better than chance for individual
classes (mean κ = 0.83) (Table 7). Among composition
classes, classification accuracy was poorest for mixed
conifer–broadleaf forests (κ = 0.30), best for conifer forests
(κ = 0.59), and intermediate for broadleaf forests (κ = 0.49).

Correlations between predicted and observed values for
six measures of vegetation structure and composition ranged
from 0.53 for tree species richness to 0.80 for quadratic
mean diameter (QMD) (Fig. 10). Correlations generally
were greatest for measures associated with successional sta-
tus of vegetation (0.80 for QMD and 0.71 for stand age). For
all continuous vegetation attributes the GNN method
overpredicted at low values and underpredicted at high val-
ues (Fig. 10).

Prediction accuracy for the occurrence of seven common
tree species was 56–89% or 21–53% better than chance
(mean κ = 0.29) (Table 8). For all species, errors of commis-
sion were more common than errors of omission. Predictions
were most accurate for species whose distributions are geo-
graphically limited and strongly associated with climate
(e.g., Picea sitchensis and Quercus garryana). Widely dis-
tributed species that occur in locally low abundances (e.g.,
Acer macrophyllum and Thuja plicata) or whose local abun-
dances are associated with disturbance history (e.g., Tsuga
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gradient nearest neighbor method (based on n = 823 plots) and
estimated from systematic grids of field plots (n = 1039 plots).
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Vegetation
attribute Mean Range SD

Total basal area (m2/ha)
Observed 33.9 0.0–124.9 20.6
Predicted 31.0 0.0–124.9 22.3
Broadleaf basal area proportion
Observed 0.27 0.0–1.00 0.32
Predicted 0.26 0.0–1.00 0.32
Quadratic mean diameter (cm)
Observed 34.5 0.0–166.2 22.4
Predicted 33.2 0.0–166.2 24.6
No. of trees/ha >100 cm DBH
Observed 3.0 0.0–54.4 7.5
Predicted 3.0 0.0–54.4 7.7
Stand age (years)
Observed 51.1 0.0–718.0 44.2
Predicted 52.0 0.0–718.0 56.3
Tree species richness
Observed 3.1 0–11 1.6
Predicted 3.0 0–11 1.7

Table 5. Comparison of descriptive statistics
for observed (n = 823 plots) and predicted
(mapped) vegetation for selected attributes of
forest vegetation, Oregon coastal province.
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heterophylla; Wimberly and Spies 2001b) were more diffi-
cult to predict. Chance-corrected prediction of our most
ubiquitous tree species (Table 2), Pseudotsuga menziesii,
was fairly poor since the probability of predicting its occur-
rence by chance already was fairly high.

Discussion

Accuracy of the GNN vegetation maps
We evaluated the GNN predictions in ways that should be

familiar to readers with backgrounds in forest inventory and
image classification. However, we caution against directly
comparing our accuracies with other published accounts be-
cause of differences in methods of both map construction
and accuracy assessment. Nevertheless, in a broad sense the
GNN predictions appear similar in accuracy to other Landsat
TM based studies in western Oregon forests. This is not sur-
prising, given the primary importance of Landsat TM in our
predictive model and probably indicates inherent limitations
of Landsat TM for mapping forest vegetation. Cohen et al.
(2001), the Interagency Vegetation Mapping Project
(Weyermann and Fassnacht 2000), and GNN all achieved
correlation coefficients ranging from 0.66 to 0.86 for several
continuous measures of vegetation structure and composi-
tion. Our prediction accuracies for occurrence of individual
tree species also were similar to other published studies
(e.g., Iverson and Prasad 1998; Guisan et al. 1999).

The tendency for regression methods to yield biased pre-
dictions, as we observed with GNN (Fig. 10), is a problem
that has long been recognized in remote sensing and other
studies (Curran and Hay 1986). Measurement errors in Xi,
which are assumed in regression analysis to be zero, result
in an underestimate of the slope of the regression (where
slope is positive). Whereas several methods have been sug-
gested for addressing this problem during model calibration
(Curran and Hay 1986), research is needed into how such
methods might be incorporated into CCA.

The ability to predict a given vegetation attribute with
GNN is influenced by the response variables specified in the
underlying CCA model. The response variables are sum-
mary measures calculated from the basic tree-level data on
each plot, which are chosen by the analyst and can be tai-
lored to study objectives. Presumably, the closer the resem-
blance between a predicted vegetation attribute and the
response variables used in model development, the better the
expected accuracy. Improving prediction accuracy for some
vegetation attributes may come at the cost of reduced accu-
racy for others, and it may be possible to optimize the model
for particular attributes. Similarly, perfect accuracy for mul-
tiple vegetation attributes in the GNN predictions is impossi-
ble, because two plots never are exactly alike nor are the
vegetation and explanatory factors perfectly correlated.

Although the sample-based estimates of vegetation classes
are not completely independent of those predicted by GNN
(Fig. 6), there are several reasons we might expect them to
differ, and why we think this represents a useful comparison.
The GNN predictions were based on 79% of the total inven-
tory plots (784 of 1039 plots), plus 39 OGS plots that were
not part of the sample-based estimates. The subset of plots
used in GNN was not selected randomly or systematically

and, thus, had potential to yield biased results. We excluded
from GNN those plots with obvious mismatches between
ground and spectral data and that straddled distinct bound-
aries in forest condition. Furthermore, for the plot-based es-
timates nonforest land uses were determined in the field,
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Fig. 7. Predicted vegetation classes from the gradient nearest
neighbor method. See Table 6 for definitions of vegetation
classes.
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whereas we applied an independently derived map of
nonforest areas to the GNN predictions.

We evaluated GNN prediction accuracy from both re-
gional (Table 5, Fig. 6) and site-level (Tables 6–8, Fig. 10)
perspectives but have not evaluated the spatial distribution of
error. The nearest-neighbor distances (Fig. 9) indicate poten-
tial error patterns only. Research is needed on the applica-
tion of methods of spatial accuracy assessment (Lowell and
Jaton 1999; Hunsaker et al. 2001) to GNN vegetation maps.
The spatial distribution of error has particular implications

for applications of vegetation maps that utilize information
about landscape pattern, such as models of wildlife habitat
suitability.

Sources of error in GNN
Cross-validation methods quantify the collective effect of

all sources of error on prediction accuracy. Errors attribut-
able to the GNN method itself, which are of most interest to
us, cannot be distinguished from other sources of error.
Other important sources include errors in the mapped ex-
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Fig. 8. Predicted occurrence of tree species from the gradient nearest neighbor method (shaded in green). Yellow circles are field plot
locations where the species was observed.
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planatory variables and georegistration errors among the
mapped explanatory variables and plot locations. We ex-
cluded plots with obvious location errors from our analysis,
but undiscovered errors contribute to overall prediction ac-
curacy to an unknown degree. Errors and limitations associ-
ated with the use of Landsat TM imagery in forest
vegetation mapping are described elsewhere (e.g., see Frank-
lin 2001) and not enumerated here.

© 2002 NRC Canada
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Fig. 9. Nearest-neighbor distances for the gradient nearest neigh-
bor method for n = 823 plots. Distance is Euclidean distance in
eight-dimensional gradient space, based on the first eight axes in
canonical correspondence analysis, with distance to each axis
weighted by its eigenvalue.
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Prediction error in GNN also is introduced by temporal
differences between the satellite imagery and field plot mea-
surement. We reduced this source of error by excluding plots
that had been heavily disturbed (i.e., clear-cut) between the
dates of imagery and ground measurement. In addition, we
used two imagery dates (1988 and 1996) and paired plots
with the imagery date closest to plot measurement for as-
signing the spectral values. This reduced the maximum tem-
poral mismatch from 12 to 4 years, but the corresponding
reduction in error is unknown. The validity of using multiple
imagery dates rests on the assumption that given spectral
values at different points in time result from similar vegeta-
tion. We minimized violations of this assumption by apply-
ing a histogram equalization function among scenes within
each year and between the 2 years. Gradual changes in for-
est vegetation (tree growth and mortality) over as much as a
4-year period were not accounted for in our predictions.

Advantages of GNN for ecological analysis and
integrated forest assessment

Vegetation maps produced with GNN have several advan-
tages for ecological analysis, simulation modeling, and inte-
grated forest assessment. These advantages derive from the
use of imputation or direct gradient analysis and are shared
with other methods that employ these techniques. However,
CCA has only recently been employed in predictive vegeta-
tion mapping (Hill 1991; Gottfried et al. 1998; Guisan et al.
1999), and we know of only one other case (Gottfried et al.
1998) where CCA and imputation have been used together
to predictively map vegetation. Firstly, information content
is high, because each pixel is attributed with a list of trees
by species, size, and density. Of particular note is the
species-level detail contained in the map. Because the vege-
tation data are preserved at this most basic level, user-
defined classification schemes can be applied, maps con-
structed, and accuracy assessed for specific analytical pur-
poses. Furthermore, many vegetation simulation models
require input data in the form of tree lists. Secondly, because
we impute a single nearest-neighbor plot to each pixel, the

covariance among predicted species and structures within
map units is ecologically realistic. Despite the importance of
realistic correlation structures for ecological applications,
few previous studies have addressed the distortion of corre-
lation structure in predictive vegetation mapping (but see
Moeur and Stage 1995; Nilsson 1997). Thirdly, the range of
variability present in the sampled stands is maintained in the
mapped predictions. If the ground sample is representative
of the entire regional landscape, then the GNN procedure
will reflect the inherent variability of the region. Fourthly,
direct gradient analysis contributes to knowledge about re-
gional ecological gradients. Our CCA model, which used
both environmental and Landsat TM imagery, explained
substantially more variation than one based on Landsat TM
imagery alone.

Species response models in multispecies mapping
The weighted averaging algorithm in CCA implies

Gaussian (unimodal) response curves of species to the envi-
ronment. Use of statistical methods that assume unimodal
responses for the prediction of individual species has been
criticized on the basis of empirical evidence of other re-
sponse patterns in nature (Austin et al. 1994). However, be-
cause our study objectives required that we simultaneously
predict multiple species and structures, it was necessary to
use a model that assumes a single type of response for all
species. Methods that model responses of single species lose
information about the co-occurrence of multiple species
within samples (Gottfried et al. 1998), whereas CCA makes
use of this information in the weighted averaging algorithm.
Single-species models often will yield better predictions
than a multispecies model for the same species (Guisan et al.
1999). However, our approach insures that predicted plant
communities are realistic assemblages of species and struc-
tures. It is likely that if all individual species distributions
were predicted independently and then assembled into com-
munities, unrealistic collections of species would result
(Moeur and Stage 1995).

Application of the GNN method and mapped
predictions

The GNN method predicts extremely well at the regional
level and moderately well to poorly for specific sites, similar
to other Landsat TM image classifications in our region.
However, there exists a danger that the fine spatial resolution
and detailed information content of the GNN predictions
may imply a higher level of precision than actually exists.
We stress that vegetation maps produced with GNN are ap-
propriately used for strategic-level planning and policy anal-
ysis, not to guide local management decisions.

Vegetation maps produced with GNN, but using a slightly
different model specification, are now being used to initial-
ize current landscape conditions for input to simulation
modeling as part of the CLAMS (Spies et al. 2002). Because
we developed the GNN method in the context of this re-
search study, we did not formally evaluate operational con-
siderations. Nevertheless, it appears that GNN could be
successfully applied to other regions where a representative
sample of georegistered field plots and mapped spectral and
environmental data are available.
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Vegetation class* κ
κ, correct within
one class*

Open 0.51 0.98
Broadleaf 0.49 0.94
Mixed, small 0.12 0.67
Mixed, medium 0.20 0.80
Mixed, large 0.17 0.72
Mixed, very large –0.03 0.75
All mixed 0.30 na†

Conifer, small 0.32 0.84
Conifer, medium 0.43 0.86
Conifer, large 0.31 0.87
Conifer, very large 0.54 0.88
All conifer 0.59 na

*See Table 6 for definitions of vegetation classes and for
classes that are within one class.

†na, not applicable.

Table 7. Prediction accuracy (kappa coefficient of
agreement; see Cohen 1960) by the gradient nearest
neighbor method for vegetation classes.
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Fig. 10. Comparison of predictions from gradient nearest neighbor method to ground observations on n = 823 field plots. (a) Total tree
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