

United States Department of Agriculture

Forest Service

Pacific Northwest Research Station

General Technical Report PNW-GTR-682 November 2006

Deep Canyon and Subalpine Riparian and Wetland Plant Associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests

Aaron F. Wells

The **Forest Service** of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Author

Aaron Wells is a postdoctoral research associate, Montana State University, Ecology Department, 310 Lewis Hall, Bozeman, MT 59715.

Cover: Eagle Cap from east Lostine River, Eagle Cap Wilderness, Oregon. Photo by Aaron Wells.

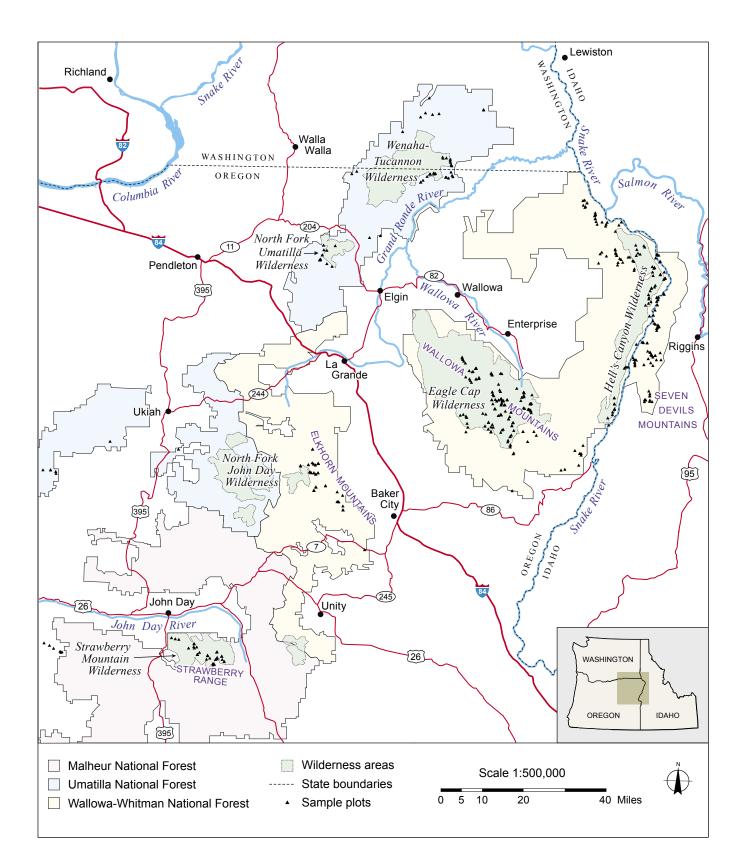
Snake River, Hells Canyon National Recreation Area, Oregon and Idaho. Photo by Aaron Wells.

Abstract

Wells, Aaron F. 2006. Deep canyon and subalpine riparian and wetland plant associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests. Gen. Tech. Rep. PNW-GTR-682. Portland, OR. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 277 p.

This guide presents a classification of the deep canyon and subalpine riparian and wetland vegetation types of the Malheur, Umatilla, and Wallowa-Whitman National Forests. A primary goal of the deep canyon and subalpine riparian and wetland classification was a seamless linkage with the midmontane northeastern Oregon riparian and wetland classification provided by Crowe and Clausnitzer in 1997. The classification is based on potential natural vegetation and follows directly from the plant association concept for riparian zones. The 95 vegetation types classified across the three national forests were organized into 16 vegetation series, and included some 45 vegetation types not previously classified for northeastern Oregon subalpine and deep canyon riparian and wetland environments. The riparian and wetland vegetation types developed for this guide were compared floristically and environmentally to riparian and wetland classifications in neighboring geographic regions. For each vegetation type, a section was included describing the occurrence(s) of the same or floristically similar vegetation types found in riparian and wetland classifications developed for neighboring geographic regions. Lastly, this guide was designed to be used in conjunction with the midmontane guide to provide a comprehensive look at the riparian and wetland vegetation of northeastern Oregon.

Keywords: Riparian, wetland, classification, northeastern Oregon, potential natural vegetation, plant association, plant community, Hells Canyon, Wallowa Mountains, Elkhorn Mountains, Strawberry Mountains, Wenaha-Tucannon Wilderness, North Fork Umatilla Wilderness, Snake River, Columbia River watershed.


Contents

- 1 Introduction
- 2 **Objectives**
- 2 Classification Concepts
- 2 Synecological Perspective and Terminology
- 3 Study Area
- 3 Blue Mountains Physiographic Province
- 3 Geology: Overview
- 4 Natural History: Subalpine
- 5 Natural History: Deep Canyons and Midelevation Benches
- 6 Field Methods
- 6 Office Methods
- 7 Classification
- 7 Comparing Adjacent Riparian and Wetland Classifications
- 8 Calculation of Available Water Capacity
- 8 Calculation of Percentage Rock Fragments
- 8 Taxonomy
- 9 Indicator Species
- 9 Vegetation Key: An Overview
- 9 Using the Vegetation Key
- 9 A Note Regarding the Vegetation Key
- 11 Vegetation Key
- 11 Life-Form Key
- 11 Key to Forested Plant Associations, Plant Community Types, and Plant Communities
- 17 Key to Shrubby Plant Associations, Plant Community Types, and Plant Communities
- 26 Key to Herbaceous Plant Associations, Plant Community Types, and Plant Communities
- 31 Environment Key: Overview
- 31 Environment Key
- 37 Contents of Vegetation Type Descriptions
- 38 Subalpine Fir Series
- 38 Subalpine Fir-Engelmann Spruce/Labrador Tea-Floodplain Plant Association
- 40 Subalpine Fir-Engelmann Spruce/Rusty Menziesia-Floodplain Plant Association
- 42 Subalpine Fir/Big Huckleberry–Floodplain Plant Association
- 44 Engelmann Spruce Series
- 44 Engelmann Spruce-Subalpine Fir/Holm's Rocky Mountain Sedge Plant Association
- 46 Engelmann Spruce-Subalpine Fir/Arrowleaf Groundsel Plant Association
- 48 Miscellaneous Engelmann Spruce Type
- 48 Engelmann Spruce/Common Horsetail Plant Association
- 49 Grand Fir Series
- 49 Grand Fir/Pacific Yew/Twinflower-Floodplain Plant Association
- 51 Grand Fir/Black Hawthorn/Dewey Sedge Plant Association

- 54 Grand Fir/Rocky Mountain Maple-Floodplain Plant Association
- 56 Douglas-Fir Series
- 56 Douglas-Fir/Rocky Mountain Maple-Mallow Ninebark-Floodplain Plant Association
- 58 Douglas-Fir/Common Snowberry-Floodplain Plant Association
- 60 Ponderosa Pine Series
- 60 Ponderosa Pine/Common Snowberry-Floodplain Plant Association
- 62 Miscellaneous Ponderosa Pine Type
- 62 Ponderosa Pine/Black Hawthorn Plant Community
- 63 Lodgepole Pine Series
- 63 Lodgepole Pine/Holm's Rocky Mountain Sedge Plant Community
- 64 Black Cottonwood Series
- 64 Black Cottonwood/Mountain Alder-Red-Osier Dogwood Plant Association
- 66 Black Cottonwood/Common Snowberry Plant Community Type
- 68 Miscellaneous Black Cottonwood Type
- 68 Black Cottonwood/Rocky Mountain Maple Plant Community Type
- 69 Red Alder Series
- 69 Red Alder/Common Snowberry/Dewey Sedge Plant Community Type
- 72 White Alder Series
- 72 White Alder/Mesic Shrub Plant Community Type
- 74 White Alder/Blackberry Plant Community Type
- 76 Willow Series
- 76 Arctic Willow Plant Association
- 78 Booth's Willow/Holm's Rocky Mountain Sedge Plant Association
- 80 Undergreen Willow/Holm's Rocky Mountain Sedge Plant Association
- 82 Willow/Mesic Forb Plant Community Type
- 84 Willow/Bluejoint Reedgrass Plant Association
- 86 Coyote Willow Plant Association
- 88 Miscellaneous Willow Types
- 88 Booth's Willow/Inflated Sedge Plant Community
- 88 Willow/Aquatic Sedge Plant Association
- 89 Farr's Willow/Pacific Onion Plant Community
- 89 Undergreen Willow/Bladder Sedge Plant Community Type
- 90 Drummond's Willow/Arrowleaf Groundsel Plant Community
- 90 Lemmon's Willow/Mesic Forb Plant Community Type
- 91 Sitka Willow/Common Horsetail Plant Community
- 92 Low Shrub Series
- 92 Alpine Laurel/Black Alpine Sedge Plant Association
- 94 Pink Mountainheath Mounds Plant Association
- 96 Miscellaneous Low Shrub Types
- 96 Labrador Tea/Holm's Rocky Mountain Sedge Plant Community
- 96 Shrubby Cinquefoil-Bog Birch Plant Community Type

- 97 Sitka Alder Series
- 97 Sitka Alder/Mesic Forb Plant Community Type
- 99 Miscellaneous Sitka Alder Types
- 99 Sitka Alder/Ladyfern Plant Association
- 99 Sitka Alder/Drooping Woodreed Plant Association
- 100 Mountain Alder Series
- 100 Mountain Alder/Ladyfern Plant Association
- 102 Mountain Alder-Red-Osier Dogwood/Mesic Forb Plant Association
- 104 Miscellaneous Mountain Alder Types
- 104 Mountain Alder/Tall Mannagrass Plant Association
- 104 Mountain Alder/Common Horsetail Plant Association
- 105 Mountain Alder-Common Snowberry Plant Association
- 105 Mountain Alder/Dewey Sedge Plant Community Type
- 106 Other Tall Shrub Series
- 106 Water Birch/Mesic Forb Plant Community Type
- 108 Red-Osier Dogwood Plant Association
- 110 Black Hawthorn/Mesic Forb Plant Community Type
- 112 Common Snowberry Plant Community Type
- 114 Rocky Mountain Maple Plant Community Type
- 116 Netleaf Hackberry/Brome Plant Community Type
- 118 Lewis' Mock Orange/Mesic Forb Plant Community Type
- 120 Miscellaneous Tall Shrub Types
- 120 Twinberry Honeysuckle/Ladyfern Plant Community
- 120 Water Birch/Wet Sedge Plant Community Type
- 121 Water Birch/Reed Canarygrass Plant Community
- 121 Red-Osier Dogwood/Ladyfern Plant Association
- 122 Pacific Ninebark Plant Community
- 122 Mallow Ninebark–Common Snowberry Plant Community Type
- 123 Thimbleberry Plant Community Type
- 123 Barton's Raspberry Plant Community
- 124 Himalayan Blackberry Plant Community
- 125 Wet Graminoid Series
- 125 Aquatic Sedge Plant Association
- 127 Bladder Sedge Plant Association
- 129 Inflated Sedge Plant Association
- 131 Few-Flowered Spikerush Plant Association
- 133 Small-Fruit Bulrush Plant Association
- 135 Miscellaneous Wet Graminoid Types
- 135 Widefruit Sedge Plant Association
- 135 Mud Sedge Plant Association
- 136 Sierra Hare Sedge Plant Association

- 136 Lakeshore Sedge Plant Association
- 137 Big-Leaved Sedge Plant Association
- 138 Moist Graminoid Series
- 138 Holm's Rocky Mountain Sedge Plant Association
- 140 Northern Singlespike Sedge-Brook Saxifrage-Spring Plant Association
- 142 Woodrush Sedge Plant Association
- 144 Black Alpine Sedge Plant Association
- 146 Bluejoint Reedgrass Plant Association
- 148 Miscellaneous Moist Graminoid Types
- 148 Tufted Hairgrass Plant Association
- 148 Basin Wildrye Plant Community Type
- 149 Star Sedge Plant Community Type
- 149 Jones' Sedge Plant Community
- 150 Nebraska Sedge Plant Community Type
- 150 Brown Sedge Plant Community
- 151 Smallwing Sedge Plant Community Type
- 151 Baltic Rush Plant Community Type
- 152 Forb Series
- 152 Pacific Onion-Holm's Rocky Mountain Sedge Plant Association
- 154 Arrowleaf Groundsel-Purple Monkeyflower Plant Association
- 156 Miscellaneous Forb Types
- 156 Narrowleaf Bur-Reed Plant Association
- 156 Rocky Mountain Pond-Lily Plant Association
- 157 Common Cattail Plant Community
- 157 Common Cowparsnip–Blue Wildrye Plant Community
- 158 False Hellebore Plant Community Type
- 158 Western Coneflower Plant Community Type
- 159 White Sagebrush Plant Community Type
- 160 Acknowledgments
- 160 English Equivalents
- 160 Soil Texture Codes
- 161 **References**
- 164 Glossary
- 170 Appendix A: Total Species List
- 194 Appendix B: Complete Constancy and Average Cover of All Species Present
- 252 Appendix C: Snag Attributes of Forested Vegetation Types
- 254 Appendix D: Down Log Attributes of Forested Vegetation Types
- 257 Appendix E: Available Water Capacity of Mineral Soils by Texture
- 258 Appendix F: Species Traits
- 270 Appendix G: Subspecies and Varieties
- 277 Appendix H: List of Animal Species Names

Introduction

Riparian corridors and wetlands are the most dynamic and complex biophysical habitats on the terrestial portion of the Earth, encompassing a diverse mosaic of landforms, communities, and environments (Fleischner 1994, Naiman et al. 1993). In a general sense, wetlands have been defined as lands within or adjacent to, and hydrologically influenced by, streams, rivers, lakes, meadows, and seeps (Cowardin et al. 1979). Riparian zone is defined more specifically as the strip of land along streams or rivers that is affected by stream processes (flooding, sedimentation, etc.) and in turn affects stream structure and function.

Riparian zones and wetlands are dynamic interfaces between terrestrial and aquatic systems, and the two are intimately linked in such a way that one cannot be defined without the other. An interface, in the above sense, may be thought of as a semipermeable membrane regulating the flow of energy and material between adjoining systems (upland and aquatic) (Naiman and Decamps 1997). Wetland vegetation and soils have a number of functions, both biotic and abiotic, across landscapes.

Riparian zones function as corridors for species movements, including both active and passive dispersal (Malanson 1993, Tabacchi et al. 1998). Active dispersal occurs when plant propagules are carried downstream by stream waters and upstream by wind or animals and deposited on distant landforms. Passive dispersal occurs when animal species use the linear pattern of riparian zones as travel corridors.

Wetlands are also important habitat for animal species ranging from butterflies (Galiano et al. 1985) and passerine birds (Taylor 1986), to black bears (see app. H for animal scientific names) and mule deer (Klimas et al. 1981, Loft et al. 1991). In arid regions such as northeastern Oregon, wetlands, although representing a relatively small proportion of the total land area, are disproportionately important to wildlife by providing the only reliable water resource throughout the year (Taylor 1986).

Riparian and wetland vegetation influences the amount and quality of solar radiation that reaches the stream channel (Gregory et al. 1991). Solar radiation influences water temperature and primary productivity of a stream reach. Stream water temperature can influence individual growth rates of salmonids (Li et al. 1994). Primary productivity has been shown to directly influence the macroinvertebrate productivity (Behmer and Hawkins 1986, Hawkins 1986) and community composition (Delong and Brusven 1998, Tait et al. 1994) of a stream reach as well as indirectly influencing populations of salmonids that feed on macro-invertebrates (Hawkins et al. 1983). Riparian and wetland vegetation shades the stream from solar radiation, maintaining cooler temperatures. Riparian and wetland vegetation also provides habitat for fish species through overhanging vegetation and down woody debris (Gurnell et al. 2002).

Forested headwater streams, which are numerous in the subalpine and canyon country of northeastern Oregon, are important sources of allocthonous (i.e., originating from outside the stream) energy inputs to the stream channel (Gomi et al. 2002, Vannote et al. 1980). Headwater streams also serve as refugia for rare or endemic species such as *Carex backii* (see app. A for plant names and authorities), a USDA Forest Service Pacific Northwest Region sensitive species.

Riparian and wetland vegetation acts passively to slow floodwaters and dampen the effects of high flow periods (Gurnell et al. 2002, Naiman and Decamps 1997). In fact, willows (*Salix* spp.) with their flexible stems, ability to sprout from broken or buried stems, and buoyant seeds are highly adapted to periodic flooding (Karrenberg et al. 2002). Thick, deep root mats of riparian species such as *Juncus balticus*, *Carex aquatilis*, and *Senecio triangularis* physically (deep, dense, tangled roots) and chemically (root exudates) hold soil particles together thus increasing streambank stability. One further adaptation of riparian plant species, such as *Carex utriculata*, is the formation of large hollow cells (aerenchymous tissue) in the roots to store air for metabolic use during periods of soil saturation (Kozlowski 1984).

The influence of riparian zones and wetlands on sediment and nutrient inputs from uplands is threefold. Aboveground, riparian and wetland vegetation slows runoff from uplands and floodwaters, trapping and storing sediments in the floodplain.

Belowground, riparian and wetland plant roots intercept groundwater moving through the riparian zone/wetland toward the stream and sequester the excess nutrients, thus mediating the effects of eutrophication in systems affected by agriculture (Fail et al. 1988, Gregory et al. 1991). In this way, riparian zones and wetlands deliver nitrogen and other nutrients primarily as coarse particulate organic matter rather than directly as inorganic compounds (Pinay et al. 2002).

Lastly, the duration and extent of riparian and wetland soil saturation can influence the concentration and species of nitrogen (nitrate, nitrite, ammonia) entering the aquatic environment (Pinay et al. 2002). Depending on the oxidation-reduction status, soil in riparian zones can act as a source (ammonification and nitrification) or result in a loss of (denitrification) nitrogen. Certain species of riparian/wetland plants (*Alnus* spp.) have formed symbiotic relationships with nitrogen-fixing bacteria in their roots. The bacteria "fix" or transform gaseous nitrogen (N₂) into forms that are biologically exploitable (NH₄), providing another source of nitrogen for the aquatic ecosystem.

1

Aquatic systems and their associated riparian and wetland plant communities are indeed intimately linked in such a way that one cannot be defined without the other. Riparian zones and wetlands influence the biota of stream systems at the level of the individual organism (Li et al. 1994), the population (Hawkins et al. 1983), and the community (Tait et al. 1994). Physically, riparian zones and wetlands buffer the potentially destructive forces of floodwaters on streambanks and function as sources and sinks for sediment and nutrients. Lastly, on the level of ecosystems, riparian zones regulate the flow of nutrients into aquatic environments. Alteration of the riparian and wetland component of aquatic systems can have far-reaching effects on the structure and function of the associated abiotic environment.

Objectives

Wetland plant associations of northeastern Oregon have been identified for midmontane wetland systems (Crowe and Clausnitzer 1997), but little was known about the deep canyon and subalpine wetland plant associations of northeastern Oregon before the present study. This management guide presents a classification of the deep canyon and subalpine wetland plant associations, community types, and communities (defined below) for the Blue Mountains Physiographic Province of Oregon including the Wallowa-Whitman, Umatilla, and Malheur National Forests. This guide is complementary to, and overlaps with, the midmontane wetland guide provided by Crowe and Clausnitzer (1997). Managers and landowners should use these two guides in conjunction with one another to aid in the identification of plant associations, and optimize management decisions.

Wetland classifications have been developed for much of the Western United States, including central Oregon (Kovalchik 1987, Padgett 1981), Montana (Hansen et al. 1995), California and Nevada (Manning and Padgett 1995), Washington (Crawford 2003, Kovalchik and Clausnitzer 2004), Utah and eastern Idaho (Padgett et al. 1989), eastern Idaho and western Wyoming (Youngblood et al. 1985), and western Idaho (Jankovsky-Jones et al. 2001, Miller 1976). The comparison of plant associations identified (objective one in this study) to those from adjacent geographic areas would provide information on the generality and specificity of the plant associations. Comparing plant associations from different studies can be difficult as each plant classification is based on different multivariate statistical techniques and theoretical views of the authors. One result is that plant associations from different classification schemes, that may in reality be the same association, get labeled differently (Nicholls and Tudorancea 2001).

The second objective of this guide is to compare the plant associations between the present classification and those of the surrounding areas in order to identify areas of overlap and the degree of generality (or rarity) of individual associations.

Classification Concepts

Distinctions between plant community, plant community type, and plant association are similar to those described in Crowe and Clausnitzer (1997):

Plant community—an assemblage of plants living together and interacting among themselves in a specific location. The plant community suffix is reserved for single occurrences of distinct vegetation assemblages.

Plant community type—a set of plant communities with similar structure and floristic composition that are seral in nature and often follow directly from a disturbance event (fire, flooding, etc.). Assuming a constant environment over a given period, a plant community type will undergo a natural shift in floristic composition through plant succession.

Plant association—as defined by Kovalchik (1987), "an assemblage of native vegetation in equilibrium with the environment on a specific fluvial surface." The implication is that as the environment (flood regime, soils, etc.) changes through time, the vegetative potential shifts across that environment space.

As in Crowe and Clausnitzer (1997), a single occurrence of a distinct vegetation assemblage sampled during this classification effort may be labeled as a plant community type or plant association **if** similar assemblages have been identified in adjacent riparian and wetland classifications.

Synecological Perspective and Terminology

Traditional concepts in plant succession, designed for uplands, state that the most shade-tolerant or "climax" species in a stand will take over a given site in the absence of disturbance. The climax concept reflects the most meaningful integration of the environmental factors affecting vegetation because it represents the end result of plant succession (Steele et al. 1981). Application of these concepts to riparian zones and wetlands becomes difficult given the potential for vegetative change with a change in the soil and water characteristics of the fluvial/wetland surface over time (Kovalchik 1987).

The plant association concept, as defined above, is an attempt to alleviate these difficulties and provide a meaningful site classification that integrates environment and vegetation in the dynamic environments of riparian and wetland systems. The climax concept is incorporated within the plant association concept wherein the most shade- and/or water-tolerant species at a site will prevail in the absence of disturbance. In this way, sites are not necessarily classified by the present plant assemblage; rather, classification is based on potential climax vegetation, often times limited to the understory canopy layers or relatively sparse occurrences. Put another way, the classification of plant associations is not based on dominance, but rather the potential for dominance in the absence of disturbance.

The rule of thumb adhered to in the present classification for identifying potential climax vegetation at forested sites is greater than or equal to 5 percent understory regeneration of a more shade-tolerant species (Steele et al. 1981). Shrub and herbaceous sites were classified by using the "greater than or equal to 25 percent foliar cover" [of a more shade- and/or water-tolerant species] rule originally coined by Kovalchik (1987), and adopted by Crowe and Clausnitzer (1997).

The only notable exception to the above rules of thumb is within the Subalpine Fir and Engelmann Spruce Series. In upland vegetation classifications, subalpine fir is considered the most shade-tolerant tree species when present, with Engelmann spruce coming in at a close second. Unique to riparian zones and wetlands is that edaphic conditions are often more important to successional dynamics than the solar radiation levels in the understory. Engelmann spruce tends to be more tolerant of saturated soil conditions than subalpine fir, making it difficult to interpret successional dynamics when both species occur in the understory with similar vigor. Two associations were identified that suffered from this ambiguity: PIEN-ABLA/CASC12 and PIEN-ABLA/SETR. Although the above two types were placed in the Engelmann spruce series, the potential exists, given a reduction in soil moisture, for subalpine fir to become the prevailing climax species.

Study Area

Blue Mountains Physiographic Province

The study focuses on the deep canyon and midelevation benches (550–1300 m), and subalpine (1800–2600 m) riparian and wetland plant associations of the Blue Mountains physiographic province of northeastern Oregon. The Blue Mountains physiographic province is defined by Orr and Orr (1999) as that area of northeastern Oregon that is bounded on the east by Hells Canyon and the Seven Devils Mountains, on the south at Ontario in Malheur County, on the north by the Snake River in Washington, and on the west by an irregular line running near Pendleton, Prineville, Burns, and back to Ontario.

Deep canyons and midelevation benches are primarily represented by Hells Canyon Wilderness and National Recreation Area (HCNRA) tributaries of the Snake River as well as representative samples of deep canyon and midelevation benches in the John Day River drainage to the southwest and the Umatilla National Forest to the northwest and into southern Washington.

Subalpine riparian and wetland plant associations are represented by streams, meadows, and glacial lakes in the Wallowa, Strawberry, Elkhorn, and Seven Devils mountain ranges. Although the Seven Devils are actually in Idaho, as will be shown later, the geology of these volcanic peaks is similar to that of the Wallowa Mountains, one mountain range to the west, and they are therefore included in this study.

Geology: Overview

The geologic history of the study area is quite complex including accretion of exotic terranes, subduction and uplift, massive flood events, periods of intense volcanic activity, and glaciation (Orr and Orr 1999). Exotic terrane refers to a geologic unit that did not form where it is presently located (Vallier 1998). In the case of the Blue Mountains, the exotic terrane has its origin as the magmatic axis of an island arc in the ancestral Pacific Ocean. Comparison of ancient basalt flows in the Blue Mountains with those in the Wrangell Mountains of southeastern Alaska and Vancouver Island in Canada suggests that the Blue Mountain island arc initially formed in the area of what is presently southeastern Alaska (Orr and Orr 1999). This collection of terranes referred to as "Wrangellia" was moved southward along strike-slip and transform faults to eventually collide with the North American continent (Vallier 1998). Five major exotic terranes constitute the Blue Mountain Island Arc (arranged from east to west): Olds Ferry, Izee, Grindstone, Baker, and Wallowa terranes.

Vallier (1998) divided the stratified rocks within the terranes into discrete mappable rock units termed formations. A description of the major formations in the Blue Mountains province follows.

Permian rocks include two older members of the Clover Creek Greenstone: the Windy Ridge and Hunsaker Creek formations. These two formations are the result of early volcanic activity on the Blue Mountain Island Arc (Pohs 2000, Vallier 1998). These formations are composed of mainly pyroclastic breccia and tuff, conglomerate, sandstone, and siltstone. Triassic Period rock units in Hells Canyon are represented by two more recent formations of the Clover Creek Greenstone: the Wild Sheep Creek and Doyle Creek formations. The Triassic rocks are mafic andesites and breccias, as well as sedimentary rocks derived from the deposition of sediments into the surrounding basin, resulting from the erosion of lava flows present on the island arc. Rocks of the Clover Creek Greenstone are common throughout the Blue Mountains as well as the Seven Devils mountains of Idaho (Pohs 2000).

Overlying the older Triassic rocks is the late Triassic Martin Bridge limestone, which developed in a warm, tropical environment along the periphery of the volcanic island arc. The Martin Bridge Limestone is not entirely limestone as the name suggests, also including noncalcareous sandstones, breccia, and siltstone (Vallier 1998).

The late Triassic/early Jurassic Hurwal formation consists mainly of sandstone, siltstone, and breccia with no fossils found in Hells Canyon outcrops. The Hurwal Formation of Sentinel Peak and Pete's Point in the Wallowa Mountains, for example, is distinct from that found in Hells Canyon in that fossils are present in the Wallowa Mountain olistoliths, or large foreign masses of limestone. The Wallowa Mountain olistoliths originated as shallow water reefs surrounding the island arc subsequently broke off, and slid into adjacent deep basins.

The Coon Hollow formation is the major Jurassic formation in the study area representing rocks formed during submerged volcanic activity, erosion, and sedimentation followed by subsidence and the deposition of sediments from deep water turbidity currents around the island arc. The Coon Hollow formation in Hells Canyon follows a depositional gradient of rock types corresponding to the mechanisms previously mentioned. From top to bottom, rock types include tuffaceous rocks, conglomerate and sandstone, to calcareous sandstone, and siltstone.

Intrusive bodies are common throughout the Blue Mountains, including dikes of basalt, andesite, dacite, and rhyolite; and granodiorite plutons such as the Wallowa batholith in the Wallowa Mountains, and the Bald Mountain batholith in the Elkhorn Mountains (Orr and Orr 1999, Pohs 2000). Through a process termed back-arc extension, the sinking of the subduction plate near the coast of Oregon and Washington caused the overriding plate to extend, which in turn caused fissures to develop in the Earth's crust (Pohs 2000). This event, which is thought to have occurred during the Miocene Epoch, led to the release of lava flows known as the Columbia River Basalt Group (CRB) that cover hundreds of square miles in the inland Northwest. The group consists of reddish brown horizontally layered lavas common at higher elevations in Hells Canyon, covering many peaks in the Wallowa Mountains, and most of the ridgetops of the western ranges in the Blue Mountains. Around the same time as the CRB eruptions, smaller and equally important eruptions in the southern Blue Mountains occurred where Sawtooth Crater, Strawberry Volcano, and Dry Mountain evolved as three separate volcanic centers (Orr and Orr 1999). Strawberry volcano extruded some of the thickest and most extensive andesitic lavas in eastern Oregon covering an area of 3800 km².

The Pleistocene Epoch was characterized by glaciation of the high elevations in the Blue Mountains (Pohs 2000).

Classic U-shaped glacial valleys and cirque lakes are found throughout the subalpine and alpine areas of northeastern Oregon.

The extremely steep canyon walls in Hells Canyon often result in landslides and slumping (Vallier 1998). Deposits from these events often temporarily dam the Snake River and its tributaries. Massive flood events are also common in Hells Canyon resulting in "blowouts" that demonstrate the powerful mechanisms by which canyons are formed. One particular catastrophic flood, the Bonneville flood, occurred when ancient Lake Bonneville drained out of Red Rock Pass in Idaho nearly 14,500 years ago. Clearly, this event played a major role in the formation of Hells Canyon as evidenced by the many depositional and erosional features observed in Hells Canyon today.

Natural History: Subalpine

The Strawberry, Elkhorn, and Wallowa mountain ranges represent the southern, central, and portions of the northern Blue Mountain provinces in northeastern Oregon, respectively. Although there are many similarities between the floras of these three regions, there are some differences as well. These differences are in large part due to the location of these ranges relative to large-scale weather patterns and geology. The two major weather patterns influencing the Blue Mountains Province are the Great Basin and Columbia River storm patterns. Glaciers have also played a large role in shaping these mountains. Their fingerprints can be seen throughout all three mountain ranges mentioned above, although they are most pronounced in the Elkhorn and Wallowa Mountains (Orr and Orr 1999).

The Strawberry Mountains are the most southwestern range in the province. Therefore these mountains are the most influenced by the Great Basin weather patterns resulting in a drier and warmer temperature relative to the other ranges in the province. Also, the Strawberry Mountains lie in the rain shadow of the Cascade Mountains. Water vapor transported easterly across the Cascades rises in altitude cooling along the way. The cooler water vapor condenses into liquid water and precipitates on the western slope of the Cascades. The now drier air mass moves east past Bend, Oregon, resulting in the more arid landscape of central Oregon. Another critical feature of the Strawberry Mountains is the lower elevation (generally <2300 m) compared to the Elkhorn and Wallowa Mountains (approximately 3100 m) also resulting in a warmer climate. Lastly, the extent of glacial activity was small owing to the warmer and drier climate. The vegetation is a reflection of the geology and climate. The riparian zones in the Strawberry Mountains are very narrow and steep, usually occurring midslope along springs. Many of these springs are ephemeral and dry up later in the summer. Arrowleaf

groundsel (*Senecio triangularis*) and Pacific onion (*Allium validum*) are two species commonly associated with these ephemeral springs. The warmer climate of the Strawberry Mountains results in species such as mountain alder (*Alnus incana*) occurring above 1800 m, whereas in the Wallowa Mountains, mountain alder is replaced with Sitka alder (*Alnus sinuate*) above 1800 m. The decreased glacial activity resulted in only a few broad U-shaped valleys; therefore, large open meadows are rare in the Strawberry Mountains.

The Wallowa Mountains are the most northeasterly mountains in the province. Storm patterns rolling up the Columbia River basin hit the Wallowa Mountains on the northwest side and are pushed up and cooled with the result that a large amount of precipitation is dropped. Some parts of the Wallowa Mountains receive up to 180 cm of precipitation each year (Pohs 2000). The result is much more lush vegetation than occurs in the Strawberry Mountains. Glacial activity was also at its highest in the Wallowa Mountains; classic U-shaped glacial valleys and cirque lakes are found throughout. The Wallowa Mountains were carved by nine major glaciers in a concentric pattern corresponding to the major drainages of the present day: Minam, Imnaha, Bear, Lostine, Hurricane, Pine, Wallowa, East Eagle, and Eagle. Permanent snow patches still exist in the Wallowa Mountains, such as on Glacier Peak in the Lakes Basin area. Large open meadows thick with willows and sedges are common throughout the range. Many small lakes freckle the landscape, some of them above 2500 m. Seeps and springs are also common in the Wallowa Mountains and are commonly associated with sedges (Carex utricu*lata*, *Eleocharis pauciflora*) and willows (*Salix boothi*). The Wallowa Mountains are somewhat of a crossroads for plant species, including species more representative of the central Rocky Mountains and those of maritime western Oregon and Washington. An example is the occurrence of Pacific yew (Taxus brevifolia), a species more commonly associated with the west coast of Oregon and Washington. In summary, the Wallowa Mountains are higher, colder, and wetter than the Strawberry Mountains, and owing to a combination of higher precipitation, and diverse topography and geology, have greater plant species diversity than those of the Strawberry Mountains.

The Elkhorn Mountains have characteristics of both the Strawberry and Wallowa Mountains. The elevation and glacial activity are more like the Wallowa Mountains, but the Elkhorn Mountains are drier and warmer (receiving about 100 cm of precipitation each year (Pohs 2000). Owing to their more southerly location, the Elkhorn Mountains miss the Columbia River storm patterns and are influenced more by Great Basin weather systems. Still, large meadows, seeps, and lakes are common in the Elkhorn Mountains, and the vegetation is most like that of the Wallowa Mountains with the exception of the maritime influence. One interesting similarity between the Wallowa and Elkhorn Mountains relates to the high elevations of both of these mountain ranges. Some species occurring at high elevations (>2500 m) in the Wallowa and Elkhorn Mountains are found at lower elevations (600 to 900 m) further north such as in southeast Alaska. Plants, including arctic willow (*Salix arctica*) and pink mountainheath (*Phyllodoce empetriformis*), respond inversely to latitude and elevation (i.e., as latitude increases, elevation decreases).

Natural History: Deep Canyons and Midelevation Benches

The deep canyons and midelevation benches of the Wallowa-Whitman, Umatilla, and Malheur National Forests, similar to the mountainous regions of the Blue Mountains Province, are influenced by a number of climatic, geographic, and geologic factors. The degree to which each of these factors influences each national forest is reflected in the flora. Three major weather patterns influence the deep canyons of the Blue Mountains Province: the Great Basin, Rocky Mountain, and Columbia River storm patterns.

Hells Canyon, on the extreme eastern border of the Blue Mountains Province, is home to the Snake River and some of the most rugged wilderness in the contiguous United States. Hells Canyon drops 2500 m in approximately 8.8 km (from the top of He Devil Mountain in the Seven Devils, to the depths of the Snake River at Granite Rapids) making it the deepest canyon in the United States (Orr and Orr 1999). The steep nature of the canyon and exposed bedrock result in steep, constrained tributaries with an associated riparian area that is confined to the relatively narrow canyon bottoms. Hells Canyon is on the western edge of the Rocky Mountain storm system, resulting in large snow accumulations in the high country surrounding the Snake River. Large spring floods in the tributaries from these melting snows provide a very dynamic physical setting. The morphology of these streams is straight, steep, and narrow (5 to 25 m); therefore backwaters, channel migrations, and large areas with hydric soil conditions are rare.

Hells Canyon has a very arid climate, with annual precipitation as low as 38 cm, primarily because of where it is located: directly east of, and in the rain shadow of, the Wallowa Mountain Range (SCAS 2000). The vegetation mirrors these physical characteristics including species found throughout the Rocky Mountains and Great Basin.

The Blue Mountains province is an extremely diverse area, both florally and geologically. The three major mountain ranges lie along a longitudinal-latitudinal gradient from extremely dry and warm in the southwest to cool and wet in the northeast. The topography and vegetation of the deep canyons of the three national forests reflect a combination of climatic, geographic, and geologic factors resulting in two distinct groups: (1) arid and geologically constrained riparian areas in Hells Canyon and the Malheur National Forest, (2) mesic and relatively unconstrained riparian areas (Umatilla National Forest).

The Umatilla National Forest, to the northwest of Hells Canyon, is primarily influenced by Columbia River storms and is much more mesic than either Hells Canyon or the Malheur National Forest. Average annual rainfall reaches 100 cm in some sections of the forest. The vegetation includes Rocky Mountain and Great Basin species as well as species common to western Oregon and Washington, including red alder (*Alnus rubra*), wildginger (*Asarum caudatum*), and devilsclub (*Oplopanax horridus*). The geology is such that large (3rd- to 5th-order) streams with wide riparian areas (10 to 150 m) are common. These streams are actively meandering, forming backwaters, large cobble and sandbars. The resulting riparian landscape is more topographically diverse than that of the Hells Canyon tributaries.

The climate of the Malheur National Forest is very arid, similar to that of Hells Canyon, but lacking the Rocky Mountain storm influence. The climate is controlled primarily by the rain shadow of the Cascade Mountains to the west and Great Basin storm systems. The vegetation therefore has a strong Great Basin influence.

Field Methods

Data collection sites were sampled by field reconnaissance beginning at the mouth of a drainage and working upward in elevation. Fluvial landforms and the respective vegetation were observed along streams, rivers, and lake basins. Based on these observations, plots were established in assemblages of vegetation that were representative of a particular landform along a stream reach (Kovalchik 1987). A stream reach is defined as a section of stream that is environmentally consistent (i.e. gradient, valley width, valley shape, bed material, bedrock, etc.). Universal Transverse Mercator (UTM) coordinates were obtained for each site by using a global positioning system. Site locations were further documented with permanent angle irons at plot center, aluminum reference signs on nearby trees, and by noting the location on a U.S. Geological Survey topographic quadrangle map. Cross-sectional and plane-view sketches were made of the stream and valley bottom shape. Valley landform descriptors (valley shape, gradient, width, and side-slope gradient), aspect, slope, microtopography, and fluvial surface (gravelbar, floodplain, terrace, etc.) were recorded for each plot.

Herbaceous and shrub plots measured 5 by 10 m and were arranged to avoid sampling the boundaries of plant

associations. Canopy coverage for vascular plants, mosses, and liverworts was recorded in increments of 1, 3, 5, and 10 percent and every 5 percent thereafter. Ground cover of surface features (submergence, bare ground, gravel, rock, bedrock, moss, and litter) were recorded by using the same method. Plants not identified in the field were collected for later identification. Plants were identified to lowest possible taxonomic level.

Percentage cover of vegetation at forested sites was estimated across a 375-m-square plot. Basal area tallies of tree species were obtained by using a 20 BAF (basal area factor) prism and a variable-sized circular plot design. A site tree, representative of the size and age of the principal tree species in the stand, was identified, and height, age, and diameter at breast height (d.b.h) were recorded. Shrubs and herbs were sampled as described above.

Snags were tallied by using a 20 BAF prism including the following information for each snag: d.b.h, height, condition class, and evidence of cavities, feeding, or nesting activity. A 9- by 2.5-m downed log transect, positioned lengthwise north-south, was sampled inside the plot including the following: species, diameter (at midpoint), size class, decay condition class, and length.

Soils were sampled with an 8-cm-diameter auger or by digging a pit. Soil was sampled to a depth of 1 m, or until further digging was physically impossible, or the water table was reached. Soils saturated throughout the growing season and soils with rock fragments completely covering the surface were not sampled by the pit method; rather, the surface horizon soil texture/rock fragment size (gravel, cobble, stone, boulder) and notes were recorded regarding the nature of soil saturation and rock fragments. Soil horizons were identified and depths of each recorded. Depth to water table was noted. Soil horizon and redoximorphic feature (if present) color were recorded for each soil horizon. Soil texture, percentage of rock fragments, size and amount of roots, and pH were also recorded.

Use, management, and disturbance observations were recorded at each site, including fire, insects, disease, livestock grazing, indications of wildlife and human use, and flooding. Productivity at each plot was estimated by (1) recording the average herbaceous, shrub, and tree heights and (2) collecting forage species in a 0.5-m-radius plot to ground level. Forage was later dried and weighed and expressed in kilograms of forage per hectare.

Office Methods

All statistical analyses were conducted in R: a language and environment for statistical computing (R Development Core Team 2004 on the World Wide Web at http://www. r-project.org/).

Classification

The vegetation data were initially separated by life form into forested (≥10 percent coverage of tree species on the landform of interest), shrub (<10 percent tree and ≥10 percent shrub cover), and herbaceous (<10 percent tree and shrub cover) plots. The foliar coverage data were entered into a spreadsheet, and a Bray/Curtis similarity matrix was calculated from the raw coverage data. The fixed clustering algorithms, PAM (Kaufman and Rousseeuw 1990) and OptPart (source code at http://ecology.msu.montana.edu/ labdsv/R/lab13/lab13.html) implemented in R were used to cluster the plots within each life-form class. The optimal number of clusters was determined by iteratively clustering at a variety of cluster numbers and choosing the number of clusters that simultaneously optimized the ratio of withincluster to between-cluster similarity, constancy/coverage results, and also corresponded to observations made by the researcher in the field. The results of the two cluster algorithms were compared based upon the ratio of withincluster to between-cluster similarities, species composition within each cluster, and the results of a tree classifier (see below).

During this initial clustering, only species that occurred within the life form of the given life-form class were used. For example, in the set of forested plots, only trees were used to cluster the data into preliminary clusters. The original clusters were examined to determine if two or more clusters were similar enough to combine for the second round of clustering. The decision to merge was based on results obtained by using the partana function (source code at http://ecology.msu.montana.edu/labdsv/R/lab13/ lab13.html), which calculates the ratio of within-cluster to between-cluster similarities.

After the initial clustering, species that occurred at greater than 5 percent cover were placed back in the data set, and each of the above clusters containing more than 10 plots was clustered independently to determine within-type variation based on understory species. Species occurring at less than or equal to 5 percent coverage were excluded from this second round of clustering in order to reduce the complexity of the data set and optimize the clustering ratio. The assumption was made that the species occurring at less than or equal to 5 percent cover were not important in distinguishing between clusters when using an abundancebased dissimilarity measure. In some cases, when it was difficult to decide whether or not to split a group, the overstory species were removed and the original clusters were clustered with all (including ≤ 5 percent) understory species. The above technique is similar to that used by Padgett et al. (1989) and Manning and Padgett (1995) where the understory species were clustered separately in order to elucidate understory and environmental relationships.

The last step in the clustering procedure involved "finetuning" of the clusters by hand. Individual plots were examined to determine the adequacy of a given plot's membership in a cluster based on species composition, autecology, and environmental characteristics. Plots that did not fit into a cluster after the second round of clustering, and clusters with fewer than five plots were grouped together and clustered separately.

Ordinations were calculated for each life-form group and used to visualize the clusters in multidimensional space. Environmental variables were tested against the ordination axes by using generalized additive models to determine environmental gradients important to the structuring of the vegetation in each life-form group.

The clusters developed by using PAM and OptPart were then tested against the environmental variables by using a tree classifier (Ripley 2004). The trees were cross-validated, and misclassification rates and confusion matrices were calculated for each set of life-form clusters. At this point, the decision was made to use the results obtained from the PAM analysis for the tree and shrub clusters and the results from the OptPart analysis for the herbaceous clusters.

Comparing Adjacent Riparian and Wetland Classifications

Adjacent riparian and wetland classifications refer to riparian and wetland plant classifications developed for neighboring geographic regions. Coverage and constancy data for eight adjacent classifications, including Crawford (2003), Crowe and Clausnitzer (1997), Hansen et al. (1995), Kovalchik (1987), Kovalchik and Clausnitzer (2004), Manning and Padgett (1995), Padgett et al. (1989), and Youngblood et al. (1985) were collected from appendices and computerized databases. Each distinct community type was given an eight-letter code, and an importance value was calculated for each species as (constancy x average cover)/100. The same procedure was followed for the plant associations and community types described in the present classification effort, and these data were added to a cumulative community type data set.

Next, the importance data were subject to a log transformation [log(importance)+1] as this was thought to be the best balance between importance of a species in a vegetation type and presence or absence of that species. Lastly, the log-transformed importance data were used to calculate a Bray/Curtis similarity matrix.

Within the similarity matrix, the similarity vector of each of the vegetation types described in this guide was sorted from most to least similar. The top 10 most floristically similar vegetation types from adjacent classifications, based on the above similarity analysis, were identified and further scrutinized. Species lists and importance values for each of the potentially similar vegetation types were compared with the species list for each respective northeastern Oregon deep canyon and subalpine riparian and wetland vegetation type based on importance value of indicator species, and the community as a whole.

Types given the same name (i.e., same indicator species) or one similar to those described in the present classification effort were included as examples of that type in adjacent areas. Types that did not have the same or similar name but were similar floristically were included in the "Floristically Similar Types" paragraph of the same section.

Quantitative data were unavailable for Diaz and Mellon (1996), Miller (1976), Padgett (1981), Jankovsky-Jones et al. (2001), and Viereck et al. (1992); therefore, these classifications were not included in the compositional similarity analysis. The vegetation types composing the above five classifications were compared to the northeastern Oregon deep canyon and subalpine riparian and wetland vegetation types by hand by using constancy/coverage tables, and the results were noted in the "Adjacent Riparian/Wetland Classification" sections of each typal description.

Calculation of Available Water Capacity

Available water capacity (AWC) is an estimate of the water available to plants between permanent wilting point and field capacity **after** hydric soils have drained owing to gravity, and is measured as n units of water per 1 unit of soil. Available water capacity for mineral soil horizons was obtained from the USDA Soil Conservation Service, California Technical Note 15 (see app. E) (Boettinger 2003).

Available water capacity for organic soil horizons was calculated by the following method. Boelter (1969) provided regression equations for calculating water content from fiber content of organic soils. Equations were provided for 0.1-bar and 15-bar suctions (permanent wilting point). No equations were provided for field capacity (0.33 bar); therefore, water content at 0.1 bar was calculated as an estimate of field capacity for organic soils. Available water capacity at different fiber contents was estimated by calculating the water content across the full range of fiber contents for each type of organic material (fibric [67, 74, 81, 88, 95, 100 percent]; hemic [33, 40, 47, 54, 61, 66 percent]; sapric [1, 8, 15, 22, 29, 32 percent]) at both 0.1- and 15-bar suctions. The difference in water content between 0.1 and 15 bar was calculated and then averaged across the six values of fiber content. The AWC estimates for sapric fiber contents were obtained three ways: by averaging the values for all six fiber contents, by averaging values for 8 through 32 percent, and by averaging values for 15 through 32 percent. The decision was made to use the results obtained without 1

and 8 percent fiber contents as such low-fiber-content soils are technically closer to loams and silt loams than to organic soil. The results are displayed in table 1.

Table 1—Available water capacity (AWC) of organic soils

Texture	AWC	Range
	cm wa	ater/cm soil
Fibric	0.20	0.005-0.38
Hemic	.46	.39–.51
Sapric	.50	.47–.51

The AWC for each soil was estimated by calculating AWC for each horizon to 1-m depth. The assumption for soils sampled to less than 1 m was that the final horizon extended to a depth of 1 m. The AWC for each horizon was calculated as follows:

Horizon thickness (cm) × AWC (cm/cm) × (1 - Fraction Rock Fragments) = Horizon AWC (cm)

Total AWC for the soil pit (centimeters of water per meter of soil) was calculated by summing all horizon AWC values for a given soil to a depth of 1 m. Available water capacities for soils saturated throughout the growing season (not sampled by soil pit) were based on the AWC of surface horizon textures, and sites completely covered with rock fragments were set at the lowest total AWC (1.0 cm/m), both calculated to a 1-m depth.

Calculation of Percentage of Rock Fragments

Calculation of percentage of rock fragments began with making the pit depth relative to 1 m, similar to the calculation of AWC. Percentage of rock fragments for each soil horizon was calculated as follows:

> Horizon thickness × Fraction Rock Fragments = Horizon Percentage of Rock Fragments

Total percentage of rock fragments to 1 m was calculated by summing all horizon percentage of rock fragments to a depth of 1 meter. Percentage of rock fragments for soils saturated throughout the growing season (not sampled by soil pit) were set at zero percent, and those of sites completely covered with rock fragments were set at 100 percent.

Taxonomy

Plant taxonomy follows Hitchcock and Cronquist (1973) with the exception of *Carex utriculata* for *C. rostrata*. Owing to the difficulty in differentiating *Veratrum californicum* Dur. (California false hellebore) from *V. viride* Ait. (green false hellebore), both of which occur in the Blue Mountains, the two species were lumped to the genus level for analysis and typal description in the guide.

Most plant identification was by the field researcher; for particularly difficult identifications, specimens were sent to a specialist at the Rocky Mountain Herbarium in Laramie, Wyoming, for identification. Plant codes follow the USDA Plants Database (USDA NRCS 2002b). Voucher specimens are being stored at the USDA Forest Service Wallowa-Whitman National Forest office in Baker City, Oregon, under the direction of Dr. David Swanson.

All plants encountered in the field were identified to the lowest possible taxonomic level. Subspecies and varieties were identified whenever possible, but were not used in the data analysis or type descriptions (see app. G for subspecies and variety data).

Indicator Species

Plant ecologists are primarily interested in the environmental factors influencing the distribution of plant species across a landscape. Mathematical models are often used to aid ecologists in recognizing the relationships between plants and the environment. As elaborate as these mathematical tools have become, there seems to be no mathematical model that embodies all of the environmental factors influencing the presence of a plant species, other than the plants themselves. Indicator species are plants that designate thresholds of environmental change along gradients (Johnson, 2004a). The plants selected to define plant associations and community types are those deemed most diagnostic of a particular environment. A plant species may occur across an environmental gradient, but the optimal growth conditions for a species usually constitute a narrow range within that gradient. During the classification process, cutoff values of percentage of cover for indicator species are used to place sample plots in vegetation types. The presence of an indicator species in a sample plot above the cutoff level implies optimal growth conditions for that species. Priority is given to indicators of cool, moist environments, and the classification scheme is a reflection thereof.

Vegetation Key: Overview

A critical component of the classification process was a seamless linkage between the midmontane and deep canyon/subalpine classifications of northeastern Oregon. The two classifications provide a classification of northeastern Oregon riparian and wetland plant associations, community types, and communities across an elevation gradient ranging from canyon bottoms to glacial cirque basins. Rather than developing two separate vegetation keys for each classification, the vegetation keys have been combined into one comprehensive key. A number of vegetation types occur in both classifications. In such cases, the page number in Crowe and Clausnitzer (1997) where the shared types occur has been indicated (shown as CC p. 38). In the case of types occurring in both classifications, the user is encouraged to read through both descriptions in order to gain a sense of the range of environmental and floristic conditions of a vegetation type.

The combination of the two vegetation keys into one comprehensive key was in most cases straightforward. However, some confusion may arise in the case of the willow/mesic forb and Lemmon's willow/mesic forb types; therefore some clarification may be in order. The willow/ mesic forb plant community type described on page 82 of this classification features Booth's or undergreen willows as indicator species. The willow/mesic forb community type described on page 116 of Crowe and Clausnitzer (1997) features a variety of indicator species, including Booth's, Geyer, Bebb's, Lemmon's and rigid willow, or bog birch. As a consequence of combining the two vegetation keys, the willow/mesic forb plant community type of Crowe and Clausnitzer (1997) falls under the same lead as the willow/ mesic forb plant community type described on page 82 for Booth's willow. Similarly, the Lemmon's willow/mesic forb plant community type described on page 90 of this classification falls under the same lead as the willow/mesic forb community type of Crowe and Clausnitzer (1997).

Using the Vegetation Key

If you (1) are standing in a deep canyon or subalpine riparian zone or wetland in the Blue Mountains region of Oregon, (2) are interested in identifying an assemblage of vegetation as a classified vegetation type, and (3) have this guide with you, then you should begin with the vegetation key.

First, locate a relatively homogenous patch of vegetation that is obviously associated with a specific land form (see "Glossary"). Next, go to the life-form key and determine the principal life form at the site. Plots for forested sites should be roughly 375 m² (about 1/10 acre) in size and circular (11.3-m radius). Plots for shrub and herbaceous sites should be a 50 m² area of any shape. Lastly, using the life-form key, select the appropriate portion of the key for a given life form and work your way through.

Two options exist for highly disturbed sites that do not fit in this classification:

- (1) use the vegetation key to match remnant patches of native vegetation (if such patches exist) as closely as possible to a classified type, and
- (2) use the environmental key to determine possible vegetation potentials for the site.

A Note Regarding the Vegetation Key

The vegetation key provided below was developed for efficient field identification of **the vegetation types described in this guide**. The key is **not** the classification, and users are advised to thoroughly read the description of a vegetation type upon identification of a type when using the key. The cutoff values for percentage cover in the key are general guidelines and may have no ecological basis. The user should be keenly aware of the relative importance of the indicator species present at a site and give priority to those indicator species most representative of the landform at large (most vigorous growth, not isolated to microsites, etc.).

The classification provided is not exhaustive of the possible deep canyon and subalpine riparian and wetland vegetation types of the Blue Mountains. An effort was made to sample only relatively undisturbed sites, and the boundaries between relatively distinct vegetation types, or ecotones, were avoided. Therefore, it is possible that users of this key will encounter unclassified vegetation types in the field. The "environment key" is provided to aid in recognition of the possible vegetation potentials at obviously disturbed sites.

If the vegetation key fails, it may be that the vegetation type is an upland type or that it is a riparian/wetland type that does not fit in the study area described above. In this case, the reader is referred to the following references:

Upland—

- The Grand Fir Series of Northeastern Oregon and Southeastern Washington: Successional Stages and Management Guide (Clausnitzer 1993)
- Alpine and Subalpine Vegetation of the Wallowa, Seven Devils, and Blue Mountains (Johnson 2004a)
- *Plant Associations of the Blue and Ochoco Mountains* (Johnson and Clausnitzer 1992)
- Plant Associations of the Wallowa-Snake Province (Johnson and Simon 1987)

Riparian/Wetland—

- A Riparian Vegetation Classification of the Columbia Basin, Washington (Crawford 2003)
- Mid-Montane Wetland Plant Associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests (Crowe and Clausnitzer 1997)
- Riparian and Wetland Plant Associations of Southwestern Idaho (Jankovsky-Jones et al. 2001)
- Riparian Zone Associations of the Deschutes, Ochoco, Fremont, and Winema National Forests (Kovalchik 1987)
- Classification and Management of Aquatic, Riparian, and Wetland Sites on the National Forests of Eastern Washington: Series Descriptions (Kovalchik and Clausnitzer 2004)

Life-Form Key

1a.			than or equal to ont tree cover	A. Forested Plant Associations, Plant Community Types, and Plant Communities (p. 11)
1b.	Les	s tha	n 10 percent tree cover	
	2a.		eater than or equal to percent shrub cover	
	2b.		ss than or equal to percent shrub cover	C. Herbaceous Plant Associations, Plant Community Types, and Plant Communities (p. 26)
A. ł	Key t	to F	orested Plant Associations, Pl	ant Community Types, and Plant Communities
1a.			ne fir (<i>Abies lasiocarpa</i>) present and cing successfully with cover ≥ 5 perce	entSubalpine Fir Series 2
	2a.	Aqı	uatic sedge (<i>Carex aquatilis</i>) cover ≥	25 percent Subalpine Fir/Aquatic Sedge Plant Community Type (CC p. 38)
	2b.	Aqı	uatic sedge cover <25 percent	
		3 a.	Labrador tea (<i>Ledum glandulosum</i>) cover ≥25 percent	
		3b.	Labrador tea cover <25 percent	
	4a.		lm's Rocky Mountain sedge (<i>Carex pulorum</i>) cover ≥25 percent	Subalpine Fir/Bog Blueberry/Holm's Sedge Plant Community Type (CC p. 39)
	4b.	Hol	lm's Rocky Mountain sedge cover <2	5 percent
			Rusty menziesia (Menziesia	
		5b.	Rusty menziesia cover <25 percent	
	6a.		, huckleberry (<i>Vaccinium</i> <i>mbranaceum</i>) cover ≥25 percent	
	6b.	Big	huckleberry cover <25 percent	7
		7a.	Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	Subalpine Fir/Bluejoint Reedgrass Plant Community Type (CC p. 38)
		7b.	Bluejoint reedgrass cover <25 perce	ent
	8a.		dyfern (<i>Athyrium filix-femina</i>) ∕er ≥5 percent	Subalpine Fir/Ladyfern Plant Association (CC p. 34)
	8b.	Lad	lyfern cover <5 percent	
		9a.	Arrowleaf groundsel (<i>Senecio triangularis</i>) cover ≥25 percent	
		9b.	Arrowleaf groundsel cover <5 perce	nt

10	Da. Soft-leaved sedge (<i>Carex disperma</i>) cover \geq 25 percent	Subalpine Fir/Soft-Leaved Sedge Plant Community Type (CC p. 38)
10	Db. Soft-leaved sedge cover <25 percent	Depauperate or undefined type or not Subalpine Fir series
1b. Su	balpine fir cover <5 percent and/or not reproducing successful	ully 11
11	Ia. Engelmann spruce (<i>Picea engelmannii</i>) present and reproducing successfully with cover ≥5 percent	Engelmann Spruce Series 12
	12a. Holm's Rocky Mountain sedge (<i>Carex scopulorum</i>) cover ≥25 percent	
	 12b. Holm's Rocky Mountain sedge cover <25 percent 13a. Ladyfern (<i>Athyrium filix-femina</i>) cover ≥5 percent 	
	13b. Ladyfern cover <5 percent	
	14a. Arrowleaf groundsel (Senecio triangularis) cover ≥5 percent Ar	Engelmann Spruce–Subalpine Fir/ crowleaf Groundsel Plant Association (p. 46 and CC p. 44)
	14b. Arrowleaf groundsel cover <5 percent	
	15a. Common horsetail (<i>Equisetum arvense</i>) cover ≥5 percentE	ngelmann Spruce/Common Horsetail Plant Association (p. 48 and CC p. 46)
	15b. Common horsetail cover <5 percent	
	16a. Soft-leaved sedge (<i>Carex disperma</i>) cover ≥25 percent	Engelmann Spruce/Soft-Leaved Sedge Plant Association (CC p. 46)
	16b. Soft-leaved sedge cover <25 percent	
	17a. Red-osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 percent Eng	gelmann Spruce/Red-Osier Dogwood Plant Association (CC p. 46)
	17b. Red-osier dogwood cover <25 percent	
	18a. Columbia brome (<i>Bromus vulgaris</i>) cover ≥5 percent	Engelmann Spruce/Columbia Brome Plant Community Type (CC p. 47)
	18b. Columbia brome cover <5 percent	
	19a. Drooping woodreed (<i>Cinna latifolia</i>) cover ≥25 percentEng	gelmann Spruce/Drooping Woodreed Plant Community (CC p. 47)
	19b. Drooping woodreed cover <25 percent	Depauperate or undefined type or not Engelmann Spruce series
11	Ib. Engelmann Spruce cover <5 percent and/or not reproducing successfully	
	odgepole pine (<i>Pinus contorta</i>) present and eproducing successfully with cover ≥ 5 percent	Lodgepole Pine Series 21

		Lodgepole Pine/Aquatic Sedge Plant Association (CC p. 50)
21b.	. Aquatic sedge cover <25 percent	
	22a. Holm's Rocky Mountain (<i>Carex scopulorum</i>) sedge cover ≥25 percent	Lodgepole Pine/Holm's Rocky Mountain Sedge Plant Community (p. 63)
	22b. Holm's Rocky Mountain sedge cover <25 perc	ent
23a.	. Tufted hairgrass (<i>Deschampsia cespitosa</i>) cover ≥25 percent	Lodgepole Pine/Tufted Hairgrass Plant Association (CC p. 50)
23b.	. Tufted hairgrass cover <25 percent	
	24a. Woolly sedge (<i>Carex lanuginosa</i>) cover ≥25 percent	Lodgepole Pine/Woolly Sedge Plant Community (CC p. 51)
	24b. Woolly sedge cover <25 percent	
25a .	. Mountain alder (<i>Alnus incana</i>) cover ≥ 25 percent	
25b.	. Mountain alder cover <25 percent	
	26a. Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	Lodgepole Pine/Bluejoint Reedgrass Plant Community (CC p. 51)
	26b. Bluejoint reedgrass cover <25 percent	
27a.	. Kentucky bluegrass (<i>Poa pratensis</i>) cover ≥25 percent	Lodgepole Pine/Kentucky Bluegrass Plant Community Type (CC p. 51)
27b.	. Kentucky bluegrass cover <25 percent	Depauperate or undefined type or not Lodgepole Pine series
20b. Lod	gepole pine cover <5 percent and/or not reproducing	successfully
28 a.	. Grand fir (<i>Abies grandis</i>) present and reproducing successfully with cover ≥5 percent	Grand Fir Series 29
	29a. Ladyfern (<i>Athyrium filix-femina</i>) cover \geq 5 percent	cent Grand Fir/Ladyfern Plant Association (CC p. 54)
	29b. Ladyfern cover <5 percent	
	30a. Oakfern (<i>Gymnocarpium dryopteris</i>) cover ≥5 percent	Grand Fir/Oakfern Plant Association (CC p. 56)
	30b. Oakfern cover <5 percent	
	31a. Pacific yew (<i>Taxus brevifolia</i>) AND twinflower (<i>Linnaea borealis</i>) present	Grand Fir/Pacific Yew/Twinflower– Floodplain Plant Association (p. 49)
	31b. Pacific yew and/or twinflower absent	
	32a. Black hawthorn (<i>Crataegus douglasii</i>) cover ≥10 percent and Dewey sedge (<i>Carex deweyana</i>) present	Grand Fir/Black Hawthorn/Dewey Sedge Plant Association (p. 51)
	32b. Black hawthorn cover <10 percent and/or Dewey sedge absent	

	33a. Rocky Mountain maple (<i>Acer glabrum</i>) and/or mallow ninebark (<i>Physocarpus</i>	
	malvaceus) present	Floodplain Plant Association (p. 54 and CC p. 58)
	33b. Rocky Mountain maple and/or mallow ninebar	k absent
	34a. Common snowberry (<i>Symphoricarpos albus</i>) cover ≥25 percent	Grand Fir/Common Snowberry- Floodplain Plant Association (CC p. 60)
	34b. Common snowberry cover <25 percent	
	35a. Woolly sedge (<i>Carex lanuginosa</i>) cover \geq 25 pe	ercent Grand Fir/Woolly Sedge Plant Community (CC p. 60)
	35b. Woolly sedge cover <25 percent	
	36a. Tufted hairgrass (<i>Deschampsia cespitosa</i>) cover ≥5 percent	Western White Pine/Tufted Hairgrass Plant Community (CC p. 61)
	36b. Tufted hairgrass cover <5 percent	Depauperate or undefined type or not Grand Fir series
	28b. Grand fir cover $<$ 5 percent and/or not reproducing s	uccessfully
37a.	Douglas-fir (<i>Pseudotsuga menziesii</i>) present and reproducing successfully with cover \geq 5 percent	Douglas-Fir Series 38
	38a. False bugbane (<i>Trautvetteria caroliniensis</i>) cover ≥5 percent	Douglas-Fir/False Bugbane Plant Community Type (CC p. 68)
	38b. False bugbane cover <5 percent	
	39a. Rocky Mountain maple (<i>Acer glabrum</i>) and/or mallow ninebark (<i>Physocarpus</i> <i>malvaceus</i>) present	Douglas-Fir/Rocky Mountain Maple– Mallow Ninebark–Floodplain Plant Association (p. 56 and CC p. 64)
	39b. Rocky Mountain maple and mallow ninebark a	absent 40
	40a. Common snowberry (<i>Symphoricarpos albus</i>) cover ≥5 percent Do	iglas-Fir/Common Snowberry–Floodplain Plant Association (p. 58 and CC p. 66)
	40b. Common snowberry cover <5 percent	Depauperate or undefined type or not Douglas-Fir series
37b.	Douglas-fir cover $<$ 5 percent and/or not reproducing suc	cessfully41
	41a. Ponderosa pine (<i>Pinus ponderosa</i>) present and reproducing successfully with cover ≥5 percent	Ponderosa Pine Series 42
	42a. Black hawthorn (<i>Crataegus douglasii</i>) cover ≥25 percent	Ponderosa Pine/Black Hawthorn Plant Community (p. 62)
	42b. Black hawthorn cover <25 percent	
	43a. Common snowberry (<i>Symphoricarpos albus</i>) cover ≥5 percent	Ponderosa Pine/Common Snowberry– Floodplain Plant Association (p. 60 and CC p. 72)
	43b. Common snowberry cover <5 percent	· · · · · ·

44a. Kentucky bluegrass (<i>Poa pratensis</i>)	
cover ≥25 percent	
	Plant Community Type (CC p. 74)
44b. Kentucky bluegrass cover <25 percent	or not Ponderosa Pine series
41b. Ponderosa pine cover <5 percent and/or not reproducing successfully	
45a. Quaking aspen (<i>Populus tremuloides</i>) present and reproducing successfully with cover ≥5 percent	Quaking Aspen Series 46
46a. Aquatic sedge (<i>Carex aquatilis</i>) cover ≥25 percent	Quaking Aspen/Aquatic Sedge Plant Community Type (CC p. 84)
46b. Aquatic sedge cover <25 percent	
47a. Woolly sedge (<i>Carex lanuginosa</i>) cover ≥25 percent	Quaking Aspen/Woolly Sedge Plant Association (CC p. 78)
47b. Woolly sedge cover <25 percent	
48a. Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	Quaking Aspen/Bluejoint Reedgrass Plant Community Type (CC p. 84)
48b. Bluejoint reedgrass cover <25 percent	
49a. Mountain alder (<i>Alnus incana</i>) cover ≥25 percent.	
50a. Red-osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 percent	Quaking Aspen/Mountain Alder– Red-Osier Dogwood Plant Community (CC p. 84)
50b. Red-osier dogwood cover <25 percent	
51a. Common snowberry (<i>Symphoricarpos albus</i>) cover ≥25 percent	Quaking Aspen/Mountain Alder– Common Snowberry Plant Community (CC p. 84)
51b. Common snowberry cover <25 percent	
49b. Mountain alder cover <25 percent	
52a. Common snowberry cover \geq 5 percent	
52b. Common snowberry cover <5 percent	
53a. Kentucky bluegrass (<i>Poa pratensis</i>) cover ≥25 percent	Quaking Aspen/Kentucky Bluegrass Plant Community Type (CC p. 82)
53b. Kentucky bluegrass cover <25 percent	
54a. Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	
54b. Mesic forbs scarce	Depauperate or undefined type or not Quaking Aspen series
45b. Quaking aspen cover <5 percent and/or not reproducing successfully	

			k cottonwood (<i>Populus trichocarpa</i>) present reproducing successfully with cover ≥5 percent	ntBlack Cottonwood Series 56
		56a.	Pacific willow (<i>Salix lasiandra</i>) and rigid willow (<i>S. rigida</i>) cover ≥25 percent	Black Cottonwood/Pacific Willow Plant Association (CC p. 88)
		56b.	Pacific willow and rigid willow cover <25 pe	rcent 57
			57a. Mountain alder (Alnus incana) and/or re dogwood (Cornus stolonifera) cover ≥25	d-osier 5 percentBlack Cottonwood/ Mountain Alder-Red-Osier Dogwood Plant Association (p. 64 and CC p. 90)
			57b. Mountain alder and/or red-osier dogwood cover <25 percent	
		58a.	Rocky Mountain maple (<i>Acer</i> glabrum) cover ≥25 percent	Black Cottonwood/Rocky Mountain Maple Plant Community Type (p. 68 and CC p. 92)
		58b.	Rocky Mountain maple cover <25 percent	
				Black Cottonwood/Common Snowberry Plant Community Type (p. 66 and CC p. 94)
			59b. Common snowberry cover <5 percent	Depauperate or undefined type or not Black Cottonwood series
			k cottonwood cover <5 percent or not reproducing successfully	
60a.			r (<i>Alnus rubra</i>) present and reproducing lly with cover ≥5 percent	
	61a .	Lady	yfern (<i>Athyrium filix-femina</i>) cover ≥5 percent	Red Alder/Ladyfern Plant Community Type (CC p. 100)
	61b.	Lady	vfern cover <5 percent	
		62a.	Sweet coltsfoot (<i>Petasites frigidus</i> var. <i>palmatus</i>) cover ≥5 percent	
		62b.	Sweet coltsfoot cover <5 percent	
			ping buttercup (<i>Ranunculus repens</i>) r ≥ 1 percent on gravel or cobble bar	
	63b.		ping buttercup absent or fluvial ace not a gravel or cobble bar	
		64a.	Red-osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 percent	Red Alder/Red-Osier Dogwood Plant Community (CC p. 100)
		64b.	Red-osier dogwood cover <25 percent	
	65a.	Paci	fic ninebark (<i>Physocarpus capitatus</i>) cover ≥ 2	25 percent Red Alder/Pacific Ninebark Plant Association (CC p. 98)
	65b.	Paci	fic ninebark cover <25 percent	

		66a	cov	$er \ge 2$	n snowberry (<i>Symphoricarpos albus</i>) 25 percent AND Dewey sedge <i>deweyana</i>) present	Red Alder/Common Snowberry/
			(04			Dewey Sedge Plant Community Type (p. 69 and CC p. 100)
		66b	. Cor	nmoi	n snowberry cover <25 percent	Depauperate or undefined type or not Red Alder series
60b	. Rec	l alde	er cov	/er <5	5 percent and/or not reproducing successful	lly67
	67a				(<i>Alnus rhombifolia</i>) present and successfully with cover ≥ 5 percent	
		68a	Hin	nalay	rry (<i>Rubus</i> spp.) species (specifically van (<i>R. discolor</i>) and/or cutleaf (<i>R. lacinatus</i> nbined cover \geq 25 percent	
		68b	. Bla	ckber	rry species combined cover <25 percent	
					sic shrub species combined cover ≥ 25 perce	
			69b	. Me	sic shrub species combined cover <25 perce	entDepauperate or undefined type or not White Alder series
	67b				cover <5 percent and/or ing successfully	Undefined type or repeat forested key or try shrub or herbaceous keys
B. I	Key t	o Sł	nrubb	by Pl	ant Associations, Plant Community T	ypes, and Plant Communities
1a.	Wil	low	(Salix	x) spe	ecies cover >25 percent	
	2a.				r (<i>Salix arctica</i>) (often cover ≥25 percentA	Arctic Willow Plant Association (p. 76)
	2b.	Arc	tic w	illow	v cover <25 percent	
		3a.	Boc	oth's v	willow (Salix boothii) cover ≥25 percent	4
			4a.		uatic sedge (<i>Carex aquatilis</i>) er ≥25 percent	
			4b.	Αqι	uatic sedge cover <25 percent	5
					Inflated sedge (<i>Carex vesicaria</i>) cover ≥25 percent	
				5b.	Inflated sedge cover <25 percent	6
			6a.	Hol	m's Rocky Mountain sedge (<i>Carex pulorum</i>) cover ≥25 percent Bo	
			6b.	Hol	m's Rocky Mountain sedge cover <25 perc	ent7
				7a.	Bluejoint reedgrass (Calamagrostis	
					<i>canadensis</i>) cover ≥25 percent	

VEGETATION KEY

		8a.	Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	s Willow/Mesic Forb Plant Community Type (p. 82 and CC p. 116)
		8b.	Mesic forbs scarce	Depauperate or undefined Booth's Willow type
	3b.	Boo	th's willow cover <25 percent	9
9a.	Far	r's wi	llow (<i>Salix farriae</i>) cover ≥25 percent	
	10a	. Aqu	tatic sedge (<i>Carex aquatilis</i>) cover \geq 25 percent	
	10b	. Aqu	atic sedge cover <25 percent	
		11a.	Pacific onion (<i>Allium validum</i>) cover ≥25 percent	t Farr's Willow/Pacific Onion Plant Community (p. 89)
		11b.	Pacific onion cover <25 percent	Depauperate or undefined Farr's Willow type
9b.	Far	r's wi	llow cover <25 percent	
	12a	. Und	lergreen willow (Salix commutata) cover ≥25 per	cent 13
		1 3 a.	Bladder sedge (Carex utriculata)	
			cover ≥25 percentUnde	ergreen Willow/Bladder Sedge Plant ommunity Type (p. 89 and CC p. 116)
		13b.	Bladder sedge cover <25 percent	•••••
		10.01	14a. Holm's Rocky Mountain sedge (<i>Carex</i>	
			<i>scopulorum</i>) cover ≥25 percent	Undergreen Willow/Holm's Rocky Mountain Sedge Plant Association (p. 80 and CC p. 104)
			14b. Holm's Rocky Mountain sedge cover <25 percent	
		15a.	Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	
		15b.	Bluejoint reedgrass cover <25 percent	
			16a. Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	
			16b. Mesic forbs scarce	
		17a.	Clustered field sedge (<i>Carex praegracilis</i>) cover ≥25 percent	Undergreen Willow/Clustered Field Sedge Plant Community (CC p. 116)
		17b.	Clustered field sedge cover <25 percent	
	12b	. Und	ergreen willow cover <25 percent	
18a			nd's willow (<i>Salix</i> <i>ndiana</i>) cover ≥25 percent	
	19a		owleaf groundsel (<i>Senecio</i> <i>ngularis</i>) cover ≥5 percent	Drummond's Willow/Arrowleaf Groundsel Plant Community (p. 90)

19b	b. Arrowleaf groundsel cover <5 percent	
	20a. Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	Willow/Mesic Forb Plant Community Type (p. 82)
	20b. Mesic forbs scarce	Depauperate or undefined Drummond's Willow type
18b. Dru	ummond's willow cover <25 percent	
21a	a. Eastwood (S. eastwoodiae) and Tweedy's (S. tweedyi) willow cover ≥25 percent and aquatic sedge (Carex aquatilis) cover ≥25 percent Aquatic	
21b	 Eastwood and Tweedy's willow cover 25 percent and/or aquatic sedge absent 	
Lei	yer willow (<i>S. geyeriana</i>), Bebb willow (<i>S. bebbiana</i>), mmon's willow (<i>S. lemmonii</i>), rigid willow and/or g birch (<i>Betula glandulosa</i>) cover ≥25 percent	
	a. Bladder sedge (<i>Carex utriculata</i>) cover \geq 25 percent	Plant Association (CC p. 106)
23b	b. Bladder sedge cover <25 percent	
	24a. Aquatic sedge (<i>Carex aquatilis</i>) cover ≥25 percent	
	24b. Aquatic sedge cover <25 percent	
25a	a. Woolly sedge (<i>Carex lanuginosa</i>) cover \geq 25 percent.	
25b.	. Woolly sedge cover <25 percent	
	26a. Kentucky bluegrass (<i>Poa pratensis</i>) cover ≥25 percent	Willow/Kentucky Bluegrass Plant Community Type (CC p. 112)
	26b. Kentucky bluegrass cover <25 percent	
27a	a. Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	
27b	b. Bluejoint reedgrass cover <25 percent	
	28a. Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	Willow/Mesic Forb Plant Community Type (p. 90 and CC p. 116)
	28b. Mesic forbs scarce Depauport Lemmon	
wil	yer willow, Bebb willow, Lemmon llow, rigid willow and/or bog birch 5 percent cover	
29a	a. Coyote willow (<i>S. exigua</i>) cover \geq 5 percent	Coyote Willow Plant Association (p. 86 and CC p. 114)
29 b	b. Coyote willow <5 percent	

VEGETATION KEY

	30a. Rigid willow (<i>S. rigida</i>) cover \geq 5 percent	Rigid Willow Plant Community Type (CC p. 117)
	30b. Rigid willow cover <5 percent	
	31a. Scouler's willow (<i>S. scouleriana</i>) and blue wildrye (<i>Elymus glaucus</i>) cover ≥25 percent	Scouler's Willow/Blue Wildrye Plant Community (CC p. 117)
	31b. Scouler's willow cover and/or blue wildrye cover <25 percent	
	32a. Sitka willow (<i>Salix sitchensis</i>) cover ≥25 percent AND common horsetail (<i>Equisetum arvense</i>) cover ≥5 percent	. Sitka Willow/Common Horsetail Plant Community (p. 91)
	32b. Sitka willow cover <25 percent and/or common horsetail cover <5 percent	Depauperate or undefined type or not Willow series
1b.	Willow species cover ≥25 percent	
	33a. Low shrub species (refer to "Glossary" p. 164 for list of low shrub species considered here) cover >25 percent	Low Shrub Series 34
	34a. Alpine laurel (<i>Kalmia microphylla</i>) cover ≥25 percent AND black alpine sedge (<i>Carex nigricans</i>) present	
	34b. Alpine laurel cover <25 percent and/or black alpine sedge absent	
	35a. Pink mountainheath (<i>Phyllodoce empetriformis</i>) cover ≥25 percent AND black alpine sedge and/or Drummond's rush (<i>Juncus drummondii</i>) present	Pink Mountainheath Mounds Plant Association (p. 94)
	35b. Pink mountainheath cover <25 percent and/or black alpine sedge and Drummond's rush absent	
	36a. Labrador tea (<i>Ledum glandulosum</i>) cover ≥25 percent and Holm's Rocky Mountain sedge (<i>Carex scopulorum</i>) present Labr	ador Tea/Holm's Rocky Mountain Sedge Plant Community (p. 96)
	36b. Labrador tea cover <25 percent and/or Holm's Rocky Mountain sedge absent	
	37a. Shrubby cinquefoil (<i>Potentilla fruiticosa</i>) cover ≥10 percent	
	38a. Tufted hairgrass (<i>Deschampsia cespitosa</i>) cover ≥10 percent	ubby Cinquefoil/Tufted Hairgrass Plant Association (CC p. 156)
	38b. Tufted hairgrass cover <10 percent	
	39a. Bog birch (<i>Betula glandulosa</i>) present	Shrubby Cinquefoil-Bog Birch Plant Community Type (p. 96)
	39b. Bog birch absent	
	40a. Kentucky bluegrass (<i>Poa pratensis</i>) or other nonnative grasses or "weedy" forbs present	oy Cinquefoil/Kentucky Bluegrass
		Plant Community Type (CC p. 156)

		40b. Kentucky bluegrass or other species mentioned above absent	
		37b. Shrubby cinquefoil cover <10 percent	
	41a .	Silver sagebrush (Artemisia cana) cover ≥25 perce	nt
		42a. Tufted hairgrass (<i>Deschampsia cespitosa</i>) cover ≥10 percent	Silver Sagebrush/Tufted Hairgrass Plant Association (CC p. 159)
		42b. Tufted hairgrass cover <10 percent	
		43a. Kentucky bluegrass (<i>Poa pratensis</i>) or o nonnative grasses or "weedy" forbs pres	ther entSilver Sagebrush/ Kentucky Bluegrass Plant Community Type (CC p. 159)
		43b. Kentucky bluegrass or other species mentioned above absent	
		44a. Cusick's bluegrass (<i>Poa cusickii</i>) cover ≥25 percent	Silver Sagebrush/Cusick's Bluegrass Plant Community Type (CC p. 166)
		44b. Cusick's bluegrass absent	
	41b.	Silver sagebrush cover <25 percent	
		45a. Mountain big sagebrush (<i>Artemisia tridentata</i> ssp. <i>vaseyana</i>) ≥25 percent cover	
			Mountain Big Sagebrush/ Cusick's Bluegrass Plant Association (CC p. 162)
		46b. Cusick's bluegrass cover <5 percent	. ,
		45b. Mountain big sagebrush cover <25 percent	Depauperate or undefined low shrub type
	33b.	. Low shrub species cover <25 percent	
47a.	Sitk	a alder (Alnus sinuata) cover ≥25 percent	Sitka Alder Series 48
	48 a.	. Ladyfern (<i>Athyrium filix-femina</i>) cover \geq 5 percent	
	48b.	. Ladyfern cover <5 percent	
		49a. Drooping woodreed (<i>Cinna latifolia</i>) cover ≥5 percent	Sitka Alder/Drooping Woodreed Plant Association (p. 99 and CC p. 124)
		49b. Drooping woodreed cover <5 percent	
	50a.	Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	
	50b.	Mesic forbs scarceDe	epauperate or undefined Sitka Alder type
47b.	Sitk	a alder cover <25 percent	
	51a.	Mountain alder (Alnus incana) cover ≥25 percent	

	52a. Big-leaved sedge (Carex	
	<i>amplifolia</i>) cover ≥25 percent	Mountain Alder/Big-Leaved Sedge Plant Association (CC p. 126)
	52b. Big-leaved sedge cover <25 percent	
	53a. Bladder sedge (<i>Carex utriculata</i>) cover ≥25 percent	
	53b. Bladder sedge cover <25 percent	
54a.	Aquatic sedge (<i>Carex aquatilis</i>) cover \geq 25 percer	nt Mountain Alder/Aquatic Sedge Plant Community (CC p. 146)
54b.	Aquatic sedge cover <25 percent	
	55a. Woodrush sedge (Carex	
	<i>luzulina</i>) cover ≥25 percent	Plant Community (CC p. 146)
	55b. Woodrush sedge cover <25 percent	
56a.	. Woolly sedge (<i>Carex lanuginosa</i>) cover ≥ 25 perc	ent Mountain Alder/Woolly Sedge Plant Association (CC p. 146)
56b.	. Woolly sedge cover <25 percent	
	57a. Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	Mountain Alder/Bluejoint Reedgrass Plant Association (CC p. 147)
	57b. Bluejoint reedgrass cover <25 percent	
58a.	. Small-fruit bulrush (<i>Scirpus</i> <i>microcarpus</i>) cover ≥25 percent	Mountain Alder/Small-Fruit Bulrush Plant Community Type (CC p. 147)
58b.	. Small-fruit bulrush cover <25 percent	
000	59a. Ladyfern (<i>Athyrium filix-femina</i>)	
	cover ≥5 percent	Mountain Alder/Ladyfern Plant Association (p. 100 and CC p. 130)
	59b. Ladyfern cover <5 percent	
60a.	. Tall mannagrass (Glyceria elata)	
	cover ≥10 percent	Plant Association (p. 104 and CC p. 132)
60b.	. Tall mannagrass cover <10 percent	61
	61a. Red-osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 percent	Mountain Alder–Red-Osier Dogwood/ Mesic Forb Plant Association (p. 102 and CC p. 134)
	61b. Red-osier dogwood cover <25 percent	
62a.	Currant species (<i>Ribes</i> spp.) cover \geq 25 percent	Mountain Alder–Currants/Mesic Forb Plant Association (CC p. 136)
62b.	. Currant species cover <25 percent	
	63a. Common horsetail (<i>Equisetum arvense</i>) cover ≥25 percent	Mountain Alder/Common Horsetail Plant Association (p. 104 and CC p. 138)
	63b. Common horsetail cover <25 percent	

	64a. Oakfern (<i>Gymnocarpium</i> <i>dryopteris</i>) cover ≥25 percent	
	64b. Oakfern cover <25 percent	
	65a. Common cowparsnip (<i>Heracleum lanatum</i>) cover ≥25 percent	Mountain Alder/Common Cowparsnip Plant Community Type (CC p. 148)
	65b. Common cowparsnip cover <25 percer	
	66a. Densely-tufted sedge (<i>Carex lenticularis</i> var. <i>lenticularis</i>) cover ≥25 percent	
	66b. Densely-tufted sedge cover <25 percent	
	67a. Common snowberry (<i>Symphoricarpos albus</i>) cover ≥25 percent	Mountain Alder–Common Snowberry Plant Association (p. 105 and CC p. 140)
	67b. Common snowberry cover <25 percent	
	68a. Dewey sedge (<i>Carex deweyana</i>) cover ≥5 percent	
	68b. Dewey sedge cover <5 percent	
	69a. Kentucky bluegrass (<i>Poa pratensis</i>) cover ≥25 percent	Mountain Alder/Kentucky Bluegrass Plant Community Type (CC p. 144)
	69b. Kentucky bluegrass absent	Depauperate or undefined Mountain Alder type
51b.	Mountain alder cover <25 percent	
	70a. Other tall shrub species (refer to "Glossary p. 164 for list of other tall shrub species considered here) cover ≥25 percent	"
71a.	Currant species (<i>Ribes</i> spp.) (specifically prickly (<i>R. lacustre</i>) and stinking (<i>R. hudsonianum</i>) currant) cover \geq 25 percent	
	72a. Drooping woodreed (<i>Cinna latifolia</i>) cover ≥10 percent	
	72b. Drooping woodreed cover <10 percent	
	73a. Tall mannagrass (<i>Glyceria</i> <i>elata</i>) cover ≥10 percent	
	73b. Tall mannagrass cover <10 percent	
	74a. Mesic forbs with highest combined foliar co graminoids depauperate or isolated to micro	ver, sites Currants/Mesic Forb Plant Community Type (CC p. 164)
	74b. Mesic forbs scarce	.Depauperate or undefined Currant community
71b.	Currant species cover <25 percent	

	75a.	Twinberry honeysuckle (<i>Lonicera involucrata</i>) cover ≥25 percent AND ladyfern (<i>Athyrium</i> <i>filix-femina</i>) present	
	75b.	Twinberry honeysuckle cover <25 percent and/or ladyfern absent	
76a.	Wat	er birch (Betula occidentalis) cover ≥25 percent	
	77a.	"Wet" sedge (aquatic (<i>Carex aquatilis</i>), big-leaved (<i>C. amplifolia</i>), bladder (<i>C. utriculata</i>), and/or Cusick's (<i>C. cusickii</i>) sedge) cover \geq 25 percent	
	77b.	"Wet" sedge cover <25 percent	
		78a. Reed canarygrass (<i>Phalaris arundinacea</i>) cover ≥25 percent	Water Birch/Reed Canarygrass Plant Community (p. 121)
		78b. Reed canarygrass cover <25 percent	
	79a.	Mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites .	
	79b.	Mesic forbs scarce Depaupe	rate or undefined Water Birch community
76b	. Wat	er birch cover <25 percent	80
	80a.	Alder-leaved buckthorn (<i>Rhamnus purshiana</i>) cover \geq 25 percent and mesic forbs with highest combined foliar cover (\geq 25 percent), graminoids	
		depauperate or isolated to microsites	Alder-Leaved Buckthorn/Mesic Forb Plant Community Type (CC p. 165)
	80b.		Plant Community Type (CC p. 165)
81a.		depauperate or isolated to microsites Alder-leaved buckthorn cover <25 percent	Plant Community Type (CC p. 165)
81a.	Red	depauperate or isolated to microsites Alder-leaved buckthorn cover <25 percent and/or mesic forbs scarce	Plant Community Type (CC p. 165)
81a.	Red 82a.	depauperate or isolated to microsites Alder-leaved buckthorn cover <25 percent and/or mesic forbs scarce -osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 per Brook saxifrage (<i>Saxifraga arguta</i>) cover	Plant Community Type (CC p. 165)
81a.	Red 82a.	depauperate or isolated to microsites Alder-leaved buckthorn cover <25 percent and/or mesic forbs scarce -osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 per Brook saxifrage (<i>Saxifraga arguta</i>) cover ≥25 percent and sideslope seep or spring habitat Brook saxifrage cover <25 percent and	Plant Community Type (CC p. 165)
81a.	Red 82a.	 depauperate or isolated to microsites Alder-leaved buckthorn cover <25 percent and/or mesic forbs scarce -osier dogwood (<i>Cornus stolonifera</i>) cover ≥25 per Brook saxifrage (<i>Saxifraga arguta</i>) cover ≥25 percent and sideslope seep or spring habitat Brook saxifrage cover <25 percent and sideslope seep or spring habitat	Plant Community Type (CC p. 165)
	Red 82a. 82b.	 depauperate or isolated to microsites	Plant Community Type (CC p. 165)
	Red 82a. 82b. . Red 84a.	 depauperate or isolated to microsites	Plant Community Type (CC p. 165)

85a. Western serviceberry (<i>Amelanchier alnifolia</i>) cover ≥25 percent	
	Community Type (CC p. 166)
85b. Western serviceberry cover <25 percent	
86a. Common snowberry (<i>Symphoricarpos albu</i> cover ≥25 percent	us) Common Snowberry Plant Community Type (p. 112)
86b. Common snowberry cover <25 percent	
87a. Rocky Mountain maple (<i>Acer glabrum</i>) cover ≥	25 percent Rocky Mountain Maple Plant Community Type (p. 114)
87b. Rocky Mountain maple cover <25 percent	
88a. Ninebark (<i>Physocarpus</i> spp.) cover ≥25 per	rcent
89a. Pacific ninebark (<i>P. capitatus</i>) as primary ninebark species	Pacific Ninebark Plant Community (p. 122)
89b. Mallow ninebark (<i>P. malvaceus</i>) as primary ninebark species	Mallow Ninebark–Common Snowberry Plant Community Type (p. 122)
88b. Ninebark cover <25 percent	
90a. Netleaf hackberry (<i>Celtis reticulata</i>) cover ≥ 25 p	percent
91a. Introduced brome species (<i>Bromus</i> spp.) (specifically cheatgrass (<i>B. tectorum</i>) and ripgut brome (<i>B. rigidus</i>)) cover ≥5 percent	
91b. Introduced brome species cover <5 percent	t Try upland associations in Wallowa-Snake Guide
90b. Netleaf hackberry cover ≥25 percent	
92a. Lewis' mock orange (<i>Philadelphus lewisii</i>) cover ≥25 percent and mesic forbs with highest combined foliar cover, graminoids depauperate or isolated to microsites	Lewis' Mock Orange/Mesic Forb Plant Community Type (p. 118)
92b. Lewis' mock orange cover <25 percent and/or mesic forbs scarce	
93a. Thimbleberry (<i>Rubus parviflorus</i>) cover ≥25 percent	Thimbleberry Plant Community Type (p. 123)
93b. Thimbleberry cover <25 percent	
94a. Barton's raspberry (<i>Rubus bartonianus</i>) cover ≥25 percent	Barton's Raspberry Plant Community (p. 123)
94b. Barton's raspberry cover <25 percent	
95a. Himalayan blackberry (<i>Rubus discolor</i>) cover ≥25 percentHim	nalayan Blackberry Plant Community (p. 124)
95b. Himalayan blackberry cover <25 percent	Depauperate or undefined Tall Shrub type
Other tall shrub species cover <25 percent	Undefined shrub type or repeat shrub key or try herbaceous key

C. k	Key to	o He	rbaceous Plant Associations, Plant Commun	nity Types, and Plant Communities
1a.	 Individual wet graminoid species (refer to "Glossary" p. 164 for list of wet graminoid species considered here) >25 percent cover and not isolated to microsites		nt	
	2a.	Aqu	atic sedge (Carex aquatilis) cover ≥25 percent	
	2b.	Aqu	atic sedge cover <25 percent	
		3a.	Widefruit sedge (<i>Carex</i> eurycarpa) cover ≥25 percentWid	defruit Sedge Plant Association (p. 135)
		3b.	Widefruit sedge cover <25 percent	4
4a.			edge (<i>Carex</i> s) cover ≥25 percentSilvery Se	dge Plant Community Type (CC p. 199)
4b.	Silv	ery se	edge cover <25 percent	
		5a.	Cusick's sedge (<i>Carex</i> <i>cusickii</i>) over ≥25 percent Cusic	k's Sedge Plant Association (CC p. 176)
		5b.	Cusick's sedge cover <25 percent	
	6a.		lder sedge (<i>Carex</i> <i>culata</i>) cover ≥25 percent	Bladder Sedge Plant Association (p. 127 and CC p. 178)
	6b.	Blac	lder sedge cover <25 percent	
		7a.	Slender sedge (<i>Carex lasiocarpa</i>) cover ≥25 percentSlend	ler Sedge Plant Community (CC p. 200)
		7b.	Slender sedge cover <25 percent	
	8a.	Infla	ated sedge (<i>Carex vesicaria</i>) cover ≥25 percent	Inflated Sedge Plant Association (p. 129 and CC p. 180)
	8b.	Infla	ated sedge cover <25 percent	9
		9a.	Mud sedge (<i>Carex limosa</i>) cover ≥25 percent	Mud Sedge Plant Association (p. 135)
		9b.	Mud sedge cover <25 percent	
	10a.	Sier	ra hare sedge (<i>Carex leporinella</i>) cover ≥ 25 percent	Sierra Hare Sedge Plant Association (p. 136)
	10b.	Sier	ra hare sedge cover <25 percent	
		11a.	Few-flowered spikerush (<i>Eleocharis</i> pauciflora) cover ≥25 percent	
		11b.	Few-flowered spikerush cover <25 percent	
	12a.	Deli	cate spikerush (<i>Eleocharis bella</i>) cover ≥25 percen	t Delicate Spikerush Plant Community (CC p. 200)
	12b.	Deli	cate spikerush cover <25 percent	
		13a.	Lakeshore sedge (<i>Carex lenticularis</i>) cover ≥25 percent	Lakeshore Sedge Plant Association (p. 136 and CC p. 184)
		13b.	Lakeshore sedge cover <25 percent	

	14a.	Creeping spikerush (Eleocharis	
		<i>palustris</i>) cover \geq 25 percent	
			Association (CC p. 182)
	14b.	Creeping spikerush cover <25 percent	
		15a. Short-beaked sedge (<i>Carex</i>	
		simulata) cover ≥ 25 percent	Community Type (CC p. 200)
		15b. Short-beaked sedge cover <25 percent	
	16a.	Saw-beak sedge (<i>Carex stipata</i>) cover \geq 25 percent	Saw-Beak Sedge Plant Community Type (CC p. 200)
	16b.	. Saw-beak sedge cover <25 percent	
		17a. Woolly sedge (<i>Carex lanuginosa</i>) ≥25 percent	
		17b. Woolly sedge cover <25 percent	
	189.	Small-fruit bulrush (<i>Scirpus</i>	
	104	<i>microcarpus</i>) cover ≥ 25 percent	Small-Fruit Bulrush Plant
			Association (p. 133 and CC p. 206)
	18b.	. Small-fruit bulrush cover <25 percent	
		19a. Big-leaved sedge (<i>Carex amplifolia</i>)	
		cover ≥ 25 percent (usually occurs where	
		water source is groundwater spring)	Big-Leaved Sedge Plant Association (p. 137 and CC p. 204)
		19b. Big-leaved sedge cover <25 percent	
	20a.	. Torrent sedge (<i>Carex nudata</i>) cover ≥25 percent	
		and occurring on large rocks along edge of stream	
			Туре (СС р. 212)
	20b.	. Torrent sedge cover <25 percent and/or	
		setting different than above	
		21a. Tall mannagrass (<i>Glyceria elata</i>) cover ≥25 percent	Tall Mannagrass Plant Association (CC p. 208)
		21b. Tall mannagrass cover <25 percent Depaupe	rate or undefined wet graminoid type
1b.		vidual wet graminoid species cover percent and/or isolated to microsites	
	229	Individual moist graminoid species (refer to "Glossary"	
		p. 164 for list of moist graminoid species (cold to "Global") cover ≥ 25 percent and not isolated to microsites	Moist Graminoid Series 23
		23a. Holm's Rocky Mountain sedge (Carex	
		<i>scopulorum</i>) cover ≥25 percent	folm's Rocky Mountain Sedge Plant Association (p. 138 and CC p. 170)
		23b. Holm's Rocky Mountain sedge cover <25 percent	
		24a. Northern singlespike sedge (<i>Carex scirpoidea</i>)	
		cover ≥25 percent and brook saxifrage (Saxifrage	
		arguta) present and headwater spring habitat	Northern Singlespike Sedge– Brook Saxifrage–Spring Plant Association (p. 140)
		24b. Northern singlespike sedge cover <25 percent an brook saxifrage absent and/or setting different th	

VEGETATION KEY

25a. Woodrush sedge (<i>Carex luzulina</i>) cover ≥25 percent	Woodrush Sedge Plant Association (p. 142 and CC p. 172)
25b. Woodrush sedge cover <25 percent	
26a. Black alpine sedge (<i>Carex nigircans</i>) cover ≥25 percent	Black Alpine Sedge Plant Association (p. 144)
26b. Black alpine sedge cover <25 percent	
27a. Sheldon's sedge (<i>Carex sheldonii</i>) cover ≥25 percent	ntSheldon's Sedge Plant Community Type (CC p. 201)
27b. Sheldon's sedge cover <25 percent	
28a. Clustered field sedge (<i>Carex praegracilis</i>) cover ≥25 percent	
28b. Clustered field sedge cover <25 percent	
29a. Bluejoint reedgrass (<i>Calamagrostis canadensis</i>) cover ≥25 percent	(p. 146 and CC p. 188)
29b. Bluejoint reedgrass cover <25 percent	
30a. Tufted hairgrass (<i>Deschampsia cespitosa</i>) cover ≥25 percent	Tufted Hairgrass Plant Association (p. 148 and CC p. 190)
30b. Tufted hairgrass cover <25 percent	
31a. Smooth-stemmed sedge (<i>Carex laeviculmis</i>) cover ≥25 percent	Smooth-Stemmed Sedge Plant Community (CC p. 212)
31b. Smooth-stemmed sedge cover <25 percent	
32a. Drooping woodreed (<i>Cinna latifolia</i>) cover ≥25 percent	Drooping Woodreed Plant Community (CC p. 212)
32b. Drooping woodreed cover <25 percent	
33a. Weak alkaligrass (<i>Puccinellia pauciflora</i>) cover ≥25 percent	
33b. Weak alkaligrass cover <25 percent	
34a. Blue wildrye (<i>Elymus glaucus</i>) cover ≥25 percent AND common cowparsnip (<i>Heracleum lanatum</i>) present	. Common Cowparsnip–Blue Wildrye Plant Community (p. 157)
34b. Blue wildrye cover <25 percent and/or common cowparsnip absent	
35a. Basin wildrye (<i>Elymus cinereus</i>) cover ≥25 percent	Basin Wildrye Plant Community Type (p. 148)
35b. Basin wildrye cover <25 percent	

	36a. Star sedge (<i>Carex muricata</i>) cover ≥25 percent	Star Sedge Plant Community Type (p. 149 and CC p. 199)
	36b. Star sedge cover <25 percent	
	37a. Jones' sedge (<i>Carex jonesii</i>) cover ≥25 percent	Jones' Sedge Plant Community (p. 149)
	37b. Jones' sedge cover <25 percent	
	38a. Nebraska sedge (<i>Carex nebrascensis</i>) cover ≥25 percent	Nebraska Sedge Plant Community Type (p. 150 and CC p. 192)
	38b. Nebraska sedge cover <25 percent	
	39a. Smallwing sedge (<i>Carex microptera</i>) cover ≥25 percent	
	39b. Smallwing sedge cover <25 percent	
	40a. Brown sedge (<i>Carex subfusca</i>) cover ≥25 percent	
	40b. Brown sedge cover <25 percent	
	41a. Baltic rush (<i>Juncus balticus</i>) cover ≥25 percent	
	41b. Baltic rush cover <25 percent	
	42a. Thin bentgrass (<i>Agrostis diegoensis</i>) cover ≥25 percent	
	42b. Thin bentgrass cover <25 percent	
	43a. Kentucky bluegrass (<i>Poa pratensis</i>) and/or c	
	43b. Kentucky bluegrass and/or creeping bentgrass cover <25 percent	
	44a. Meadow foxtail (<i>Alopecurus pratensis</i>) cover ≥25 percent	
	44b. Meadow foxtail cover <25 percent	Depauperate of undefined moist graminoid type
22	 b. Individual moist graminoid species cover <25 percent and/or isolated to microsites 	
	dividual forb species (refer to "Glossary" p. 164 r list of forb species considered here) cover >25 perc	ent Forb Series 46
46	a. Narrowleaf bur-reed (<i>Sparganium</i> angustifolium) cover ≥25 percent	
46	b. Narrowleaf bur-reed cover <25 percent	· · · ·
		•••

 <i>polysepala</i>) cover ≥25 percent	Plant Association (p. 156)
 48a. Buckbean (<i>Menyanthes trifoliata</i>) cover ≥25 percent	uckbean Plant Community (CC p. 200)
cover ≥25 percent	
50a. Common cattail (<i>Typha</i>	
	Common Cattail Plant Community
	(p. 157 and CC p. 202)
50b. Common cattail cover <25 percent	
51a. Pacific onion (<i>Allium validum</i>) cover ≥25 percent AND Holm's Rocky Mountain sedge (<i>Carex scopulorum</i>) present	Mountain Sedge Plant Association (p. 152 and CC p. 213)
51b. Pacific onion cover <25 percent and/or Holm's Rocky Mountain sedge absent	
52a. Arrowleaf groundsel (<i>Senecio triangularis</i>) cover ≥25 percent	
53a. Purple monkeyflower (<i>Mimulus lewisii</i>) present Mo	Arrowleaf Groundsel–Purple onkeyflower Plant Association (p. 154)
53b. Purple monkeyflower absent	Arrowleaf Groundsel Plant Association (CC p. 212)
52b. Arrowleaf groundsel cover <25 percent	
54a. Maidenhair fern (<i>Adiantum pedatum</i>) cover ≥25 percent	
54b. Maidenhair fern cover <25 percent	••••
55a. Common cowparsnip (<i>Heracleum lanatum</i>) cover ≥25 percent and blue wildrye (<i>Elymus glaucus</i>) present	. Common Cowparsnip–Blue Wildrye Plant Community (p. 157)
55b. Common cowparsnip cover <25 percent and/or blue wildrye absent	
56a. Brook saxifrage (<i>Saxifraga</i> <i>arguta</i>) cover ≥25 percent	Brook Saxifrage Plant Community Type (CC p. 213)
56b. Brook saxifrage cover <25 percent	
57a. Common horsetail (<i>Equisetum arvense</i>) cover ≥25 percent	Iorsetail Plant Association (CC p. 210)
57b. Common horsetail cover <25 percent	
58a. American speedwell (<i>Veronica americana</i>) cover ≥25 percent	American Speedwell Plant Community Type (CC p. 213)
58b. American speedwell cover <25 percent	50

59a. False hellebore (<i>Veratrum</i> spp.) cover ≥25 percent	False Hellebore Plant Community Type (p. 158 and CC p. 201)
59b. False hellebore cover <25 percent	
60a. Western coneflower (<i>Rudbeckia occidentalis</i>) cover ≥25 percent	
60b. Western coneflower cover <25 percent	
61a. White sagebrush (<i>Artemisia ludoviciana</i>) cover ≥25 percent	White Sagebrush Plant Community Type (p. 159)
61b. White sagebrush cover <25 percent.	Depauperate or undefined forb type
45b. Individual forb species cover <25 percent	Depauperate or undefined type, or rerun appropriate life-form key with cutoff levels reduced as follows: 25 percent = 10 percent; 10 percent = 5 percent; 5 percent = present (and reproducing for tree species), or try the Environment Key.

Environment Key: Overview

The environment key is provided (1) to reduce the number of possible vegetation types based on a given set of environmental attributes, (2) for office users who are interested in identifying the set of vegetation types that might occur at sites located on topographic maps or geographic information system data, and (3) for the identification of potential vegetation types at disturbed sites.

The environment key is a dichotomous key based on the environmental data collected during the field sampling effort. The key is fashioned after the results of a tree classifier and also reflects the knowledge of, and observations made by, the field researcher. The key is dichotomous, but given the environmental amplitude shown by many of the vegetation types, terminal nodes may result in more than one possible vegetation type. The environment key is not exhaustive of the possible environmental conditions present in the Blue Mountains. Lastly, brackets [] around a type indicate a sample size of one.

Environment Key

1

a.	Ele	vatio	n <16	00 m		
	2a.	Elev	vatior	n <70	0 m (* indicates types found mainly in Hells Canyon)	3
		3a.	Soil	textu	ure coarser than sandy loam and/or rock fragments >4	0 percent 4
			4a.	Floc	odplains	5
				5a.	Floodplains found only between Hells Canyon Dam and Steep Creek in Hells Canyon Wilderness	[RUBA]*
				5b.	All floodplains	POTR15/ALIN2-COST4 POTR15/SYAL POTR15/ACGL COST4 ALRH2/RUBUS [RUDI2]
			4b.	Oth	er landforms	
				6a.	Rocky bars	ALRH2/MESIC SHRUB* ALRH2/RUBUS*
				6b.	Terraces	7

	7a. Boulders covering soil surface	ACGL*
		PHLE4/MESIC FORB
	7b. Boulders not covering soil surface,	
	rock fragments typically >40 percent	
		POTR15/SYAL
		POTR15/ACGL
		BEOC2/MESIC FORB*
		PHLE4/MESIC FORB
		S YAL RUPA
2 h D:	noinel seil terture condulter on finan nech from outs <4	
	ncipal soil texture sandy loam or finer, rock fragments <4	•
8a.	Elevation <550 m	
	9a. Terraces	
		BEOC2/MESIC FORB*
		PHLE4/MESIC FORB
		SYAL
		RUPA
	9b. Floodplain	ALRH2/MESIC SHRUB*
8b.	Elevation \geq 550 m	
	10a. Valley gradient ≤3 percent	
	11a. Landform slope <2 percent PSME/AG	
		POTR15/SYAL [PIPO/CRDO2]
	11b. Landform slope ≥ 2 percent	
	TID. Eandform slope <u>></u> 2 percent	CRD02/MESIC FORB
		POTR15/ACGL
		POTR15/SYAL
	10b. Valley gradient >3 percent	POTR15/ALIN2-COST4 COST4
2b. Elevatio	n ≥700 m	
12a. No	rth Fork Umatilla and Wenaha-Tucannon Wilderness	
13a	Soil completely saturated for most to all of the year	
	14a. Springs	AT IN2/CADE9
	144. Optilie5	ALIN2/ATFI
		BEOC2/WET SEDGE
		COST4/ATFI
		CAAM10
	14b. Streambanks, floodplains, swales, and seasonal cha	annels 15
	15a. Soil texture coarser than very fine sandy loan	1,
	coarse fragments >15 percent	
		ALIN2/EQAR CAAQ
	15b. Soil texture very fine sandy loam or finer,	Unity
	coarse fragments <15 percent	SCMI2
131	•. Soil not completely saturated for any part of the year;	
100	or if so, saturated for only a short period early in the	
	growing season	
	growing season 16a. Floodplains and rocky bars	

17a. Landform slope <3 percent	ALRU2/SYAL/CADE9
	ALIN2/CADE9
	ALIN2-COST4/MESIC FORB ALIN2-SYAL
	[SASI2/EQAR]
	[PHCA11]
17b. Landform slope \geq 3 percent	
16b. Terraces	
18a. Elevation ≤730 m	ABGR/ACGL-FLOODPLAIN
18b. Elevation >730 m	PSME/ACGL-PHMA5-FLOODPLAIN
	PSME/SYAL-FLOODPLAIN
	ABGR/TABR2/LIBO3-FLOODPLAIN
12b. Hells Canyon Wilderness and National Recreatio	n Area19
19a. Swales	[TYLA]
19b. Other landforms	
20a. Soil texture coarser than fine sandy loa and/or coarse fragments >20 percent	ım
21a. Floodplains and rocky bars	
22a. Elevation <915 m	
	ALRH2/RUBUS
	PSME/ACGL-PHMA5-FLOODPLAIN
22b. Elevation >915 m	
	ABGR/CRDO2/CADE9
	ABGR/TABR2/LIBO3-FLOODPLAIN
21b. Terraces	
23a. Southerly aspects	
	POTR15/SYAL
23b. Northerly aspects	
	ABGR/TABR2/LIBO3–FLOODPLAIN
20b. Soil texture fine sandy loam or finer	
24a. Less than 5 percent rock fragmen	tsPHMA5-SYAL [ELCI2]
24b. Greater than or equal to 5 percent	t rock fragments25
25b. Landform slope \geq 3 percent.	
	cent
27a. Soil texture coars	ser than oamCRDO2/MESIC FORB
	RUPA
27b. Soil texture very	
	ner PIPO/SYAL-FLOODPLAIN rcentPSME/SYAL-FLOODPLAIN
200. Valicy gradient \geq 5 per	ABGR/CRDO2/CADE9

1b.	Elevation ≥1600 m
	28a. Elevation <2130 m
	29a. Soil texture coarser than very fine sandy loam and/or rock fragments >20 percent
	30a. Streambanks and floodplains
	31a. Elevation <1900 m ALSI3/MESIC FORB ALSI3/ATFI [LOIN5/ATFI]
	31b. Elevation ≥1900 mPIEN-ABLA/SETR ALIN2/GLEL [Strawberry Mountain Wilderness] SACO2/CASC12 [CALE8] [SALE/MESIC FORB]
	30b. Other landforms
	32a. Terraces and moist meadowABLA/VAME–FLOODPLAIN ABLA-PIEN/MEFE–FLOODPLAIN [Seven Devils Mountains] POFR4-BEGL ABLA-PIEN/LEGL–FLOODPLAIN SALIX/CACA4 [JUBA]
	32b. Rocky barsSAEX
	[ARLU] 29b. Soil texture fine sandy loam or finer
	33a. Landform slope <3 percent
	 34a. Soil not completely saturated for any part of the year; or if so, saturated for only a short period early in the growing season
	35a. Landform slope ≤1 percent
	35b. Landform slope >1 percent
	36a. Strawberry Mountain Wilderness
	36b. Wallowa-Whitman National ForestPIEN-ABLA/CASC12 CACA4 [CANE2] [HELA4-ELGL]
	34b. Soil completely saturated for most to all of the year 37
	37a. Strawberry Mountain Wilderness ALIN2/GLEL SCMI2 CAMU7
	37b. Wallowa-Whitman National ForestALSI3/CILA2 ELPA6 CALU7 CAMU7
	33b. Landform slope \geq 3 percent
	38a. Steep headwater basins and springs of the Strawberry Mountain Wilderness CASC10-SAAR13
	38b. Wallowa-Whitman National Forest 39

	39a. Seepy slopes	CAUT
		ALSI3/CILA2
		[PIEN/EQAR]
		[SACO2/CAUT]
	39b. Other landforms	
	40a. Rocky bars, cobbly/bouldery	SETD MILES
	stream channels, and springs	
	40b. Streambanks and floodplains	
		SACO2/CASC12
		[SADR/SETR]
28b. Elevation ≥213	30 m	41
	sins above 2,300 m elevation with	
sedimenta	ary geology in the Eagle Cap Wilderness	
		[SAFA/ALVA]
41b. Other site	es that do not fit the above criteria	
42a. Sites	with mineral soils, organic surface layer $\leq 20 \text{ cm}$.	
43 a.	Less than or equal to 15 percent rock fragments	
	44a. Soil texture coarser than very fine sandy loan	m 45
	45a. Soil not completely saturated for any pa	
	of the year, or if so, saturated for only a	
	short period early in the growing seaso	
		POFR4-BEGL SALIX/CACA4
	45b . Soil completely acturated for most to al	
	45b. Soil completely saturated for most to al	SALIX/CAAQ
		SACO2/CASC12
	44b. Soil texture very fine sandy loam or finer	
	46a. Soil not completely saturated for any pa	art of
	the year; or if so, saturated for only a sh	
	period early in the growing season	
	47a. Soil mounds (<1 m tall) present	PHEM MOUNDS
	47b. Soil mounds absent	
	48a. Lake edges, periphery	
	of meadows,	
		A-PIEN/LEGL-FLOODPLAIN
	ABLA/MEFE-FLOODPL	AIN [Seven Devils Mountains]
		KAMI/CANI2 ALVA-CASC12
	48b. Moist meadows	ALVA-CASCI2 CANI2
		CACA4
		DECE
		[CAJO]
	46b. Soil completely saturated for	
	most to all of the year	SABO2/CASC12
		CASC12
		CALE9
		[SABO2/CAVE6]

	43b. Greater than 15 percent rock fragments	
	49a. Landform slope >15 percent	SETR-MILE2
	49b. Landform slope \leq 15 percent	ABLA/VAME-FLOODPLAIN
42b.	Sites with organic soils, organic surface layer >20 cm AND/OR soil surface submerged throughout the year .	
	50a. Soil surface submerged throughout the year	
	51a. Wet meadows and cirque basins	ELPA6 CALU7
	51b. Other landforms	
	52a. Lake edges	CAAQ CAUT CAVE6 [CALI7] [CAEU2]
	52b. Lakes	
	50b. Soil surface not submerged throughout the year	
	53a. Landform slope <5 percent	ELPA6 SABO2/CASC12 [PICO/CASC12]
	53b. Landform slope >5 percent	CASC12 ALVA-CASC12

Contents of Vegetation Type Descriptions

A descriptive section for each plant association and community type that includes the following:

Nomenclature/title—The name given to the vegetation type with principal (typal) species first followed by subordinate species of different floristic layers (separated by a backslash) and/or coprincipal species of the same floristic layer (separated by a dash). Landforms may be included in the title if the vegetation type was observed to have a strong affinity to a particular landform.

Latin title—The Latin names of the indicator species.

Ecoclass code—United States Forest Service codes for plant associations and community types.

Title code—A shorthand version of the title consisting of the USDA Plants Database code for the typal species.

Sample size (n =)—The number of sample plots used to describe a vegetation type.

Physical environment—A description of the environmental attributes typical of a vegetation type, including landform, elevation, valley descriptors, and soil characteristics.

Environment table—A summary table of quantitative environmental data.

Vegetation composition—Includes the **principal species** table and a **descriptive section** regarding floristic attributes of the vegetation type.

Principal species—A table including the common and Latin names, **constancy**, **percentage cover**, and **range of cover** for the characteristic species (≥ 20 percent constancy) of a vegetation type (please see app. B for complete constancy/coverage tables).

Constancy (CON)—A percentage of plots where a species occurs in a vegetation type.

Cover (COV)—The average percentage cover of a species **on the plots where it is present** [when it occurs] in a vegetation type.

Range of cover (MIN/MAX)—The minimum and maximum coverage of a species **when it occurs** in a vegetation type.

Descriptive section—A description of the floristic attributes of a vegetation type including **adjacent vegetation types.**

Adjacent vegetation types—A list of possible riparian, wetland, and upland vegetation types and associated landforms directly adjacent to the vegetation type being described. This is not a closed list, other possible adjacent vegetation types may exist (not to be confused with "Adjacent Riparian/Wetland Classifications," see below).

Management considerations—A section describing implications of resource management. Topics include disturbance events, life histories, forestry, livestock grazing, wildlife use, fisheries, and successional relationships.

Stand characteristics—Summary tables for the forested vegetation types, includes **basal area** and **site tree** tables.

Basal Area—Includes basal area, range of basal area, average diameter at breast height (d.b.h), minimum d.b.h., and maximum d.b.h. for each tree species associated with forested types.

Site Tree—An individual tree that is characteristic of the age and size class of a forested stand. Description includes the average d.b.h., average age, and average height of the site trees of each tree species associated with forested vegetation types.

USDI Fish and Wildlife Service wetlands classification— The Cowardin et al. (1979) wetland classification for each plant association and community type.

Adjacent riparian/wetland classifications—Section describing the occurrence(s) of the same or floristically similar vegetation types found in riparian and wetland classifications developed for neighboring geographic regions.

Floristically similar vegetation types—Adjacent vegetation types that are compositionally similar (based on compositional similarity analysis of the vegetation data) to those described in the present classification.

Subalpine Fir-Engelmann Spruce/Labrador Tea-Floodplain Plant Association Abies lasiocarpa-Picea engelmannii/Ledum glandulosum **CES610** ABLA-PIEN/LEGL-FLOODPLAIN

N = 7

Physical environment—

The subalpine fir-Engelmann spruce/Labrador teafloodplain plant association was found in moist to wet forested basins mostly above 2134 m elevation, with the exception of plot WW1651 located along the Minam River in the Eagle Cap Wilderness, with an elevation of 1637 m. Typical valleys were of very low to low gradient (<1 to 3 percent), U-shaped, and of different widths. Soils were somewhat poorly drained and typically had low amounts of rock fragments. Upper soil horizon textures ranged from silt loam to silty clay loam, whereas lower horizon textures ranged from sandy loam to silt loam. The water table was generally shallow (30 cm or less) and redoximorphic features were common within the same depth range.

Vegetation composition—

Engelmann spruce and subalpine fir co-occur in the overstory with the occasional white bark pine. Subalpine fir, when it occurs in the overstory, tends to have greater basal area than Engelmann spruce (average of 18 vs. $12 \text{ m}^2/\text{ha}$). Subalpine fir is always found strongly reproducing in the understory.

Landform environment (n = 7)	Mean	Range
Elevation (m)	2134	1637–2348
Plot slope (percent)	7	<1–20
Aspect All		
Valley environment (n = 7)	Mode	Range
Valley gradient (percent)	<1	<1–>8
Valley width (m)	10–30	10->300
Valley aspect All		
Soil surface cover (n = 7)	Mean	Range
Submerged (percent)	7	0-40
Bare ground	6	0-30
Gravel	0	
Rock	3	0–10
Bedrock	0	
Litter	54	20-85
		10-70

Soil profile characteristics (n = 6)

Parent material Great group(s)

Mazama ash, colluvium, quartz diorite Cryaquands, Cryaquents, Cryaquepts, Cryofluvents, Cryorthents

		Mean	Range
Water table depth (cm)			29->73
Rock fragments (percent)		8	0-39
Available water capacity of	pit (cm/m)	11	6–16
pH (n = 6)		5.65	5.08-6.14
Depth to redoximorphic fea	itures (cm)		7–30
Occurrence of redoximorph (percentage of soils)	nic features	67	
Surface organic layer (cm)			0-20
Surface layers Thickness (cm)			12–51
Texture(s) ^a	L, SICL, SIL, SL		
Redoximorphic features	Depletions, iron oxid	de concentra	ations
Subsurface layers			
Thickness (cm)			10-64
Texture(s) ^a	L, SICL, SIL, SL, S		
Redoximorphic features	Depletions, iron oxid	de concentra	ations
2			

^aSee "Soil Texture Codes" section.

Labrador tea forms a thick shrub layer where it is also common to find pink mountainheath and alpine spicywintergreen. Grouse huckleberry, when found in the shrub layer, is indicative of the drier end of the ABLA-PIEN/LEGL environmental tolerance gradient and was often observed growing on hummocks.

Subalpine fleabane, explorer's gentian, and high mountain cinquefoil are common species found in the herbaceous

Principal s	pecies		CON	COV	MIN	MAX
				Pei	rcent	
Primary ove	rstory trees:					
ABLA	Subalpine fir	Abies lasiocarpa	85	14	2	45
PIEN	Engelmann spruce	Picea engelmannii	100	10	1	40
Subordinate	overstory trees:					
ABLA	Subalpine fir	Abies lasiocarpa	71	10	5	30
Understory	trees:					
ABLA	Subalpine fir	Abies lasiocarpa	100	18	5	50
PIEN	Engelmann spruce	Picea engelmannii	42	3	1	5
Shrubs:	.	-				
GAHU	Alpine spicywintergreen	Gaultheria humifusa	42	5	1	10
LEGL	Labrador tea	Ledum glandulosum	100	55	35	80
PHEM	Pink mountainheath	Phyllodoce empetriformis	85	7	3	15
VASC	Grouse huckleberry	Vaccinium scoparium	85	13	2	30
Forbs:						
ERPE3	Subalpine fleabane	Erigeron peregrinus	57	2	1	3
GECA	Explorer's gentian	Gentiana calycosa	85	4	1	10
LITE2	Idaho licorice-root	Ligusticum tenuifolium	42	2	1	3
POFL3	High mountain cinquefoil	Potentilla flabellifolia	71	17	5	35
SECY	Alpine meadow butterweed	Senecio cymbalarioides	42	2	1	3 5
VIOLA	Violet	Viola	42	2	1	5
Sedges and	other grasslikes:					
CALU7	Woodrush sedge	Carex luzulina	42	2	1	3
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	71	27	1	50

layer. The presence of Holm's Rocky Mountain sedge and bluejoint reedgrass is suggestive of the wetter end of the ABLA-PIEN/LEGL–FLOODPLAIN environmental tolerance gradient.

Adjacent riparian/wetland vegetation types: Meadows: PHEM MOUNDS, CASC12 Lake edge: CAUT.

Adjacent upland vegetation type: Sideslopes: ALBA/VASC.

Stand characteristics—

Basal area		Diameter at breast height (d.b.h.)			
Species	Average	Range	Average	Minimum	Maximum
-	m ²	/ha		- Centimeters	
ABLA	18	5–37	30.2	12.4	61.0
PIAL	7	5-9	31.8	16.5	54.6
PIEN	12	2–28	43.9	25.7	67.8

Site tree averages			
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
ABLA	29.2	75	13.7
PIEN	40.9	65	17

Management considerations—

Johnson (2004a) described an *Abies lasiocarpa–Picea* engelmannii/Ledum glandulosum plant association for

uplands in the Wallowa Mountains featuring the more xeric Ross' sedge in lieu of the more mesic Holm's Rocky Mountain sedge. The ABLA-PIEN/LEGL–FLOODPLAIN plant association is of low timber harvest value owing to the perennially wet/moist soil and low basal area. Deer and elk use is infrequent owing to a scarcity of forage species. Cavity-nesting birds may find suitable nesting and feeding habitat in the numerous snags common to this association.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine

Class: forested wetland

Subclass: needle-leaved evergreen

Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Hansen et al. (1995) portrayed a two-phase subalpine fir/Labrador tea type for Montana, a wetter bluejoint reedgrass phase and a drier Labrador tea phase. Kovalchik and Clausnitzer (2004) described a subalpine fir/Labrador tea-grouse huckleberry association for eastern Washington most similar to the drier end of the subalpine fir/Labrador tea type described above.

Floristically similar types include Engelmann spruce– subalpine fir/Holm's Rocky Mountain sedge, subalpine fir–Engelmann spruce/rusty menziesia (p. 40), Engelmann spruce/western singlespike sedge (*Carex scirpoidea* var. *pseudoscirpoidea*) (Kovalchik and Clausnitzer 2004).

Subalpine Fir-Engelmann Spruce/Rusty Menziesia–Floodplain Plant AssociationAbies lasiocarpa-Picea engelmannii/Menziesia ferrugineaCES710ABLA-PIEN/MEFE–FLOODPLAIN

N = 3

Physical environment—

The subalpine fir-Engelmann spruce/rusty menziesia– floodplain plant association occurred along high-elevation (1994 to 2317 m) streams, on floodplains and terraces, and along lake edges exclusively in the Seven Devils mountain range. Sample plots were located in U-shaped and flat valleys with low (<1 percent) to moderate (5 percent) gradient. Parent material consisted mainly of granite. Soils were moderately well drained to somewhat poorly drained fine sandy loam to clay loam. The water table ranged from 61 cm to greater than 1 m.

Vegetation composition—

Subalpine fir and Engelmann spruce share the overstory with occasional occurrences of lodgepole pine. Subalpine fir and Engelmann spruce seedlings are always found in the understory tree layer. In the absence of disturbance, subalpine fir will prevail at these sites. In the occurrence of an increase in soil moisture, the advantage would likely shift toward Engelmann spruce, as this species is physiologically better able to cope with saturated conditions. Rusty menziesia forms a dense tall shrub layer with grouse huckleberry below. In wetter versions of this type, bog blueberry can be found in the low shrub layer alongside grouse huckleberry. The typically sparse understory is composed of heartleaf arnica, fireweed, and sidebells wintergreen.

Adjacent riparian/wetland vegetation types: Floodplains: PIEN-ABLA/SETR Lakes and lake edges: CAVE6, SPAN2, CAEU2

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Landform environment (n = 3)	Mean	Range
Elevation (m) Plot slope (percent)		2108 4	1994–2317 2–6
Aspect	Northerly		
Valley environment (n =	3)	Mode	Range
Valley gradient (percent)		1–3	<1–5
Valley width (m)		30–100	30–300
Valley aspect	Mostly northerly		
Soil surface cover (n = 3)	Mean	Range
Submerged (percent)		0	
Bare ground		0	
Gravel		0	
Rock		2	0-5
Bedrock		0	
Litter		83	75–90
Moss		15	5–25

Soil profile characteristics (n = 3)

Parent material	Granite		
Great group(s)	Cryorthents, Haploo	cryalfs, End	oaqualfs
		Mean	Range
Water table depth (cm)			61->100
Rock fragments (percent)		45	18–65
Available water capacity of	pit (cm/m)	9	4–11
pH (n = 3)		5.51	5.49-5.55
Depth to redoximorphic fea	itures (cm)		21–30
Occurrence of redoximorph (percentage of soils)	nic features	66	
Surface organic layer (cm)			3–9
Surface layers			
Thickness (cm)			3–4
Texture(s) ^a	FSL, L		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			48->67
Texture(s) ^a	CS, FSL, L, CL		
Redoximorphic features	Depletions		
a Coo "Coll Teuture Codes" on	atta a		

^aSee "Soil Texture Codes" section.

Management considerations—

The subalpine fir-Engelmann spruce/rusty menziesia– floodplain plant association is floristically similar to the *Abies lasiocarpa/Menziesia ferruginea* (subalpine fir/rusty menziesia) habitat type-*Menziesia ferruginea* phase, described by Steele et al. (1981) for uplands in central Idaho. Johnson and Simon (1987) and Johnson (2004a) described *Abies lasiocarpa–Picea engelmannii/ Mensiesia ferruginea* types for uplands in the Seven Devils

pecies		CON	COV	MIN	MAX
			Pei	rcent	
rstory trees:					
Subalpine fir	Abies lasiocarpa	100	20	5	40
Lodgepole pine	Pinus contorta	66	12	10	15
Engelmann spruce	Picea engelmannii	100	27	20	40
trees:					
Subalpine fir	Abies lasiocarpa	100	5	1	10
Engelmann spruce	Picea engelmannii	100	9	1	25
Utah honeysuckle	Lonicera utahensis	66	4	3	5
Rusty menziesia	Menziesia ferruginea	100	73	60	90
Grouse huckleberry	Vaccinium scoparium	100	30	20	40
Bog blueberry	Vaccinium uliginosum	66	15	15	15
Heartleaf arnica	Arnica cordifolia	66	3	1	5
Fireweed	Epilobium angustifolium	66	1	1	1
Sidebells wintergreen	Pyrola secunda	66	7	3	10
	rstory trees: Subalpine fir Lodgepole pine Engelmann spruce trees: Subalpine fir Engelmann spruce Utah honeysuckle Rusty menziesia Grouse huckleberry Bog blueberry Heartleaf arnica Fireweed	rstory trees: Subalpine fir Abies lasiocarpa Lodgepole pine Pinus contorta Engelmann spruce Picea engelmannii trees: Subalpine fir Abies lasiocarpa Engelmann spruce Picea engelmannii Utah honeysuckle Lonicera utahensis Rusty menziesia Menziesia ferruginea Grouse huckleberry Vaccinium scoparium Bog blueberry Vaccinium uliginosum Heartleaf arnica Arnica cordifolia Fireweed Epilobium angustifolium	rstory trees: Subalpine fir Abies lasiocarpa 100 Lodgepole pine Pinus contorta 66 Engelmann spruce Picea engelmannii 100 trees: Subalpine fir Abies lasiocarpa 100 Engelmann spruce Picea engelmannii 100 Utah honeysuckle Lonicera utahensis 66 Rusty menziesia Menziesia ferruginea 100 Grouse huckleberry Vaccinium scoparium 100 Bog blueberry Vaccinium scoparium 100 Bog blueberry Vaccinium uliginosum 66 Heartleaf arnica Arnica cordifolia 66 Fireweed Epilobium angustifolium 66	Perrstory trees:Subalpine firAbies lasiocarpa10020Lodgepole pinePinus contorta6612Engelmann sprucePicea engelmannii10027trees:Subalpine firAbies lasiocarpa1005Engelmann sprucePicea engelmannii1009Utah honeysuckleLonicera utahensis664Rusty menziesiaMenziesia ferruginea10073Grouse huckleberryVaccinium scoparium10030Bog blueberryVaccinium uliginosum6615Heartleaf arnicaArnica cordifolia663FireweedEpilobium angustifolium661	Percentrstory trees:Subalpine firAbies lasiocarpa100205Lodgepole pinePinus contorta661210Engelmann sprucePicea engelmannii1002720trees:Subalpine firAbies lasiocarpa10051Engelmann sprucePicea engelmannii10091Utah honeysuckleLonicera utahensis6643Rusty menziesiaMenziesia ferruginea1007360Grouse huckleberryVaccinium scoparium1003020Bog blueberryVaccinium uliginosum661515Heartleaf arnicaArnica cordifolia6631FireweedEpilobium angustifolium6611

Stand characteristics—

	Basal	area	Diameter	at breast he	ight (d.b.h.)
Species	Average	Range	Average	Minimum	Maximum
	m ²	/ha		- Centimeters	
PIEN	17	14-18	33	20.3	63.5
ABLA	11	5-18	30	15.2	43.2
PICO	20	5-9	30	30.5	33.0

Site tree averages			
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
PIEN	76.2	NA	34
PICO	33.0	NA	23

Mountains of western Idaho that are floristically similar to the association described above. Environmentally, the previously described upland types differ from the riparian/ wetland type in that the former are found on more xeric upland slopes, whereas the latter is associated with mesic soils along streams and lakes. The establishment of this type in riparian/wetland sites represents an extension into valley bottoms of the previously documented range in western Idaho. The abundant snags present in this plant association provide nesting and feeding opportunities for woodpeckers, nuthatches, chickadees, and ruby-crowned kinglets. The large quantity of woody debris produced by these sites enhances stream channels by dampening the effects of high flow periods and providing habitat for salmonids. Logging opportunities are limited by the moist soils and steep terrain typical of this association.

USDI Fish and Wildlife Service wetlands classification—

System:palustrineClass:forested wetlandSubclass:needle-leaved evergreenWater regime:temporarily to intermittently flooded

Adjacent riparian/wetland classifications—

Hansen et al. (1995) described a subalpine fir/claspingleaved twisted-stalk (*Streptopus amplexifolius*)-fool's huckleberry (*Menziesia ferruginea*) phase habitat type for Montana. Kovalchik and Clausnitzer (2004) described a variety of subalpine fir/rusty menziesia types for eastern Washington.

There are no floristically similar types.

Subalpine Fir/Big Huckleberry–Floodplain Plant Association Abies lasiocarpa/Vaccinium membranaceum **CES316** ABLA/VAME-FLOODPLAIN

Physical environment—

The subalpine fir/big huckleberry floodplain plant association was found on a floodplain, a terrace, and a steep, seepy, streambank in the Wallowa Mountains. Elevations were moderate, ranging from 1646 m along the Minam River to 1875 m along Bear Creek. Sample plots were located in U- and V-shaped valleys with low (<1 percent) and high gradient (4 to 8 percent), respectively. Parent material consisted mainly of granite. Soils were well-drained to moderately well-drained sandy loam to loam. The water table ranged from near the surface to greater than 81 cm.

Vegetation composition—

Engelmann spruce and subalpine fir share the overstory. In the absence of disturbance, the potential for the site is subalpine fir, the most shade-tolerant species. Lodgepole pine and western larch are occasionally found in the overstory. Engelmann spruce and subalpine fir both contribute strongly to regeneration in the understory.

Big huckleberry is consistently found in the low shrub layer. The herbaceous layer is composed of a wide variety of species: heartleaf arnica, willowherb, twistedstalk, violets, and wintergreen. Wetter variations of this type may include Labrador tea, Holm's Rocky Mountain sedge, bladder sedge, tall mannagrass, and Pacific onion.

Adjacent riparian/wetland vegetation types: Meadows: CACA4, and ALSI3/MESIC FORB.

Adjacent upland vegetation types: Sideslopes: PICO/VASC, ABLA/VASC, and ABGR/VAME.

798 12 Iode	1646–1875 0–35
	0–35
ode	
ode	
	Range
1–5	<1–8
30	10-300
lean	Range
0	
2	0-3
0	
2	0-3
0	
0	
-	3–10
	J 7

Parent material Granite Great group(s) Cryorthents

5 5	· , · · · ·		
		Mean	Range
Water table depth (cm)			0->81
Rock fragments (percent)		1	0–2
Available water capacity of	pit (cm/m)	9	3–14
pH (n = 2)		5.40	5.31–5.49
Depth to redoximorphic fea	tures (cm)	NA	
Occurrence of redoximorph (percentage of soils)	nic features	0	
Surface organic layer (cm)			0-5
Surface layers Thickness (cm)			18–23
Texture(s) ^a	L, VFSL, LS		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			13->59
Texture(s) ^a	SL, VFS		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal s	pecies		CON	COV	MIN	MAX
				Perc	cent	
Primary ove ABLA PIEN	erstory trees: Subalpine fir Engelmann Spruce	Abies lasiocarpa Picea engelmannii	100 100	24 42	5 22	45 65
Understory ABLA PIEN	trees: Subalpine fir Engelmann Spruce	Abies lasiocarpa Picea engelmannii	100 100	5 3	5 3	6 5
Shrubs: LOIN5 LOUT2 RILA VAME VAUL	Twinberry honeysuckle Utah honeysuckle Prickly currant Big huckleberry Bog blueberry	Lonicera involucrata Lonicera utahensis Ribes lacustre Vaccinium membranaceum Vaccinium uliginosum	100 66 100 100 66	5 5 9 33 13	1 5 3 20 10	10 5 15 50 15
Forbs: ARCO9 CLUN2 EPAN2 FRVE LUPO2 MECI3 PERA PYSE STAM2 THVE TITR VIOLA	Heartleaf arnica Queen's cup beadlily Fireweed Woodland strawberry Bigleaf lupine Tall fringed bluebells Sickletop lousewort Sidebells wintergreen Claspleaf twistedstalk Veiny meadow-rue Threeleaf foamflower Violet	Arnica cordifolia Clintonia uniflora Epilobium angustifolium Fragaria vesca Lupinus polyphyllus Mertensia ciliata Pedicularis racemosa Pyrola secunda Streptopus amplexifolius Thalictrum venulosum Tiarella trifoliata Viola	66 66 100 66 66 66 66 66 66 66	13 2 6 8 2 9 3 18 13 10	5 1 1 1 1 1 6 1 5 10 5	20 5 10 15 15 3 10 5 20 15 15
Grasses: CACA4	Bluejoint reedgrass	Calamagrostis canadensis	66	7	3	10

Stand characteristics—

Basal area			Diameter at breast height (d.b.h.)			
Species	Average	Range	Average	Minimum	Maximum	
	m²	/ha		- Centimeters	;	
ABLA	16	9–25	30.0	15.2	45.7	
PIEN	24	14-32	35.1	14.7	64.3	
LAOC	2	_	45.7	38.1	53.6	
PICO	2	_	53.3	—	_	

	Site	tree averag	es
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
ABLA	29.2	90	14
PIEN	41.1	123	14

Management considerations—

Johnson and Simon (1987), Johnson and Clausnitzer (1992), and Johnson (2004a) described a similar type for uplands in the Wallowa, Blue Mountians, and alpine regions of northeastern Oregon, respectively. The two types differ from the riparian/wetland equivalent in that they are found mainly on ridges and xeric slopes resulting in a slightly different species composition than the more mesic type. The abundant snags present in this plant association provide nesting and feeding opportunities for woodpeckers, nuthatches, chickadees, and ruby-crowned kinglets. The large quantity of woody debris produced by these sites enhances stream channels by dampening the effects of high flow periods and providing habitat for salmonids. Logging opportunities are limited by the moist soils and steep terrain typical of this association.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	needle-leaved evergreen
Water regime:	(nontidal) temporarily flooded.

Adjacent riparian/wetland classifications—

Kovalchik (1987) described an Engelmann spruce/bog blueberry/forb association for central Oregon that is similar to the subalpine fir/bog blueberry/Holm's Rocky Mountain sedge community type of Crowe and Clausnitzer (1997) found in the midmontane wetlands of northeastern Oregon. Kovalchik and Clausnitzer (2004) described a subalpine fir/big huckleberry association for eastern Washington.

Floristically similar types include subalpine fir/sweetscented bedstraw (*Galium trifolium*) (Hansen et al. 1995).

Engelmann Spruce-Subalpine Fir/Holm's Rocky Mountain Sedge Plant Association *Picea engelmannii-Abies lasiocarpa/Carex scopulorum* CEG201 PIEN-ABLA/CASC12

N = 6

Physical environment—

The Engelmann spruce-subalpine fir/Holm's Rocky Mountain sedge plant association occurred in moist/wet forested basins at edges of subalpine meadows, on a floodplain, and a streambank between 1890 and 2142 m elevation. Sites occurred in very low to moderate gradient (<1 to 5 percent) U- and trough-shaped valleys. Soils were somewhat poorly drained, coarse sand to silty loam below a thick (14 cm \pm 9 cm) organic surface layer. The thick organic surface layer increases the available water capacity of the soil and represents an important environmental characteristic distinguishing PIEN/CASC12 from PIEN-ABLA/LEGL. Depth to water table ranged from 18 cm to greater than 1 m, and redoximorphic features were common.

Vegetation composition—

Engelmann spruce is the prevailing overstory tree sometimes accompanied by lodgepole pine. Subalpine fir is rarely found in the overstory, but almost always occurs in the understory often growing on slightly drier hummocks.

Species that may be found in the generally sparse shrub layer include pink mountainheath, grouse huckleberry, bog blueberry, and various willow species. A lack of Labrador tea and a high coverage (62 percent on average) of Holm's Rocky Mountain sedge are the key floristic components distinguishing PIEN/CASC12 from PIEN-ABLA/LEGL.

High mountain cinquefoil is always present in the herbaceous layer and may be accompanied by Canadian burnet, shootingstar, elephanthead lousewort, licorice-root (*Ligusticum* spp.), and tufted hairgrass. Few-flowered spike rush is sometimes present in the wettest portions of this type.

Landform environment (n = 6)	Mean	Range
Elevation (m)	2080	1890–2142
Plot slope (percent)	2	<1–2
Aspect All		
Valley environment (n = 4)	Mode	Range
Valley gradient (percent)	<1	<1–5
Valley width (m)	10–30	10->300
Valley aspect All		
Soil surface cover (n = 6)	Mean	Range
Submerged (percent)	8	0-40
Bare ground	2	0-5
Gravel	0	
Rock	4	0–25
Bedrock	0	
Litter	46	5–95
Moss	39	0-91

Soil profile characteristics (n = 6)

Parent material	Mazama ash, moss j	peat, alluvi	um
Great group(s)	Cryaquents, Cryoher	mists, Cryo	orthents
		Mean	Range
Water table depth (cm)			18->100
Rock fragments (percent)		8	0-35
Available water capacity of	pit (cm/m)	24	5-46
pH (n = 4)		5.32	4.48-5.54
Depth to redoximorphic fea	tures (cm)		9–55
Occurrence of redoximorph (percentage of soils)	nic features	50	
Surface organic layer (cm)			6-80
Surface layers			
Thickness (cm)			1->50
Texture(s) ^a	L, SIL, SL, hemic		
Redoximorphic features	Depletions		
Subsurface layers			
Thickness (cm)			3–11
Texture(s) ^a	CS, ECS, LCS		
Redoximorphic features	Depletions		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Meadows: CALU7, CASC12, DECE, CAMU7, ELPA6, and CACA4. Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Principal s	Principal species			COV	MIN	MAX
				Perce	ent	
Primary ove PIEN	rstory trees: Engelmann spruce	Picea engelmannii	83	29	1	70
	overstory trees:	nood ongomanni	00	20		10
PICO	Lodgepole pine	Pinus contorta	50	2	1	4
PIEN	Engelmann spruce	Picea engelmannii	50	10	4	20
Understory	trees:					
ABLA	Subalpine fir	Abies lasiocarpa	83	6	1	15
PICO	Lodgepole pine	Pinus contorta	50	2	1	4
PIEN	Engelmann spruce	Picea engelmannii	66	4	1	10
Shrubs:						
VASC	Grouse huckleberry	Vaccinium scoparium	50	3	2	6
Forbs:						
ALVA	Pacific onion	Allium validum	50	2	1	3
DOAL	Alpine shootingstar	Dodecatheon alpinum	83	1	1	3 2
DOJE	Sierra shootingstar	Dodecatheon jeffreyi	50	1	1	_
EPAL	Pimpernel willowherb	Epilobium alpinum	50	9	1	20
LICA2	Canby's licorice-root	Ligusticum canbyi	50	3	1	5
MIPE	Fivestamen miterwort	Mitella pentandra	83	3	1	10
PEGR2	Elephanthead lousewort	Pedicularis groenlandica	50	2	1	3
POFL3	High mountain cinquefoil	Potentilla flabellifolia	100	6	1	20
SASI10	Canadian burnet	Sanguisorba sitchensis	66	8	1	15
VIOLA	Violet	Viola	50	4	1	10
Grasses:						
DECE	Tufted hairgrass	Deschampsia cespitosa	66	3	1	10
	other grasslikes:					
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	100	62	50	75
JUDR	Drummond's rush	Juncus drummondii	66	1	1	1

Stand characteristics—

	Basal area		Diameter at breast height (d.b.h.		
Species	Average	Range	Average	Minimum	Maximum
	m²/ha		Centimeters		;
PIEN	21	2-69	39.1	13.2	102.6
ABLA	5	_	20.8	20.8	20.8
PICO	5	_	22.6	13.7	29.2

	Site tree averages		
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
PIEN	48.0	109	16
PICO	33.8	87	10

Management considerations—

Logging opportunities are generally limited, as is the chance of catastrophic wildfire, owing to the perennially wet soils characteristic of these sites. An abundance of forage species and proximity to subalpine meadows make these sites highly suitable for wild ungulate grazing and bedding. When this association occurs on streambanks and floodplains, overhanging vegetation and down woody debris provide habitat for salmonids. In the absence of a large influx of mineral soils, this type represents a climax forest type in the subalpine riparian and wetland areas of northeastern Oregon.

USDI Fish and Wildlife Service wetlands classification—

- System: palustrine
 - Class: forested wetland
- Subclass: needle-leaved evergreen

Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The Engelmann spruce–subalpine fir/Holm's Rocky Mountain sedge association has not previously been described. Kovalchik and Clausnitzer (2004) described an Engelmann spruce/saw-leaved sedge, a variety of Holm's Rocky Mountain sedge, for eastern Washington.

Floristically similar types include subalpine fir– Engelmann spruce/Labrador tea (p. 38); subalpine fir/ bog blueberry/Holm's sedge (*Carex scopulorum*) (Crowe and Clausnitzer 1997); Engelmann spruce/ bog blueberry/widefruit sedge (Kovalchik 1987).

Engelmann Spruce-Subalpine Fir/Arrowleaf Groundsel Plant Association *Picea engelmannii-Abies lasiocarpa/Senecio triangularis* CEM201 PIEN-ABLA/SETR

N = 9

Physical environment—

The Engelmann spruce-subalpine fir/arrowleaf groundsel plant association was found on floodplains, terraces, and springs between 1890 and 2134 m elevation throughout the Blue Mountains. Sample plots were located in U-shaped (glacial), V-shaped, and flat valleys with low to moderate gradient (1 to 5 percent) over a large range in width. Plot slope averaged 4 percent (± 2.4) with two plots having a slope of 22 percent and 14 percent, both of which were located at springs in the Strawberry Mountain Wilderness. Soils were well-drained to moderately well-drained, very gravelly/cobbly loamy sands to silt loams. The water table ranged from 41 cm to greater than 1 m with occasional redoximorphic features. Annual flood scour was common at these sites and represents the major environmental factor differentiating the PIEN-ABLA/SETR from the ABLA/ VAME plant association.

Vegetation composition—

Engelmann spruce or subalpine fir often co-occur in the overstory layers of this association. Foliar cover and basal area tend to be relatively low for both species. Lodgepole pine is occasionally found in the overstory. Both Engelmann spruce and subalpine fir are common in the understory canopy layers.

The shrub layer is generally sparse and may consist of prickly currant, twinberry honeysuckle, and grouse huckleberry. The predominance of arrowleaf groundsel and, to a lesser degree, brook saxifrage, and the relative absence of big huckleberry are the key understory characteristics distinguishing the PIEN-ABLA/SETR from the ABLA/VAME plant association.

Landform environment (n = 9)		Mean	Range
Elevation (m) Plot slope (percent)		2005 4	1890–2134 2–22
Aspect	All		
Valley environment (n =	8)	Mode	Range
Valley gradient (percent) Valley width (m)		4–5 10–30	1–>8 <10–>300
Valley aspect	Mostly northerly	10 00	
Soil surface cover (n = 8)	Mean	Range
Submerged (percent)		1	0-5
Bare ground		11	0-40
Gravel		3	0–10
Rock		5	0–10
Bedrock		0	
Litter		59	10-90
Moss		19	4–85

Soil profile characteristics (n = 9)

Parent material Great group(s)

Mazama ash, alluvium, colluvium Cryaquands, Cryaquents, Cryofluvents, Cryohemists, Haplocryands

	er yenemete, maple	Janao	
		Mean	Range
Water table depth (cm)			41->100
Rock fragments (percent)		43	0–100
Available water capacity of	pit (cm/m)	12	1–46
pH (n = 8)		6.21	5.53–7.00
Depth to redoximorphic fea	itures (cm)		7–17
Occurrence of redoximorph (percentage of soils)	nic features	33	
Surface organic layer (cm)			0-50
Surface layers			
Thickness (cm)			6-50
Texture(s) ^a	L, SIL, SL, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			22-85
Texture(s) ^a	L, LCS, SIL, SL, S		
Redoximorphic features	Depletions		
80 "0 "T 1 0 1 "			

^aSee "Soil Texture Codes" section.

Other important understory species include tall fringed bluebells, fringed grass of Parnassus, and Sitka valerian.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Principal s	pecies		CON	COV	MIN	MAX
				Per	rcent	
	erstory trees:	.			_	~~
ABLA	Subalpine fir	Abies lasiocarpa	77	24 18	5 3	80
PIEN	Engelmann spruce	Picea engelmannii	55	10	3	40
	e overstory trees:			_		
ABLA	Subalpine fir	Abies lasiocarpa	55	5	3	10
PIEN	Engelmann spruce	Picea engelmannii	55	4	1	5
Understory						
ABLA	Subalpine fir	Abies lasiocarpa	77	9	1	20
PIEN	Engelmann spruce	Picea engelmannii	77	7	1	20
Shrubs:						
LOIN5	Twinberry honeysuckle	Lonicera involucrata	55	5	1	10
RILA	Prickly currant	Ribes lacustre	55	10	3	20
VASC	Grouse huckleberry	Vaccinium scoparium	66	10	1	20
Forbs:						
ACCO4	Columbian monkshood	Aconitum columbianum	77	9	1	25
ARCO9	Heartleaf arnica	Arnica cordifolia	55	3	1	10
ASFO	Alpine leafybract aster	Aster foliaceus	44	2	1	5
EPAN2	Fireweed	Epilobium angustifolium	44	3	1	10
ERPE3	Subalpine fleabane	Erigeron peregrinus	66	6	1	15
HELA4	Common cowparsnip	Heracleum lanatum	44	8	3	15
MECI3	Tall fringed bluebells	Mertensia ciliate	55	12	10	15
PAFI3	Fringed grass of Parnassus	Parnassia fimbriata	66	4	1	15
POPU3	Jacob's-ladder	Polemonium pulcherrimum	44	2	1	3 3
PYSE	Sidebells wintergreen	Pyrola secunda	66	1 7	1	
SAAR13 SETR	Brook saxifrage	Saxifraga arguta	77 100	26	1	15 60
SETR STAM2	Arrowleaf groundsel Claspleaf twistedstalk	Senecio triangularis Streptopus amplexifolius	44	20	5 1	3
THOC	Western meadow-rue	Thalictrum occidentale	44 55	18	15	25
VASI	Sitka valerian	Valeriana sitchensis	44	4	13	10
VIOLA	Violet	Viola	44	1	1	1
				•	•	•

Stand characteristics—

Basal area		Diameter at breast height (d.b.h			
Species	Average	Range	Average	Minimum	Maximum
	m²/ha		Centimeters		
PIEN	10	2–23	44.7	17.0	66.8
ABLA	9	5–18	29.0	18.3	48.8
PICO	9	5–14	32.5	15.2	46.5

	Site tree averages				
Species	d.b.h.	Age	Height		
	Centimeters	Years	Meters		
PIEN	41.7	99	26.5		
ABLA	41.7	99	12.8		

Management considerations—

The Engelmann spruce-subalpine fir/arrowleaf groundsel plant association is typified by annual flood scour and deposition. As in the ABLA/VAME-FLOODPLAIN plant association, snags are common and provide nesting and feeding habitat for various cavity-nesting birds. Downed wood and standing live vegetation help to slow floodwaters and provide habitat for salmonids. Elk and deer use is generally low at these sites with the exception of the Strawberry Mountain Wilderness where, late in the summer, watering holes become few and far between. Sites located at perennial springs (MW2401, MW2441, MW1891) can, during these drought periods, become high-impact areas. Johnson (2004a) described an *Abies lasiocarpa-Picea engelmannii/Senecio triangularis* miscellaneous type that occurred on stream terraces in the Wallowa Mountains within the same elevation range as the above association.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine

Class: forested wetland

Subclass: needle-leaved evergreen

Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described separate Engelmann spruce/arrowleaf groundsel and subalpine fir/arrowleaf groundsel plant associations for the midmontane riparian/wetland of northeastern Oregon.

A floristically similar type is conifer/*Aconitum columbianum* (Columbian monkshood) (Padgett et al. 1989).

Miscellaneous Engelmann Spruce Type

Engelmann Spruce/Common Horsetail Plant Association *Picea engelmannii/Equisetum arvense* CEM211 PIEN/EQAR

This association was located on a steep (15 percent), seepy slope at 1982 m elevation in the Eagle Cap Wilderness. Soils were very poorly drained, organic-rich loam. Depth to water table was 14 cm in mid-July.

Engelmann spruce forms a sparse overstory (25 percent) with subalpine fir in the understory. Undergreen willow, wax currant, and prickly currant occurred sporadically throughout the shrub layer. Common horsetail overshadows a rich herbaceous layer including brook saxifrage, arrowleaf groundsel, glaucus willowherb, western meadow-rue, muskflower, Pacific onion, common cowparsnip, Columbian monkshood, tall mannagrass, and bladder sedge. N = 1

Engelmann spruce growing on these seepy slopes may be more susceptible to spruce budworm (*Choristoneura occidentalis* Freeman) attack than those found in drier environments.

Adjacent riparian/wetland types: Seeps: CAUT. Gravel/cobble bars: SAEX.

This type has been described by Crowe and Clausnitzer (1997), Kovalchik (1987), Kovalchik and Clausnitzer (2004), and Padgett et al. (1989).

Grand Fir/Pacific Yew/Twinflower–Floodplain Plant Association *Abies grandis/Taxus brevifolia/Linnaea borealis* CWF424 ABGR/TABR2/LIBO3–FLOODPLAIN

N = 5

Physical environment—

The grand fir/Pacific yew/twinflower–floodplain plant association occurred on low-elevation (759 to 1079 m) alluvial terraces along streams in the Umatilla National Forest and Hells Canyon. Sample sites occurred in low (1 to 3 percent) to moderate (4 to 5 percent) gradient, flat canyons. Valley aspects were north in Hells Canyon and north and west at the two Umatilla sites. Soils were moderately well-drained loams and silt loams, often overlying a very gravelly/cobbly, slowly permeable layer of sandy clay. Depth to water table was always greater than 60 cm.

Vegetation composition—

Grand fir is present in all canopy layers with Pacific yew always present. Grand fir seedlings are always found in the understory along with occasional Engelmann spruce and Pacific yew seedlings. Engelmann spruce is not likely to achieve climax status at these sites given the environmental limitations resulting from the relatively low elevations.

Rocky Mountain maple, prickly currant, and western serviceberry are always found in the tall shrub layer. Hollyleaved barberry, alder-leaved buckthorn, oceanspray, roses, Utah honeysuckle, and common snowberry are less frequent members of the low and tall shrub layers. Twinflower is consistently found trailing across the ground.

A variety of herbaceous species can be found here including wintergreens, Piper's anemone, queen's cup beadlily, starry false Solomon's seal, western rattlesnake plantain, Columbia brome, western fescue, and Alaska oniongrass. Moist site indicator forbs include bunchberry dogwood, British Columbia wildginger, enchanter's nightshade, and heartleaf minerslettuce. Some of the ferns encountered include oakfern, western brackenfern, mountain woodfern, and western swordfern.

Landform environment (n = 5)	Mean	Range
Elevation (m) Plot slope (percent)		877 2	759–1079 1–2.5
Aspect	Mostly northerly		
Valley environment (n =	5)	Mode	Range
Valley gradient (percent)		1–3	1–5
Valley width (m)	Morthorly	30–100	30–300
Valley aspect	Northerly		
Soil surface cover (n = 5)		Mean	Range
Submerged (percent)		0	
Bare ground		0 0	
Gravel Rock		0	
Bedrock		0	
Litter		60	12–95
Moss		39	5–85
Soil profile characteristic	cs (n = 5)		
Parent material	Alluvium, colluvium		
Great group(s)	Udorthents, Udifluver	nts	
		Mean	Range
Water table depth (cm)			>60
Rock fragments (percent)		57	45–70
Available water capacity of	f pit (cm/m)	7	4–9
pH (n = 4)		5.86	5.69-6.1
Depth to redoximorphic fea	atures (cm)	NA	
Occurrence of redoximorpl (percentage of soils)	hic features	0	
Surface organic layer (cm)			0-8
Surface layers			
Thickness (cm)			6–53
Texture(s) ^a	CL, SIL, L		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			33–>159

Redoximorphic features None ^aSee "Soil Texture Codes" section.

Stand characteristics—

Texture(s)^a

	Basal	area	Diameter	at breast he	ight (d.b.h.)
Species	Average	Range	Average	Minimum	Maximum
	m²/	/ha		- Centimeters	;
ABGR	35	16–55	57.4	33.0	102.1
	Si	te tree aver	ages		
Species	d.b.h.	Age	Hei	ght	
ABGR	Centimeters 51.1	s Years 91		ters 3	

SC, SIL, L, SL, LS, S

Principal s	pecies		CON	COV		MAX
Primary ove	erstory trees:			Perc	ent	
ABGR	Grand fir	Abies grandis	100	54	27	85
Subordinate	e overstory trees:					
ABGR	Grand fir	Abies grandis	40	13	6	20
Understory	trees:					
ABGR	Grand fir	Abies grandis	100	13	2	45
PIEN	Engelmann spruce	Picea engelmannii	40	10	5	15
Shrubs:						
ACGL	Rocky Mountain maple	Acer glabrum	100	6	1	10
AMAL2	Western serviceberry	Amelanchier alnifolia	80	3	1	5
BEAQ	Hollyleaved barberry	Berberis aquifolium	40	38	20	55
HODI	Oceanspray	Holodiscus discolor	60	5	5	5
LIBO3	Twinflower	Linnaea borealis	100	14	2	30
LOUT2	Utah honeysuckle	Lonicera utahensis	40	3	1	5
PAMY	Oregon boxleaf	Paxistima myrsinites	40	3	1	5
PHLE4	Lewis' mock orange	Philadelphus lewisii	40	4	3	5
RHPU	Alder-leaved buckthorn	Rhamnus purshiana	80	12	1	32
RIBES	Currant	Ribes	40	2	1	3
RILA	Prickly currant	Ribes lacustre	80	4	1	10
ROGY	Dwarf rose	Rosa gymnocarpa	60	4	1	10
ROWO	Woods' rose	Rosa woodsii	40	20	15	25
RUPA	Thimbleberry	Rubus parviflorus	40	23	1	45
SYAL	Common snowberry	Symphoricarpos albus	60	38	3	60
TABR2	Pacific yew	Taxus brevifolia	100	24	1	40
Forbs:						
ADBI	American trailplant	Adenocaulon bicolor	80	6	1	10
ANPI	Piper's anemone	Anemone piperi	100	3	1	5
ARCO9	Heartleaf arnica	Arnica cordifolia	40	3	1	5
ARMA18	Largeleaf sandwort	Arenaria macrophylla	40	3	3	3
ASCA2	British Columbia wildginger	Asarum caudatum	60	8	5	10
CIAL	Enchanter's nightshade	Circaea alpine	40	21	1	40
CLUN2	Queen's cup beadlily	Clintonia uniflora	80	9	1	20
COMA4	Summer coralroot	Corallorrhiza maculata	40	1	1	1
DIHO3	Drops of gold	Disporum hookeri	60	8	5	10
FRVE	Woodland strawberry	Fragaria vesca	60	3	1	5
GATR2	Threepetal bedstraw	Galium trifidum	60	4	1	10
GOOB2	Western rattlesnake plantain	Goodyera oblongifolia	40	2	1	3
MOCO4	Heartleaf minerslettuce	Montia cordifolia	60	6	1	15
OSCH	Mountain sweetcicely	Osmorhiza chilensis	100	7	1 1	15 20
SMRA SMST	Feathery false Solomon's seal	Smilacina racemosa Smilacina stellata	40 100	11 19	3	20 35
TITR	Starry false Solomon's seal Threeleaf foamflower	Tiarella trifoliata	80	6	3 1	35 15
VICA4	Canadian white violet	Viola canadensis	60	5	1	10
VIGL	Pioneer violet	Viola glabella	40	6	1	10
	FIUNEER VIDIEL	viola glabella	40	0	1	10
Grasses:		D (//	40	•	•	45
BROR2	Orcutt's brome	Bromus orcuttianus	40	9	3	15
BRVU	Columbia brome	Bromus vulgaris	60	9	7	10
FEOC	Western fescue	Festuca occidentalis	40	3	3	3
-	d other grasslikes:					_
CADE9	Dewey sedge	Carex deweyana	40	4	3	5
Ferns and h						
ATFI	Ladyfern	Athyrium filix-femina	40	2	1	2
GYDR	Oakfern	Gymnocarpium dryopteri		1	1	1
POMU	Western swordfern	Polystichum munitum	40	2	2	3

Management considerations—

Johnson and Simon (1987) and Johnson and Clausnitzer (1992) described similar communities for sideslopes and toeslopes associated with springs and seepage. The grand fir/Pacific yew/twinflower–floodplain plant association differs in that it is located on alluvial terraces in valley bottoms. These productive alluvial forests of moderate terrain have the potential for timber harvest, but care should be taken to determine the appropriate treatment, as Pacific yew is sensitive to light and temperature changes resulting from overstory canopy removal (Johnson and Simon 1987).

Pacific yew is highly preferred by deer and elk as a browse species and can be reduced significantly in areas of high ungulate density. These multilayered forests provide habitat for songbirds. Listen long enough and you're sure to hear the conspicuous song of the hermit thrush and winter wren along with other passerines. The grand fir/Pacific yew/ twinflower–floodplain plant association represents a climax association in stream bottoms of the Blue Mountains.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: forested wetland Subclass: needle-leaved evergreen Water regime: temporarily to intermittently flooded.

Adjacent riparian/wetland classifications—

The grand fir/Pacific yew/twinflowerfloodplain plant association has not previously been described for riparian zones. Johnson and Simon (1987) described this type for uplands in the Blue Mountains, Oregon. Miller (1976) described a white alder-grand fir community type found along the Salmon River in western Idaho that often features Pacific yew in the tall shrub layer. Twinflower did not occur at the sites sampled.

Floristically similar types include grand fir/oakfern, and grand fir/ladyfern (Crowe and Clausnitzer 1997). Grand Fir/Black Hawthorn/Dewey Sedge Plant Association *Abies grandis/Crataegus douglasii/Carex deweyana* CWS423 ABGR/CRD02/CADE9

Physical environment—

The grand fir/black hawthorn/Dewey sedge plant association occurred on floodplains and terraces in Hells Canyon and the Wenaha-Tucannon Wilderness. Sites were located at higher elevations in Hells Canyon (945 to 1104 m) than in the Wenaha-Tucannon Wilderness (665 to 683 m), reflecting the warmer and drier conditions in Hells Canyon. Stream valleys were low gradient (1 to 3 percent) flat and boxshaped in the Wenaha-Tucannon Wilderness, and steeper (4 to >8 percent) and V-shaped in Hells Canyon. Soils were typically weakly developed Fluvaquents, Udifluvents and Udorthents, moderately well-drained to somewhat poorly drained, sandy loams to loams over cobbles and boulders.

Vegetation composition—

Grand fir always occurs as a subordinate overstory or understory tree, but rarely as a primary overstory tree. Black cottonwood is often found residually as a primary overstory tree, emphasizing the fluvial nature of this association, and decreases in importance as age of landform increases.

Black hawthorn and common snowberry are always found in the low shrub layer. Common snowberry can be an important component of the understory especially at drier (terraces), warmer (south-facing) sites. Red-osier dogwood, when it occurs, is found growing along the stream channel and other microsites that experience regular flood activity.

Dewey sedge, a tufted graminoid, always occurs in the herbaceous layer. Blue wildrye, roughfruit fairybells, false bugbane, and a variety of mesic forbs represent the typically scattered herbaceous layer. Western coneflower and bull thistle, both weedy species, are indicative of livestock activity sometimes encoutered at these sites.

Ν	=	5
		0

Landform environment (n = 5)	Mean	Range
Elevation (m)		880	665–1104
Plot slope (percent)		5	1–10
Aspect	Mostly southerly		
Valley environment (n =	5)	Mode	Range
Valley gradient (percent)		1–3	1–>8
Valley width (m)		30–100	<10-300
Valley aspect	Mostly southerly		
Soil surface cover (n = 5)		Mean	Range
Submerged (percent)		2	0–10
Bare ground		2	0-5
Gravel		0	
Rock		0	
Bedrock		0	
Litter		77	22–100
Moss		18	0-65
Soil profile characteristic	cs (n = 5)		
Parent material	Basalt, alluvium		
Great group(s)	Udifluvents, Udorth	ents, Fluvaq	luents
		Mean	Range
Water table depth (cm)			30->100
Rock fragments (percent)		10	0-36
U (1)			

Water table depth (cm)			30->100
Rock fragments (percent)		10	0-36
Available water capacity of	pit (cm/m)	8	5–11
pH (n = 2)		6.37	6.26-6.47
Depth to redoximorphic fea	tures (cm)	52	
Occurrence of redoximorph (percentage of soils)	nic features	20	
Surface organic layer (cm)		None	
Surface layers			
Thickness (cm)			13–71
Texture(s) ^a	SL, L, SIL		
Redoximorphic features	Concentrations		
Subsurface layers			
Thickness (cm)			20->44
Texture(s) ^a	SL, cobbles, boulders		
Redoximorphic features	None		
a Case "Call Texture Cades" as	- ti		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Streambanks: ALIN2/GLEL, ALIN2/CADE9, and CRD02/MESIC FORB

Floodplains and terraces: ABGR/ACGL–FLOODPLAIN, PSME/ACGL-PHMA5–FLOODPLAIN, and ALRU2/SYAL.

Adjacent upland vegetation types: Sideslopes: ABGR/ACGL and PSME/PHMA5.

GRAND FIR SERIES

Principal sp	ecies		CON	cov	MIN	MAX
				Per	cent	
Primary over POTR15	story trees: Black cottonwood	Populus trichocarpa	40	60	60	60
		Fopulus incliocalpa	40	00	00	00
	overstory trees:	Abias anandia	60	00	20	05
ABGR	Grand fir	Abies grandis	60	23	20	25
Understory t						_
ABGR	Grand fir	Abies grandis	80	4	2	7
Shrubs:						
AMAL2	Western serviceberry	Amelanchier alnifolia	80	6	1	10
COST4	Red-osier dogwood	Cornus stolonifera	40	6	3	10
CRDO2	Black hawthorn	Crataegus douglasii	100	41	10	85
PHLE4	Lewis' mock orange	Philadelphus lewisii	60	26	3	40
RILA	Prickly currant	Ribes lacustre	40	2	1	3
ROGY	Dwarf rose	Rosa gymnocarpa	40	6	1	10
RUPA	Thimbleberry	Rubus parviflorus	60	13	1	36
SYAL	Common snowberry	Symphoricarpos albus	100	33	3	70
Forbs:						
ADBI	American trailplant	Adenocaulon bicolor	60	1	1	1
CIAL	Enchanter's nightshade	Circaea alpina	40	10	5	15
CIVU	Bull thistle	Cirsium vulgare	40	1	1	1
DITR2	Roughfruit fairybells	Disporum trachycarpum	40	4	3	5
GATR2	Threepetal bedstraw	Galium trifidum	100	3	1	5
OSCH	Mountain sweetcicely	Osmorhiza chilensis	80	1	1	1
OSOC	Western sweetcicely	Osmorhiza occidentalis	40	3	1	5
RUOC2	Western coneflower	Rudbeckia occidentalis	40	2	1	2
SMRA SMST	Feathery false Solomon's seal	Smilacina racemosa	40 40	3 20	1 10	5 30
THOC	Starry false Solomon's seal Western meadow-rue	Smilacina stellata Thalictrum occidentale	40 60	20 25	10	30 65
TRCA		Trautvetteria caroliniensis	40	25	1	1
VIGL	False bugbane Pioneer violet	Viola glabella	40 40	1	1	1
VIOLA	Violet	Viola glabella Viola	40	3	1	5
	VIOLET	VIDIA	40	5	'	J
Grasses:	Plue wildeve	Elumus alguqua	60	0	2	20
ELGL	Blue wildrye	Elymus glaucus	60 60	9 10	3	20
FESU MESU	Bearded fescue	Festuca subulata Melica subulata	60 40	18 3	5 1	40 5
	Alaska oniongrass	wenca subulata	40	ა	I	Э
	other grasslikes:	o <i>i</i>	400	40		<u> </u>
CADE9	Dewey sedge	Carex deweyana	100	12	1	25

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Stand characteristics—

	Basal	area	Diameter	at breast he	ight (d.b.h.)
Species	Average	Range	Average	Minimum	Maximum
	m²/ha		m ² /ha		;
ABGR	22	5-55	42.2	20.3	83.8
POTR15	8	7–9	63.0	33.0	81.3

Site tree averages					
Species	d.b.h.	Age	Height		
	Centimeters	Years	Meters		
ABGR	36.8	46.7	20		
POTR15	49.5	53	21		

Management considerations—

The grand fir/black hawthorn/Dewey sedge plant association is the most fluvially active association within the grand fir series. Flooding and temporary inundation of the soil surface is common, making this association important for stream shading, streambank stability, and a source of coarse woody debris. Logging is not recommended at these sites owing to the high moisture status of the soils and adjacency to the stream channel. Cattle grazing may have less deleterious effects than logging, given the low level of soil development, especially if limited to a few weeks following the spring flood event.

Black hawthorn is a valuable source of food and cover for wildlife. Fruits are eaten by blue and sharp-tailed grouse, mule deer, and small mammals. The dense branching in a hawthorn thicket provides good nesting for black-billed magpies and thrushes, long-eared owls, and other birds (Crowe and Clausnitzer 1997). Common snowberry is browsed by deer, elk, and cattle. It is a nutritious species for cattle late in the season but probably sustains the least damage if grazed in spring. Common snowberry reproduces by rhizomes and can increase or decrease following heavy grazing depending on the season and yearly moisture condition (Snyder 1991). Average forage was approximately 672 (<112 to 1680) kg/ha.

A severe enough forest fire may kill the black hawthorn and release the understory layer resulting in higher forage biomass and a possible shift to Rocky Mountain maple and common snowberry in the shrub layer. Dewey sedge, a tuft-forming species, is fire tolerant, and will regenerate strongly after light/moderate ground fires (USDA NRCS 2002b). Dewey sedge is of low forage value to domestic and wild ungulates.

The grand fir/black hawthorn/Dewey sedge plant association has the potential to shift to the grand fir/Rocky Mountain maple–common snowberry plant association given a reduction in soil moisture combined with fire. Conversely, the grand fir/Rocky Mountain maple–common snowberry plant association has the potential to shift to grand fir/black hawthorn/Dewey sedge plant association given an increase in soil moisture. Dense understory thickets of black hawthorn can occur for long periods, often until a disturbance event, such as a fire, shifts the competitive advantage to other species.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	needle-leaved evergreen
Water regime:	(nontidal) seasonally to temporarily
	flooded.

Adjacent riparian/wetland classifications—

The grand fir/black hawthorn/Dewey sedge plant association has not previously been described.

Floristically similar types include black cottonwood/ mountain alder–red-osier dogwood; grand fir/common snowberry, and black cottonwood/common snowberry (Crowe and Clausnitzer 1997).

Grand Fir/Rocky Mountain Maple–Floodplain Plant Association Abies grandis/Acer glabrum

CWS543

ABGR/ACGL-FLOODPLAIN

N = 12

Physical environment—

The grand fir/Rocky Mountain maple–floodplain plant association occurred on floodplains and terraces at lower elevations (707 to 1021 m) throughout the Umatilla National Forest and occasionally in Hells Canyon (Wallowa-Whitman National Forest). Sites occurred in mainly low-gradient (1 to 3 percent) flat and V-shaped valleys.

Hells Canyon represents the extreme dry end of the grand fir environmental tolerance gradient, where special environmental conditions are required for it to occur. Stream valleys in Hells Canyon containing grand fir were generally of northerly aspect (Cherry Creek), were located at higher than average elevation within the drainage (1000 m–Lake Fork), or were located along cold air drainages. The niche for grand fir in the Umatilla National Forest, where grand fir can be found at a greater variety of sites, is much broader owing to the wetter/cooler environment relative to Hells Canyon.

Soils were typically well-drained, very gravelly/cobbly, fine sandy loams to silt loams. Depth to water table was generally deep (>1 m), and redoximorphic features were rare.

Vegetation composition—

Grand fir occurs in all canopy layers and is sometimes joined in the overstory by Douglas-fir, black cottonwood, and red alder. The last two species decrease in importance as age of landform increases (i.e., terraces, old vs. floodplains, young).

A diverse shrub layer represented by Rocky Mountain maple and common snowberry may also include Lewis' mock orange, western serviceberry, thimbleberry, and black hawthorn.

Landform environment (n = 12)		Mean	Range
Elevation (m) Plot slope (percent) Aspect	All	809 2	707–1021 0.5–5
Valley environment (n =	12)	Mode	Range
Valley gradient (percent) Valley width (m) Valley aspect	Mostly northerly	1–3 30–100	<1–5 10–300
Soil surface cover (n = 1	2)	Mean	Range
Submerged (percent) Bare ground Gravel Rock Bedrock Litter Moss		0 1 3 0 57 39	0–5 0–10 0–10 6–95 5–90
Soil profile characteristi	cs (n = 12)		
Parent material Great group(s)	Mazama ash, alluvio Hapludalfs, Hapluda Udifluvents, Udori	ands, Hydru	
		Mean	Range
Water table depth (cm) Rock fragments (percent) Available water capacity o pH (n = 7) Depth to redoximorphic fea Occurrence of redoximorp (percentage of soils)	atures (cm)	47 7 6.18 NA 0	91–>104 1–100 1–15 5.85–6.53
Surface organic layer (cm)	1		0–23
Surface layers Thickness (cm) Texture(s) ^a Redoximorphic features	SIL, L, SL, loamy as None	sh, cobbles	6–>50
Subsurface layers Thickness (cm) Texture(s) ^a Redoximorphic features	CL, SCL, SL, LS, S, None	silty ash	15–>91

^aSee "Soil Texture Codes" section.

A rich understory layer of mesic forbs includes such high-constancy species as mountain sweetcicely, starry false Solomon's seal, drops of gold, American trailplant, western rattlesnake plantain, heartleaf arnica, queen's cup beadlily, threepetal bedstraw, blue wildrye, and Dewey sedge. The occurrence of British Columbia wildginger, claspleaf twistedstalk, false bugbane, pioneer violet, and western swordfern are indicative of the moister end of the grand fir series.

Principal s	pecies		CON	COV	MIN	MA
D :				Pe	ercent	
Primary ove ABGR	erstory trees: Grand fir	Abies grandis	75	35	8	75
PSME	Douglas-fir	Pseudotsuga menziesii	50	21	2	95
Understory	•				_	
ABGR	Grand fir	Abies grandis	91	10	1	30
Shrubs:						
ACGL	Rocky Mountain maple	Acer glabrum	91	22	3	80
AMAL2	Western serviceberry	Amelanchier alnifolia	91	5	1	15
COST4	Red-osier dogwood	Cornus stolonifera	41	7	1	15
CRD02	Black hawthorn	Crataegus douglasii	50	4	1	10
HODI	Oceanspray	Holodiscus discolor	75	12	1	35
PHLE4	Lewis' mock orange	Philadelphus lewisii	83	12	2	35
RHPU	Alder-leaved buckthorn	Rhamnus purshiana	58	10	1	30
RUPA	Thimbleberry	Rubus parviflorus	58	4	1	10
SYAL	Common snowberry	Symphoricarpos albus	100	41	6	85
Forbs:						
ADBI	American trailplant	Adenocaulon bicolor	66	2	1	5
ARCO9	Heartleaf arnica	Arnica cordifolia	41	5	1	15
ARMA18	Largeleaf sandwort	Arenaria macrophylla	41	2	1	5
CIAL	Enchanter's nightshade	Circaea alpine	58	3	1	5
DIHO3	Drops of gold	Disporum hookeri	66	7	1	35
GAAP2	Cleavers	Galium aparine	41	6	1	10
OSCH	Mountain sweetcicely	Osmorhiza chilensis	66	4	1	10
SMST	Starry false Solomon's seal	Smilacina stellata	91	16	1	45
VIOLA	Violet	Viola	41	6	1	20
Grasses:						
BRVU	Columbia brome	Bromus vulgaris	41	3	1	5
ELGL	Blue wildrye	Elymus glaucus	66	4	1	10
MESU	Alaska oniongrass	Melica subulata	50	11	2	25
Sedges and	other grasslikes:					
CADE9	Dewey sedge	Carex deweyana	50	3	1	10
CAGE2	Elk sedge	Carex geyeri	50	10	1	30
Ferns and h	orsetails:					
EQHY	Scouringrush horsetail	Equisetum hyemale	41	3	1	10

Stand characteristics—

	Basal area		Diameter at breast height (d.b.h.)			
Species	Average	Range	Average	Minimum	Maximum	
	m²/ha		Centimeters			
ABGR	15	5–28	43.9	12.7	78.7	
ALRH2	2	—	27.9	_	_	
LAOC	5	—	101.6	_	_	
PICO	2	—	43.2	_	_	
PIPO	2	—	76.2	50.8	99.1	
POTR15	3	2–5	82.0	76.2	89.0	
PSME	9	7–12	49.0	22.9	81.3	

	Site	tree average	s
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
ABGR	53.1	75	10
BEPAS	37.1	NA	14
PIPO	116.8	160	34
POTR15	80.5	NA	17
PSME	58.7	97	21

USDI Fish and Wildlife Service wetlands classification—

	······
System:	palustrine
Class:	forested wetland
Subclass:	needle-leaved evergreen
Water regime:	(nontidal) temporarily to intermittently
	flooded.

Adjacent riparian/wetland classifications—

The grand fir/Rocky Mountain maple–floodplain plant association has been described once previously by Crowe and Clausnitzer (1997) as the grand fir/Rocky Mountain maple and grand fir/common snowberry plant associations for the midmotane riparian/wetlands of northeastern Oregon.

Floristically similar types include Douglas-fir/Rocky Mountain maple–mallow ninebark (p. 56); and Douglasfir/Rocky Mountain maple–mallow ninebark (Crowe and Clausnitzer 1997).

Adjacent upland vegetation types: Sideslopes: PSME/ACGL-PHMA5, ABGR/ACGL, and various AGSP types.

Management considerations—

Floristically similar to grand fir/ Rocky Mountain maple plant associations in both Johnson and Simon (1987) and Johnson and Clausnitzer (1992), the grand fir/Rocky Mountain maple– floodplain plant association differs environmentally in that it is found in valley bottoms on low-gradient floodplains and stream terraces.

Deer and elk find browsing (Rocky Mountain maple) and bedding opportunities at these sites. A variety of birds including chickadees, winter wrens, nuthatches, and grouse feed on the abundant fruits found in the shrub layer. Squirrels and chipmunks feed on the winged seeds of Rocky Mountain maple and the deciduous cones of grand fir. These productive alluvial forests, of moderate terrain, have the potential for timber harvest, but care should be taken to determine the appropriate treatment to optimize regeneration (Crowe and Clausnitzer 1997). The grand fir/Rocky Mountain maple-floodplain plant association represents a climax association in valley bottoms of the study area.

Douglas-Fir/Rocky Mountain Maple-Mallow Ninebark–Floodplain Plant AssociationPseudotsuga menziesii/Acer glabrum–Physocarpus malvaceousCDS724PSME/ACGL-PHMA5–FLOODPLAIN

N = 23

Physical environment—

The Douglas-fir/Rocky mountain maple-mallow ninebark–floodplain plant association occurred on floodplains, terraces, and steep streambanks throughout the lower to middle elevations of the study area (616 to 1305 m). Sample plots were located in very narrow (<10 m) to broad (100 to 300 m) flat, V-, and trough-shaped valleys of mostly moderate gradient (4 to 5 percent). Sample plot slopes ranged from 1 to 5 percent on terraces and floodplains to 29 to 80 percent on the steep streambanks of Hells Canyon. Soils were moderately deep (50 to 100 cm) to greater than 1 m, well-drained, gravelly/cobbly/bouldery sandy loams to clay loams.

Vegetation composition—

Douglas-fir is the primary overstory species often cooccurring with one or two large ponderosa pines. Black cottonwood and white alder individuals are occasionally found in the overstory as well. These species represent holdovers from an earlier stage of floodplain development. In the understory can be found young Douglas-fir, sometimes accompanied by grand fir seedlings.

These sites are characterized by a diverse shrub layer including Rocky Mountain maple, mallow ninebark, common snowberry, oceanspray, and Lewis' mock orange. Two earlier successional shrub species, water birch, and redosier dogwood, are occasionally found in the shrub layer but will gradually dissipate in importance through time.

The herbaceous layer consists of a wide variety of species; some of the more common include heartleaf arnica, false Solomon's seal, mountain sweetcicely, cleavers, minerslettuce, blue wildrye, and Dewey sedge.

	ent (n = 23)	Mean	Range
Elevation (m)		924 15	616–1305 1–80
Plot slope (percent)	A 11	15	1-00
Aspect	All		
Valley environment	(n = 23)	Mode	Range
Valley gradient (perce	ent)	4–5	<1–>8
Valley width (m)	,	30–100	<10-300
Valley aspect	All		
Soil surface cover (n = 23)	Mean	Range
Submerged (percent)		2	0–12
U (1)		2 1	0–12 0–10
Submerged (percent) Bare ground Gravel		2 1 1	• •=
Bare ground		2 1 1 4	0–10
Bare ground		1	0–10 0–2
Bare ground Gravel Rock		1 1 4	0–10 0–2

Soil profile characteristics (n = 22)

Parent material Great group(s)

Mazama ash, alluvium, colluvium, basalt Hapludalfs, Haplustalfs, Paleudalfs, Paleustalfs, Udifluvents, Ustifluvents, Ustorthents

		Mean	Range
Water table depth (cm)			>23–137
Rock fragments (percent)		29	0–100
Available water capacity of	pit (cm/m)	11	1–17
pH (n = 18)		6.29	5.74-6.80
Depth to redoximorphic feat	tures (cm)		NA
Occurrence of redoximorph (percentage of soils)	ic features	0	
Surface organic layer (cm)			0-22
Surface layers			
Thickness (cm)			4-54
Texture(s) ^a	CL, SICL, SCL, SIL, L, LS, SL, S, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			6->104
Texture(s) ^a	C, CL, SC, SICL, SCL, SIL, L, SL, LS, S, co		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types:

Floodplains and terraces: PSME/SYAL-FLOODPLAIN and PIPO/SYAL-FLOODPLAIN.

Adjacent upland vegetation types:

Sideslopes: LAOC/mixed shrub, PSME–PIPO/LUPINE, PIPO/AGSP, PIPO/PHMA5, and various AGSP types.

Principal species			CON	COV	MIN MAX	
				Per	cent	
Primary ove PSME	rstory trees: Douglas-fir	Pseudotsuga menziesii	83	42	7	90
Subordinate PSME	overstory trees: Douglas-fir	Pseudotsuga menziesii	43	8	1	20
Understory f PSME	trees: Douglas-fir	Pseudotsuga menziesii	35	3	1	5
Shrubs: ACGL AMAL2 BEOC2 CRDO2 HODI PHLE4 PHMA5 RHPU RUPA SPBE2 SYAL	Rocky Mountain maple Western serviceberry Water birch Black hawthorn Oceanspray Lewis' mock orange Mallow ninebark Alder-leaved buckthorn Thimbleberry White spirea Common snowberry	Acer glabrum Amelanchier alnifolia Betula occidentalis Crataegus douglasii Holodiscus discolor Philadelphus lewisii Physocarpus malvaceus Rhamnus purshiana Rubus parviflorus Spiraea betulifolia Symphoricarpos albus	91 83 52 83 83 57 61 48 57 87	10 11 24 10 15 13 20 4 15 21 33	2 1 5 1 1 2 1 1 2	65 40 25 40 65 65 15 60 75 90
Forbs: ARCO9 CIAL GAAP2 MOPE3 OSCH SMRA Grasses:	Heartleaf arnica Enchanter's nightshade Cleavers Perfoliated minerslettuce Mountain sweetcicely Feathery false Solomon's seal	Arnica cordifolia Circaea alpina Galium aparine Montia perfoliata Osmorhiza chilensis Smilacina racemosa	61 61 74 74 65 91	15 15 9 7 5 3	1 2 1 1 1	75 40 45 45 15 10
ELGL FEOC	Blue wildrye Western fescue	Elymus glaucus Festuca occidentalis	65 48	6 8	1 1	30 45
Ferns and h CYFR2	orsetails: Brittle bladderfern	Cystopteris fragilis	52	4	1	25

Stand characteristics—

	Basal	area	Diameter	at breast he	ight (d.b.h.)
Species	Average	Range	Average	Minimum	Maximum
	m²	/ha		- Centimeters	;
PSME	11	2–28	54.8	18.5	113.0
ABGR	2	—	43.2	_	_
ALRH2	3	2–5	39.4	33.0	44.9
LAOC	2	—	NA	_	_
PIPO	6	2–18	74.9	33.3	130.3

	Site tree averages			
Species	d.b.h.	Age	Height	
	Centimeters	Years	Meters	
PSME	54.8	103	23	
ALRH2	38.9	NA	12	
PIPO	76.2	139	24	
POTR15	73.7	NA	20	

Management considerations—

The Douglas-fir/Rocky mountain maple-mallow ninebark–floodplain plant association is floristically similar to the Douglas-fir/Rocky Mountain maple–mallow ninebark plant association of Johnson and Simon (1987) and the Douglas-fir/ninebark plant association of Johnson and Clausnitzer (1992), but is found in valley bottoms on alluvial surfaces rather than in uplands. Flooding is of little importance as a disturbance factor and highly depends on the age of the landform. These sites are important to deer and elk by providing bedding areas, thermal cover, and forage (common snowberry) in winter. Black bear, songbirds, grouse, and rabbits also take refuge here. When cattle are present, use is generally low owing to the low cover of forage species.

USDI Fish and Wildlife Service wetlands classification—

	5
System:	palustrine
Class:	forested wetland
Subclass:	needle-leaved evergreen
Water regime:	(nontidal) temporarily to intermittently
	flooded.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) and Jankovsky-Jones (2001) described a Douglas-fir/Rocky Mountain maplemallow ninebark–floodplain plant association for midmontane riparian areas in northeastern Oregon and riparian areas of southwestern Idaho, respectively.

Floristically similar types include grand fir/Rocky Mountain maple–floodplain (p. 54).

Douglas-Fir/Common Snowberry–Floodplain Plant Association *Pseudotsuga menziesii/Symphoricarpos albus* CDS628 PSME/SYAL–FLOODPLAIN

Physical environment—

The Douglas-fir/common snowberry–floodplain plant association occurred exclusively on stream terraces throughout the lower elevation (823 to 1159 m) riparian zones of the Blue Mountains. Valleys were moderately steep (4 to 5 percent) and narrow (10 to 30 m) to moderately wide (30 to 100 m). Soils were all deeper than 1 m, fine to medium textured, with a thick (5 to 10 cm) organic layer at the surface. The water table was always below 1 m, and redoximorphic features were never encountered.

Landform environmer	nt (n = 4)	Mean	Range
Elevation (m)		964	823-1159
Plot slope (percent)		4	1–9
Aspect	All		
Valley environment (n	= 4)	Mode	Range
Valley gradient (percent	t)	4–5	4–5
Valley width (m)	,	30–100	10–100
Valley aspect	All		
Soil surface cover (n :	= 4)	Mean	Range
Submerged (percent)		0	
Bare ground		0	
Gravel		0	
Rock		2	0–3
Bedrock		0	
Litter		93	85-95
Moss		4	0-10

Soil profile characteristics (n = 4)

Parent material	Mazama ash, alluvium	
Great group(s)	Hapludands, Paleudalfs, Udifluv Ustorthents	vents,
	Mean	Range
Water table depth (cm)		>100

Water table depth (cm)			>100
Rock fragments (percent)		16	0-50
Available water capacity of	pit (cm/m)	12	9–17
pH (n = 4)		6.70	6.30-7.14
Depth to redoximorphic fea	tures (cm)	NA	
Occurrence of redoximorph (percentage of soils)	nic features	0	
Surface organic layer (cm)			5–10
Surface layers			
Thickness (cm)			0–51
Texture(s) ^a	L, LS, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			38->180
Texture(s) ^a	C, CL, SL, L, cobble		
Redoximorphic features	None		
^a See "Soil Texture Codes" se	ation		

^aSee "Soil Texture Codes" section.

Vegetation composition—

Douglas-fir is the primary overstory species. Black cottonwood and white alder, two species common to early seral stands of the Douglas-fir/Rocky Mountain maple– mallow ninebark–floodplain plant association, are rarely found in the Douglas-fir/common snowberry–floodplain plant association that is typical of later stages of floodplain development. Douglas-fir seedlings are present and reproducing vigorously at most sites.

Rocky Mountain maple and mallow ninebark are never found in the shrub layer, whereas common snowberry is always present and abundant. Oceanspray, Oregon grape, and white spirea are common species present in mature stands. Crowe and Clausnitzer (1997), in their version of this type, indicate that water birch and black hawthorn are common in seral tall shrub layers. Although these species may be expected to occur, they were not encountered in the later seral sites sampled for the version described here.

The typically sparse herbaceous layer may include heartleaf arnica, false Solomon's seal (*Smilacina* spp.), mountain sweetcicely, cleavers, perfoliated minerslettuce, blue wildrye, and elk sedge.

Adjacent riparian/wetland vegetation types:

Floodplains and terraces: PSME/SYAL-FLOODPLAIN, PIPO/SYAL-FLOODPLAIN.

Adjacent upland vegetation types:

Sideslopes: LAOC/mixed shrub, PSME-PIPO/LUPINE, PIPO/AGSP, PIPO/PHMA5, and various AGSP types.

Stand characteristics—

	Basal	area	Diameter	at breast he	ight (d.b.h.)
Species	Average	Range	Average	Minimum	Maximum
	m ² /	'ha		- Centimeters	
PSME	39	25–46	48.5	30.7	102.4
PIPO	6	5–7	84.3	59.4	101.9
	Sit	te tree aver	ages		
Species	d.b.h.	Age	Hei	ght	
PSME	Centimeters 52.3	Years 58	Met 3		

Management considerations—

The Douglas-fir/common snowberry–floodplain plant association is important to deer and elk for providing bedding areas, thermal cover, and forage (common snowberry) in winter. Black bear, songbirds, grouse, and rabbits also take refuge here. Common snowberry is a

Principal species			CON	cov	MIN MAX	
			Per		rcent	
Primary ove PSME	erstory trees: Douglas-fir	Pseudotsuga menziesii	100	56	30	90
Subordinate PSME	e overstory trees: Douglas-fir	Pseudotsuga menziesii	50	45	40	20
Understory PSME	trees: Douglas-fir	Pseudotsuga menziesii	75	15	5	5
Shrubs: AMAL2 BERE HODI SPBE2 SYAL	Western serviceberry Oregon grape Oceanspray White spirea Common snowberry	Amelanchier alnifolia Berberis repens Holodiscus discolor Spiraea betulifolia Symphoricarpos albus	50 75 75 75 100	2 2 18 17 63	1 5 5 50	3 3 40 25 85
Forbs: ACMI2 ARCO9 FRVE GAAP2 MOPE3 OSCH SIME SMRA SMST TAOF TRPE3	Common yarrow Heartleaf arnica Woodland Strawberry Cleavers Perfoliated minerslettuce Mountain sweetcicely Menzies' campion Feathery false Solomon's seal Starry false Solomon's seal Dandelion Idaho trillium	Achillea millefolium Arnica cordifolia Fragraria vesca Galium aparine Montia perfoliata Osmorhiza chilensis Silene menziesii Smilacina racemosa Smilacina stellata Taraxacum officinale Trillium petiolatum	75 100 50 100 100 50 50 50 50 75	1 10 18 5 4 5 3 2 4 3 2	1 1 1 1 1 3 3 1	1 15 35 10 5 10 5 3 3 3
Grasses: AREL3 CARU DAGL ELGL FEOC POPR	Tall oatgrass Pinegrass Orchardgrass Blue wildrye Western fescue Kentucky bluegrass	Arrhenatherum elatius Calamagrostis rubescens Dactylis glomerata Elymus glaucus Festuca occidentalis Poa pratensis	50 50 50 75 50	2 14 3 16 2 13	1 3 1 1 1	3 25 5 30 5 15
Sedges and CAGE2 LUCA2	d other grasslikes: Elk sedge Field woodrush	Carex geyeri Luzula campestris	75 50	30 8	5 1	65 15
Ferns and h CYFR2	norsetails: Brittle bladderfern	Cystopteris fragilis	50	1	1	1

highly palatable, and much preferred browse species for wild and domestic ungulates, especially later in the season (USDA NRCS 2002b). However, overuse of the Douglasfir/common snowberry–floodplain plant association can result in weedy species such as cleavers, chervil, Kentucky bluegrass, Canada thistle, and perfoliated minerslettuce persisting in the herbaceous layer. Common snowberry reproduces mainly by rhizomes and may increase or decrease after heavy grazing, depending on the season and moisture conditions of the soil (Crowe and Clausnitzer 1997).

High-intensity fires may kill common snowberry, whereas low to moderate fires tend to cause vigorous resprouting from rhizomes. The thick shrub layer and abundant berries provide nesting and feeding habitat for songbirds and small mammals. Intense shading by snowberry and dense thickets can result in common snowberry occupying these sites for long periods, often until a disturbance event, such as a fire followed by heavy grazing, shifts the competitive advantage to other species. The deep, dry soils, orientation away from the stream on broad terraces, and high basal area of Douglas-fir typical of the **later seral stages** of the Douglas-fir/common snowberry–floodplain plant association have the potential for timber harvest but care should be taken in selecting the appropriate treatment to optimize regeneration.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	needle-leaved evergreen
Water regime:	(nontidal) temporarily to intermittently
	flooded.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described a Douglas-fir/ common snowberry plant association for midmontane riparian areas in northeastern Oregon.

Floristically similar types include Douglas-fir/Rocky Mountain maple–mallow ninebark–floodplain (p. 56); and ponderosa pine/common snowberry–floodplain (p. 60).

Ponderosa Pine/Common Snowberry–Floodplain Plant Association *Pinus ponderosa/Symphoricarpos albus* CPS511 PIPO/SYAL–FLOODPLAIN

N = 6

Physical environment—

The ponderosa pine/common snowberry–floodplain plant association occurred on floodplains, terraces, and steep streambanks throughout the lower to middle elevations of the study area (768 to 1192 m). Plots were located primarily in Hells Canyon (Wallowa-Whitman National Forest), with one plot along the north fork of the John Day River (Umatilla National Forest). The PIPO/SYAL plant association occurred in narrow (10 to 30 m) to broad (100 to 300 m) V- and trough-shaped valleys of low to moderate gradient (1 to 5 percent) and southerly aspect. Soils were typically well-drained, gravelly/cobbly sandy loam to sandy clay loam. Depth to water table was generally greater than 89 cm with few to no redoximorphic features.

Vegetation composition—

Ponderosa pine forms the overstory tree layers with an occasional Douglas-fir. Douglas-fir is sometimes found in the understory, but, given the southerly aspect of these sites, is not likely to reach potential status owing to the relatively low drought tolerance of Douglas-fir. Common snowberry is always present in the shrub layer along with high-frequency species such as western serviceberry, oceanspray, black hawthorn, and white spirea.

The herbaceous layer is composed of a variety of forbs, grasses, and sedges in low abundance including heartleaf arnica, cleavers, mountain sweetcicely, and Back's sedge. Back's sedge, a Pacific Northwest Region (Region 6) sensitive species, can often be found at low abundance in the understory of the PIPO/SYAL plant association.

Landform environment	(n = 6)	Mean	Range
Elevation (m)		946	768–1192
Plot slope (percent)		14	3–42
Aspect	Southerly		
Valley environment (n =	· 6)	Mode	Range
Valley gradient (percent)		4–5	1–5
Valley width (m)		30–100	10-300
Valley aspect	All		
Soil surface cover (n =	6)	Mean	Range
Submerged (percent)		0	
Bare ground		1	0-3
Gravel		0	
Rock		3	0-6
Bedrock		0	
Litter		89	80–100
Moss		8	0–15

Soil profile characteristics (n = 6)

Parent material Great group(s)

Colluvium, alluvium Haplustalfs, Paleustalfs, Ustifluvents, Ustorthents

	Mean	Range
		89_>94
	15	1–38
pit (cm/m)	11	5–16
	6.06	5.36-6.43
tures (cm)	18	
nic features	17	
		3–15
		11–64
SL, L, FSCL		
Iron oxide concentration	ns	
		28–>71
C, FSCL, SICL, SL, S		
Iron oxide concentration	ons	
	tures (cm) nic features SL, L, FSCL Iron oxide concentratic C, FSCL, SICL, SL, S	15 pit (cm/m) 11 6.06 tures (cm) 18 nic features 17 SL, L, FSCL Iron oxide concentrations

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: PSME/SYAL-FLOODPLAIN, PSME/ACGL-PHMA5-FLOODPLAIN.

Adjacent upland vegetation types: Sideslopes: PIPO/AGSP, and various AGSP types.

Principal species			CON COV		MIN MAX	
				Pe	rcent	
	rstory trees:					
PIPO	Ponderosa pine	Pinus ponderosa	100	60	25	95
Shrubs:						
AMAL2	Western serviceberry	Amelanchier alnifolia	66	25	3	60
CRDO2	Black hawthorn	Crataegus douglasii	66	29	5	90
HODI	Oceanspray	Holodiscus discolor	50	45	15	75
PHLE4	Lewis' mock orange	Philadelphus lewisii	50	7	2	10
SPBE2	White spirea	Spiraea betulifolia	66	15	10	25
SYAL	Common snowberry	Symphoricarpos albus	100	28	1	50
Forbs:						
GAAP2	Cleavers	Galium aparine	50	11	3	15
TRDU	Yellow salsify	Tragopogon dubius	50	3	1	5
Grasses:						
ELGL	Blue wildrye	Elymus glaucus	50	4	3	5
Sedges and	other grasslikes:					
CĂGE2	Elk sedge	Carex geyeri	66	14	2	25

Meters

41

Stand characteristics—

	Basal area		Diameter at breast height (d.b.h.)			
Species	Average	Range	Average	Minimum	Maximum	
	m ²	/ha		- Centimeters		
PIPO	27	21-32	61.5	20.3	128.0	
PSME	3	2–5	59.4	29.7	99.1	
	Site tree averages					
Species	d.b.h.	Aae	e Hei	aht		

Years

116

Management considerations—

Centimeters

87.6

PIPO

Floristically similar to the ponderosa pine/common snowberry plant association found in uplands (Johnson and Clausnitzer 1992, Johnson and Simon 1987), the ponderosa pine/common snowberry–floodplain plant association is differentiated by its location in valley bottoms and the presence of mesic species including cleavers, mountain sweetcicely, and Back's sedge. The ponderosa pine/ common snowberry–floodplain plant association rarely experiences flooding, and, owing to a moister microclimate, is slightly less prone to forest fires than upland stands. Ponderosa pine/common snowberry floodplains, terraces, and streambanks provide shelter for deer, elk, and grouse, while songbirds enjoy the vertical strata above. The affiliation of Back's sedge with the PIPO/SYAL-FLOODPLAIN association points to the importance of these sites as refugia for this Region 6 sensitive species. Overuse by cattle eventually leads to an herbaceous layer overtaken by Kentucky bluegrass (Kovalchik 1987).

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: forested wetland Subclass: needle-leaved evergreen Water regime: (nontidal) intermittently flooded.

Adjacent riparian/wetland classifications—

The ponderosa pine/common snowberry–floodplain association has been described by Crowe and Clausnitzer (1997) and Kovalchik (1987) for midmontane riparian areas of northeastern Oregon and wetland and riparian sites of central Oregon, respectively. Jankovsky-Jones et al. (2001) noted that although no ponderosa pine types were sampled in southwestern Idaho riparian/wetlands, they expected such types to occur.

Floristically similar types include Douglas-fir/Rocky Mountain maple–mallow ninebark (p. 56), black cottonwood/Rocky Mountain maple (p. 68); Douglas-fir/common snowberry–floodplain, grand fir/common snowberry (Crowe and Clausnitzer 1997).

Miscellaneous Ponderosa Pine Type

Ponderosa Pine/Black Hawthorn Plant Community Pinus ponderosa/Crataegus douglasii **CPS722**

PIPO/CRDO2

N = 1

The ponderosa pine/black hawthorn plant community was found on a gentle (1 percent) terrace of Lightning Creek in Hells Canyon National Recreation Area at 567 m. Soil great groups were Ustifluvents and were well drained, moderately deep to cobbles/boulders, and silt loam/loam in texture.

Ponderosa pine forms the overstory with a thick shrub layer beneath featuring black hawthorn, water birch, chokecherry, alder-leaved buckthorn, red-osier dogwood, poison ivy, and a variety of other shrubs at low abundance.

Cheatgrass and Canadian white violet compose the herbaceous layer with trace amounts of cleavers, chervil, lesser burdock, enchanter's nightshade, and Dewey sedge among

others. The abundance of weedy and invasive species suggests that this site has been heavily grazed in the past. In the absence of grazing, the understory would most likely feature Dewey sedge along with a rich mixture of mesic forbs.

Adjacent riparian/wetland vegetation type: Floodplains: POTR15/ALIN2-COST4.

The ponderosa pine/black hawthorn plant community has not previously been described. Floristically similar types include ponderosa pine/Kentucky bluegrass (Crowe and Clausnitzer 1997); ponderosa pine/red-oiser dogwood, ponderosa pine/common chokecherry (Hansen et al. 1995).

Lodgepole Pine/Holm's Rocky Mountain Sedge Plant Community Pinus contorta/Carex scopulorum 2 **CLM118**

This community was sampled in a moist meadow at 2274 m in the Seven Devils Mountains. Soils were poorly drained organic Cryofibrists. Depth to water table near the end of August was 33 cm.

Lodgepole pine was found in all tree canopy layers with a variety of other conifer species including subalpine fir, Engelmann spruce, and whitebark pine. Rose meadowsweet is found throughout the shrub layer along with alpine laurel, grouse huckleberry, rusty menziesia, pink mountainheath, and alpine spicywintergreen. Holm's Rocky Mountain sedge forms a thick herbaceous layer with scattered forbs and graminoids such as subalpine

N = 1

fleabane, explorer's gentian, sheep sedge, black alpine sedge, and bladder sedge.

Total forage biomass was 358 kg/ha. This community provides feeding and nesting opportunities for goldencrowned kinglets, mountain chickadees, Stellar's jay, and dark-eyed juncos. This community also provides important habitat for amphibians. Manning and Padgett (1995) described a lodgepole pine/Holm's Rocky Mountain sedge community type similar to the community described above with gooseberry currant and twinberry honeysuckle in the shrub layer rather than rose meadowsweet.

Black Cottonwood/Mountain Alder–Red-Osier Dogwood Plant Association *Populus trichocarpa/Alnus incana-Cornus stolonifera* HCS113 POTR15/ALIN2-COST4

N = 7

Range

Mean

Physical environment—

The black cottonwood/mountain alder–red-osier dogwood plant association occurred almost exclusively on floodplains (with the exception of one plot located on a streambank) throughout the lower reaches of the study area (<1100 m) with one sample plot occurring at 1561 m. Sample sites occurred in V- and trough-shaped, and flat valleys of moderately high (4 to 5 percent) to high (6 to >8 percent) gradient. Soils ranged from shallow (<25 cm) excessivelydrained sands over cobbles and boulders on annual floodplains to moderately deep to deep, moderately well-drained, very gravelly/cobbly, loams to silty clay loams on infrequently flooded floodplains.

Vegetation composition—

The overstory is primarily composed of black cottonwood and may include ponderosa pine and white alder. The understory can be quite diverse including white alder, ponderosa pine, and grand fir. The shrub layer contains a mixture of shrub species namely red-osier dogwood and mountain alder.

Red-osier dogwood and mountain alder tend to be the first to take hold on rocky, annually flooded sites often cooccurring with black cottonwood seedlings. The tall shrub layer shifts to black hawthorn and common snowberry on less frequently flooded sites, farther from the stream channel, with deeper well-developed soils, where red-oiser dogwood and mountain alder decrease in abundance. As in the PSME/ACGL-PHMA5-SYAL-FLOODPLAIN plant association, the presence of red-osier dogwood and mountain alder mark an earlier seral stage characterized by regular flood events and more mesic soil conditions.

	(ii - <i>i</i>)	Weall	Range
Elevation (m) Plot slope (percent)		847 9	561–1561 2–30
Aspect	All		
Valley environment (n	= 7)	Mode	Range
Valley gradient (percent)	4–5	1–>8
Valley width (m)		30–100	<10->300
Valley aspect	All		
Soil surface cover (n =	• 6)	Mean	Range
Submerged (percent)		3	0-8
Bare ground		3	0–15
Gravel		1	0-5
Rock		20	3–70
		0	
Bedrock		0	
Bedrock Litter		51	10-86

Soil profile characteristics (n = 6)

Landform environment (n = 7)

Parent material Great group(s)

Fluvaquents, Udorthents

Basalt

		Mean	Range
Water table depth (cm)			0->53
Rock fragments (percent)		55	0–100
Available water capacity of	pit (cm/m)	9	1–32
pH (n = 2)		6.65	6.37-6.92
Depth to redoximorphic feat	tures (cm)		18–75
Occurrence of redoximorph (percentage of soils)	ic features	29	
Surface organic layer (cm)			0-26
Surface layers Thickness (cm)			10–15
Texture(s) ^a	SIL, L, SL, cobbles		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			38–>155
Texture(s) ^a	SIL, L, SL, LS, cobbles	s, boulde	rs
Redoximorphic features	Iron oxide concentration	ons	

^aSee "Soil Texture Codes" section.

Other shrub species often encountered include western serviceberry, Rocky Mountain maple, Lewis' mock orange, water birch, oceanspray, and blackberries. Herbaceous species may include threepetal bedstraw, Canadian white violet, false Solomon's seal, western meadow-rue, blue wildrye, and Dewey sedge.

BLACK CC	OTTONWOOD	SERIES
----------	-----------	--------

Principal s	pecies		CON	COV	MIN	MAX
				Per	cent	
Primary ove POTR15	rstory trees: Black cottonwood	Populus trichocarpa	85	27	15	45
Subordinate POTR15	overstory trees: Black cottonwood	Populus trichocarpa	42	8	3	15
Understory POTR15	trees: Black cottonwood	Populus trichocarpa	71	10	1	45
Shrubs: ACGL ALIN2 AMAL2 COST4 CRDO2 HODI PHLE4 RHRA6 RUPA SYAL	Rocky Mountain maple Mountain alder Western serviceberry Red-osier dogwood Black hawthorn Oceanspray Lewis' mock orange Poison ivy Thimbleberry Common snowberry	Acer glabrum Alnus incana Amelanchier alnifolia Cornus stolonifera Crataegus douglasii Holodiscus discolor Philadelphus lewisii Rhus radicans Rubus parviflorus Symphoricarpos albus	71 57 85 85 71 42 71 42 57 57	11 17 6 20 13 5 27 27 19 14	2 1 2 2 1 10 1 2 5	25 45 15 65 45 10 65 70 65 20
Forbs: GAAP2 URDI	Cleavers Stinging nettle	Galium aparine Urtica dioica	57 42	5 1	1 1	10 1
Grasses: ELGL POPR	Blue wildrye Kentucky bluegrass	Elymus glaucus Poa pratensis	71 57	5 4	1 1	20 8
Sedges and CADE9	other grasslikes: Dewey sedge	Carex deweyana	71	4	1	15
Ferns and h EQHY	orsetails: Scouringrush horsetail	Equisetum hyemale	42	2	1	3

Stand characteristics—

Basal area			Diameter at breast height (d.b.h			
Species	Average	Range	Average	Minimum	Maximum	
	m²,	/ha		- Centimeters		
POTR15	12	2–25	73.6	22.9	149.4	
ABGR	5	_	NA	NA	NA	
ALRH2	2	_	40.6	_	_	
PIPO	5	—	NA	NA	NA	

	Site tree averages				
Species	d.b.h.	Age	Height		
	Centimeters	Years	Meters		
POTR15	40.9	NA	11		
ALRH2	39.9	28	7		

Adjacent riparian/wetland vegetation types:

Floodplains and terraces: PSME/ACGL-PHMA5– FLOODPLAIN, BEOC2, ALRH2/MESIC SHRUB, and various SALIX/bar types.

Adjacent upland vegetation types:

Sideslopes: PSME-PIPO/ACGL-PHMA5, ABGR/ PHMA5, RHGL/AGSP, and various AGSP types.

Management considerations—

Black cottonwood requires annual flooding for regeneration, colonizing freshly worked alluvium. It is one of a group, along with red and white alder, of important early successional tree species in low- to midelevation riparian zones of the Blue Mountains Province. Mountain alder provides nitrogenrich litter to streams and rivers by converting atmospheric nitrogen into more biologically useful forms. Mountain alder and red-osier dogwood provide shade for the streams and streambank stability at these fluvially active sites.

A variety of bird species including hermit thrushes, orioles, song sparrows, American robins, crows, vireos, warblers, and rufoussided towhees feed on the abundant berries in the shrub layer. The sound of drumming grouse is common in the spring and early summer months. Large standing dead cottonwoods, common in older stands, provide important habitat for cavity-nesting birds and other wildlife. Fish habitat is improved by shading, streambank stability, and the addition of large woody debris to the stream channel.

Grazing by wild and domestic ungulates is generally low to moderate depending on the

density of animals and the time of year. Poison ivy, cleavers, perfoliated minerslettuce, chervil, cheatgrass, and Kentucky bluegrass are disturbance-related species that may receive a competitive advantage when grazing pressure is unsuitably high. Possible successional trajectories: PIPO/SYAL, ABGR/ACGL, and PSME/ACGL-PHMA5.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The black cottonwood/mountain alder–red-osier dogwood plant association has been described by Crowe and Clausnitzer (1997) for midmontane riparian/wetland sites of northeastern Oregon. Kovalchik and Clausnitzer (2004) also described a black cottonwood/mountain alder– red-osier dogwood type for Washington.

Other floristically similar types include grand fir/black hawthorn/Dewey sedge (p. 51); black cottonwood/Rocky Mountain maple, black cottonwood/common snowberry (Crowe and Clausnitzer 1997); and black cottonwood plant community types (Diaz and Mellon 1996).

Black Cottonwood/Common Snowberry Plant Community Type Populus trichocarpa/Symphoricarpos albus **HCS312** POTR15/SYAL

Physical environment-

The black cottonwood/common snowberry plant community type occurred on inactive floodplains and terraces along south-facing drainages throughout the lower reaches of the study area (<1100 m). Sample sites occurred in Vand trough-shaped and flat valleys of low (1 to 3 percent) to moderate (4 to 5 percent) gradient. Soils were typically well-drained, moderately deep to deep, silt loams to loams over sandy loams to sands. Redoximorphic features were rarely found, an indication of the overall more xeric soil conditions of the black cottonwood/common snowberry plant community type relative to the black cottonwood/ mountain alder-red-osier dogwood plant association.

Vegetation composition—

The black cottonwood overstory may also include white alder. The understory is often lacking a strong black cottonwood component, a result of the loss of fluvial activity at these sites owing to natural stream downcutting. The absence of red-osier dogwood and mountain alder, and the abundance of common snowberry in the shrub layer also points to this loss of fluvial influence.

Other shrub species often encountered include black hawthorn, Woods' rose, western serviceberry, and oceanspray. Herbaceous species include blue wildrye, false Solomon's seal, and tall ragwort.

Adjacent riparian/wetland vegetation types:

Floodplains and terraces: PSME/ACGL-PHMA5-FLOODPLAIN, BEOC2, ALRH2/MESIC SHRUB, and various SALIX/bar types.

Adjacent upland vegetation types: Sideslopes: PSME-PIPO/ACGL-PHMA5, ABGR/ PHMA5, RHGL/AGSP, and various AGSP types.

	(n - 5)	Maan	Damas
Landform environment	(n - 5)	Mean	Range
Elevation (m)		782	598–1000
Plot slope (percent)		7	1–25
Aspect	Mostly southerly		
	C)		
Valley environment (n =	5)	Mode	Range
Valley gradient (percent)		1–3	1–5
Valley width (m)		30-100	30-300
Valley aspect	Southerly		
Soil surface cover (n = 5	5)	Mean	Range
Submerged (percent)		2	0–10
Bare ground		13	0-60
Gravel		5	0–18
Rock		4	0–15
Bedrock		0	
Litter		63	20-95
Moss		9	0-45

N = 5

Soil profile characteristics (n = 5)

Parent material Great group(s)

Fluvaquents, Udorthents

Basalt

		Mean	Range
Water table depth (cm)			91–>100
Rock fragments (percent)		48	0–100
Available water capacity of	pit (cm/m)	8	1–19
pH (n = 4)		6.95	6.54-7.20
Depth to redoximorphic fea	tures (cm)	19	
Occurrence of redoximorph (percentage of soils)	iic features	20	
Surface organic layer (cm)			0–22
Surface layers			
Thickness (cm)			3–31
Texture(s) ^a	SICL, SIL, L		
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			58->100
Texture(s) ^a	SICL, FSL, S		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section

Management considerations—

A variety of bird species including hermit thrushes, orioles, song sparrows, American robins, crows, vireos, warblers, and rufous-sided towhees feed on the abundant berries in the shrub layer. The sound of drumming grouse is common in spring and early summer months. Large standing dead cottonwoods, common in older stands, provide important habitat for cavity-nesting birds and other wildlife.

Principal s	pecies		CON	COV	MIN	MAX
				Per	cent	
Primary ove POTR15	rstory trees: Black cottonwood	Populus trichocarpa	100	49	23	75
		Fopulus inchocarpa	100	49	25	15
POTR15	overstory trees: Black cottonwood	Populus trichocarpa	60	14	7	20
Understory		r opulao inonovalpa			'	20
POTR15	Black cottonwood	Populus trichocarpa	60	1	1	1
Shrubs:						
AMAL2	Western serviceberry	Amelanchier alnifolia	60	3	1	5
CRDO2	Black hawthorn	Crataegus douglasii	80	35	7	60
HODI	Oceanspray	Holodiscus discolor	80	7	1	10
PHLE4	Lewis' mock orange	Philadelphus lewisii	80	38	20	50
PHMA5	Mallow ninebark	Physocarpus malvaceus	60	4	3	5
PRVI	Chokecherry	Prunus virginiana	40	20	10	30
RHPU	Alder-leaved buckthorn	Rhamnus purshiana	40	2	1	3
ROWO	Woods' rose	Rosa woodsii	60	7	5	10
SYAL	Common snowberry	Symphoricarpos albus	100	18	3	35
Forbs:						
ACMI2	Common yarrow	Achillea millefolium	40	1	1	1
ANSC8	Chervil	Anthriscus scandicina	40	53	45	60
ARMI2	Lesser burdock	Arctium minus	40	1	1	1
ASPR	German-madwort	Asperugo procumbens	40	1	1	1
CYOF	Gypsyflower	Cynoglossum officinale	40	2	1	2
GAAP2	Cleavers	Galium aparine	100	15	3	50
HELA4	Common cowparsnip	Heracleum lanatum	40	4	3	5
MOPE3	Perfoliated minerslettuce	Montia perfoliata	40	11	1	20
OSCH	Mountain sweetcicely	Osmorhiza chilensis	40	8	1	15
SESE2	Tall ragwort	Senecio serra	40 40	2 11	1	2
SMRA	Feathery false Solomon's seal	Smilacina racemosa	40 40	6	1 2	20 10
SMST STME2	Starry false Solomon's seal Common chickweed	Smilacina stellata Stellaria media	40 40	2	2	3
Grasses:			.0	-		Ŭ
ELGL	Blue wildrye	Elymus glaucus	100	4	2	5
POPR	Kentucky bluegrass	Poa pratensis	60	30	10	60
			00	00	10	00
CADE9	other grasslikes: Dewey sedge	Carex deweyana	40	1	1	1
CADES	Dewey seuge	Calex UEWEYalla	40	I	I	I

Stand characteristics—

Basal area			Diameter at breast height (d.b.h.			
Species	Average	Range	Average	Minimum	Maximum	
	m²	/ha	Centimeters			
POTR15	10	2–16	40.1	17.8	96.5	
ALRH2	2	_	16.5	15.2	17.8	
PSME	2	_	55.9	_	_	

	Site t	ree average	s
Species	d.b.h.	Age	Height
	Centimeters	Years	Meters
POTR15	50.8	34	20
ALRH	17.8	14	10

Grazing by wild and domestic ungulates is generally moderate to high depending on the density of animals and the time of year. Cleavers, perfoliated minerslettuce, chervil, and Kentucky bluegrass are weedy species that may increase in abundance at the expense of common snowberry and native forbs and grasses if grazing pressure is unsuitably high. Possible successional trajectories include PIPO/SYAL.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) temporarily to intermittently
	flooded.

Adjacent riparian/wetland classifications—

The black cottonwood/common snowberry community type is most similar floristically to Crowe and Clausnitzer's (1997) black cottonwood/common snowberry plant community type, Crawford's (2003) black cottonwood/common snowberry association, and the black cottonwood/common snowberry plant association of Jankovsky-Jones et al. (2001).

Other floristically similar types include black cottonwood/ Rocky Mountain maple (p. 68), white alder/mesic shrub (p. 72); Oregon white oak (*Quercus garryana* Dougl.)/Lewis' mock orange-common snowberry (Crawford 2003).

Miscellaneous Black Cottonwood Type

Black Cottonwood/Rocky Mountain Maple Plant Community Type Populus trichocarpa/Acer glabrum **HCS114** POTR15/ACGL

N = 2

The black cottonwood/Rocky Mountain maple plant community type occurred on an inactive floodplain and a stream terrace at elevations between 600 and 800 m. Valley gradients were low (1 to 3 percent) to moderate (4 to 5 percent), and soils were little developed consisting of sands and loams over alluvial gravels, cobbles, and stones. Black cottonwood occurs in all canopy layers, although understory regeneration is often weak. Ponderosa pine (Hells Canyon) or grand fir (Wenaha-Tucannon Wilderness) were also found in the understory suggesting possible successional pathways within each region. Blue wildrye, feathery false Solomon's seal, and Canadian white violet are always

found in the herbaceous layer, whereas British Columbia wildginger, common cowparsnip, and enchanter's nightshade are indicative of the more mesic variations of this type. Floristically similar types include black cottonwood/ common snowberry (p. 66), grand fir/black hawthorn/ Dewey sedge (p. 51), ponderosa pine/common snowberryfloodplain (p. 60); black cottonwood/common snowberry (Crowe and Clausnitzer 1997), black cottonwood/common snowberry (Crawford 2003), and black cottonwood/common snowberry (Jankovsky-Jones et al. 2001). See Crowe and Clausnitzer (1997: 93) for management considerations.

Red Alder/Common Snowberry/Dewey Sedge Plant Community Type *Alnus rubra/Symphoricarpos albus/Carex deweyana* HAS312 ALRU2/SYAL/CADE9

Physical environment—

The red alder/common snowberry/Dewey sedge plant community type was found principally on low-elevation (600 to 800 m) floodplains and cobble bars in the Umatilla National Forest. This type was never found in Hells Canyon. Sites were located in mostly V-shaped valleys of low (1 to 3 percent) to high gradient (6 to 8 percent) and moderate width (30 to 100 m). Floodplains are typically flooded annually with little soil development. Soils were excessively drained, typically shallow (<50 cm), very gravelly/cobbly sands to loams over cobbles or boulders.

Vegetation composition—

Red alder forms a dense overstory layer and is sometimes accompanied by Douglas-fir or heartleaved paper birch. Red alder, Douglas-fir, grand fir, and ponderosa pine can be found in the understory tree layer.

Common snowberry, Lewis' mock orange, thimbleberry, red-osier dogwood, and Rocky Mountain maple are the more frequent members of the shrub layer. A sparse herbaceous layer includes such mesic species as Dewey sedge, enchanter's nightshade, sweetcicely, false Solomon's seal, common cowparsnip, blue wildrye, and ladyfern.

Adjacent riparian/wetland vegetation types:

Floodplains and terraces:

PSME/ACGL-PHMA5-FLOODPLAIN, ABGR/ACGL-FLOODPLAIN, ABGR/GYDR, PIPO/SYAL-FLOODPLAIN, and various black cottonwood types.

Adjacent upland vegetation types: Sideslopes: ABGR/ACGL, PSME/SYAL, PIPO/SYAL. N = 5

Landform environment (n	= 5)	Mean	Range
Elevation (m)		716	616–774
Plot slope (percent)		2	1–6
Aspect	All		
Valley environment (n = 5)	Mode	Range
Valley gradient (percent)		1–3	1–8
Valley width (m)		30–100	30–300
Valley aspect	All		
Soil surface cover (n = 5)		Mean	Range
Submerged (percent)		3	0–15
Bare ground		11	0-30
Gravel		5	0–10
Rock		8	1–15
Bedrock		0	
Litter		62	45–79
Moss		11	5–18
Soil profile characteristic	s (n = 4)		
Parent material	Alluvium	Identheaste Frede	
Great group(s)	Duniuvents, C	Idorthents, Endo	aquents

		Mean	Range
Water table depth (cm)			>46
Rock fragments (percent)		44	2–100
Available water capacity of p	it (cm/m)	6	1–14
pH (n =3)	. ,	6.53	6.27–6.90
Depth to redoximorphic feature	ıres (cm)	NA	
Occurrence of redoximorphic (percentage of soils)	features	0	
Surface organic layer (cm)		0	
Surface layers Thickness (cm) Texture(s) ^a Redoximorphic features	L, SL, cobble None		0–51
Subsurface layers Thickness (cm) Texture(s) ^a Redoximorphic features	SL, LS, S, cobbl None	e	24->48

^aSee "Soil Texture Codes" section.

Stand characteristics—

Basal area		Diameter at breast height (d.l			
Species	Average	Range	Average	Minimum	Maximum
	m²/ha		Centimeters		
ALRU2	28	16-39	21.6	14.2	32.3
ABGR	3	2–5	35.1	16.5	50.5

	Site t	ree average	s
Species	d.b.h.	Age	Height
ALRU2	Centimeters 27.4	Years 28	Meters 20

RED ALDER SERIES

Principal sp	ecies		CON	cov	MIN	MAX
Deimen	- 1 1			Percent		
Primary over ALRU2 BEPAS PSME	story trees: Red alder Heartleaved paper birch Douglas-fir	Alnus rubra Betula papyrifera var. subcordata Pseudotsuga menziesii	100 40 40	56 18 4	15 15 3	90 20 5
Subordinate BEPAS	overstory trees: Heartleaved paper birch	Betula papyrifera var. subcordata	60	14	1	20
Understory tr ALRU2 ABGR PIPO PSME	rees: Red alder Grand fir Ponderosa pine Douglas-fir	Alnus rubra Abies grandis Pinus ponderosa Pseudotsuga menziesii	40 60 40 60	6 5 2 2	1 1 1	10 10 3 3
Shrubs: ACGL AMAL2 BEOC2 COST4 CRDO2 HODI PHLE4 RHPU RILA RUPA SYAL	Rocky Mountain maple Western serviceberry Water birch Red-osier dogwood Black hawthorn Oceanspray Lewis' mock orange Alder-leaved buckthorn Prickly currant Thimbleberry Common snowberry	Acer glabrum Amelanchier alnifolia Betula occidentalis Cornus stolonifera Crataegus douglasii Holodiscus discolor Philadelphus lewisii Rhamnus purshiana Ribes lacustre Rubus parviflorus Symphoricarpos albus	80 40 60 60 100 80 40 80 100	3 2 12 10 18 5 39 13 8 19 20	1 3 5 3 10 10 5 5	5 3 20 45 11 80 15 30 55
Forbs: CIAL GALIU GEMA4 HELA4 MIST3 MOCO4 OSCH OSOC RUOC2 SMRA SMST URDI VIGL	Enchanter's nightshade Bedstraw Largeleaf avens Common cowparsnip Smallflower miterwort Heartleaf minerslettuce Mountain sweetcicely Western sweetcicely Western coneflower Feathery false Solomon's seal Starry false Solomon's seal Stinging nettle Pioneer violet	Circaea alpina Galium Geum macrophyllum Heracleum lanatum Mitella stauropetala Montia cordifolia Osmorhiza chilensis Osmorhiza occidentalis Rudbeckia occidentalis Smilacina racemosa Smilacina stellata Urtica dioica Viola glabella	100 60 40 80 40 60 60 40 40 80 60 60	6 2 2 4 1 7 1 2 1 4 2 3	1 1 3 1 2 1 1 1 1 1	15 3 5 1 10 1 3 1 5 5 5
Grasses: DAGL ELGL FESU POPR	Orchardgrass Blue wildrye Bearded fescue Kentucky bluegrass	Dactylis glomerata Elymus glaucus Festuca subulata Poa pratensis	40 80 40 60	2 8 6 2	1 3 1 1	3 20 10 3
Sedges and CADE9 CAGE2	other grasslikes: Dewey sedge Elk sedge	Carex deweyana Carex geyeri	100 40	10 2	2 1	20 2
Ferns and ho ATFI EQHY	0	Athyrium filix-femina Equisetum hyemale	60 60	4	1 1	5 3

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Management considerations—

The red alder/common snowberry/Dewey sedge plant community type is characterized by annual flood events and a relatively young age distribution (average: 25 to 30 yrs, average 21.6 cm d.b.h.). Red alder, a nitrogenfixing species, is one of the first species to colonize gravel and cobble bars following catastrophic flood events and represents an important early-seral riparian plant species in the Umatilla National Forest. Strong roots and stems guard against the erosive power of floods and facilitate initial soil accumulation and development. Black bears commonly use red alder as scratch trees and may even climb the smooth bark to take refuge in the branches above. Various amphibians and reptiles, including tree frogs and western garter snakes, are common inhabitants. This community type provides shade for the stream and structure for fish habitat. Possible successional trajectories: PSME/ACGL-PHMA5-SYAL, ABGR/ACGL, and PIPO/SYAL. USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: forested wetland Subclass: broad-leaved deciduous Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described a red alder/ common snowberry plant community type and noted that Dewey sedge is one of a few important herbaceous species present. Diaz and Mellon (1996) described a number of red alder types for northwestern Oregon but none that match the shrub and herbaceous component described above.

Floristically similar types include black cottonwood/ common snowberry (p. 66); red alder/red-osier dogwood (Crowe and Clausnitzer 1997). White Alder/Mesic Shrub Plant Community TypeAlnus rhombifolia/mesic shrubSW2102ALRH2/ME

ALRH2/MESIC SHRUB

N = 26

D - ----

M - - ---

Physical environment—

The white alder/mesic shrub plant community type occurred on low-elevation (396 to 790 m) moderate-gradient (3 percent) floodplains, cobble bars, terraces, and steepgradient (20 percent) streambanks almost exclusively in Hells Canyon. Valley shapes were mostly trough- and V-shaped. Valley gradient was typically moderate (4 to 5 percent) to very high (>8 percent). Soil development was generally low with most soils falling within the Entisol order of soil taxonomy. Soils were typically excessively drained, shallow (<50 cm), very to extremely cobbly/ bouldery, loamy sands to loams. Depth to water table was generally shallow (<50 cm), but occasionally deeper. Redoximorphic features were sometimes present in moderately well-drained soils related to later seral stages of this community type.

Vegetation composition—

White alder always occurs in the overstory and is sometimes joined by black cottonwood, Douglas-fir, or ponderosa pine. The diverse shrub layer might include Lewis' mock orange, Rocky Mountain maple, black hawthorn, and poison ivy. Red-osier dogwood is often present in early seral stages of this community type decreasing in abundance and sometimes dissappearing altogether through time. Barton's raspberry, an endemic raspberry found in only a few drainages in Hells Canyon, was found in the shrub layer in one such drainage.

The mesic herbaceous layer is characteristically sparse but may include mountain sweetcicely, Canadian white violet, common cowparsnip, enchanter's nightshade, Fendler's waterleaf, blue wildrye, Dewey sedge, and horsetails (*Equisetum* spp.).

Landform environment (n = 26)	Mean	Range
Elevation (m)		599	396–790
Plot slope (percent)		7	1–50
Aspect	All		
Valley environment (n =	26)	Mode	Range
Valley gradient (percent)		4–5	1–>8
Valley width (m)		30–100	30-300
Valley aspect	Mostly northerly		
Soil surface cover (n = 2	6)	Mean	Range
Submerged (percent)		2	0–15
Bare ground		3	0-20
Gravel		6	0-45
Rock		20	0-60
Bedrock		0	
Litter		55	7–88
Moss		10	0-5

Soil profile characteristics (n = 26)

Parent material	
Great group(s)	

Basalt, granite, alluvium Endoaquents, Endoaquepts, Fluvaquents, Udifluvents, Udorthents

		Mean	Range
Water table depth (cm)			30->86
Rock fragments (percent)		64	0–100
Available water capacity of	pit (cm/m)	5	1–20
pH (n = 13)		6.46	5.51–7.16
Depth to redoximorphic feat	tures (cm)		9-90
Occurrence of redoximorph (percentage of soils)	ic features	15	
Surface organic layer (cm)			0–19
Surface layers			
Thickness (cm)			6-90
Texture(s) ^a	SIL, L, SL, LS, cobble	, boulders	
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			7–>48
Texture(s) ^a	CL, SICL, SIL, L, SL, I cobble, boulders	LS, S,	
Redoximorphic features	Depletions, iron oxide	concentra	itions

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: PIPO/SYAL-FLOODPLAIN, ABGR/ACGL-FLOODPLAIN, CERE2, PSME/ACGL-PHMA5-FLOODPLAIN.

Adjacent upland vegetation types:

Sideslopes: PSME/ACGL-PHMA5, PIPO/FEID, RHGL talus slopes, and various AGSP types.

Principal sp	pecies		CON	COV	MIN	IMAX
				Per	cent	
Primary over ALRH2	rstory trees: White alder	Alnus rhombifolia	92	64	10	100
Subordinate ALRH2	overstory trees: White alder	Alnus rhombifolia	61	26	1	75
Shrubs: COST4 CRDO2 PHLE4 RHPU	Red-osier dogwood Black hawthorn Lewis' mock orange Alder-leaved buckthorn	Cornus stolonifera Crataegus douglasii Philadelphus lewisii Rhamnus purshiana	53 50 96 50	20 9 29 7	3 1 4 1	90 25 70 25
Forbs: ANSC8 GAAP2 MOPE3 SODU STME2 URDI	Chervil Cleavers Perfoliated minerslettuce Climbing nightshade Common chickweed Stinging nettle	Anthriscus scandicina Galium aparine Montia perfoliata Solanum dulcamara Stellaria media Urtica dioica	57 76 76 46 50 69	17 16 9 2 3 5	1 1 1 1 1	70 80 40 5 10 20
Grasses: ELGL	Blue wildrye	Elymus glaucus	57	5	1	15
Sedges and CADE9	other grasslikes: Dewey sedge	Carex deweyana	61	6	1	45
Ferns and h EQHY	orsetails: Scouringrush horsetail	Equisetum hyemale	46	8	1	60

Stand characteristics—

Basal area			Diameter at breast height (d.b.l			
Species	Average	Range	Average	Minimum	Maximum	
	m²/ha		Centimeters		;	
ALRH2	23	7–55	30.0	12.7	126.2	
PIPO	3	2–5	57.7	24.9	86.4	
POTR15	6	2–14	49.5	10.2	99.1	
PSME	9	_	54.6	47.8	60.2	

	Site tree averages				
Species	d.b.h.	Age	Height		
	Centimeters	Years	Meters		
ALRU2	32.5	33	15		
PIPO	61.0	112	33		
POTR15	41.9	61	18		

Management considerations—

White alder fills the same ecological niche in Hells Canyon as red alder fills in riparian zones of the Umatilla National Forest. White alder is one of the first species to take hold on rocky bars and floodplains stabilizing the substrate and lending to the formation of woody debris dams on these annually flooded landforms.

Black bears use alder trees as scratching posts and often climb the trees taking refuge high above. Songbirds, including flycatchers, canyon wrens, cedar waxwings, and chickadees feed on the variety of fruits found in the shrub layer. Grouse are sometimes found roosting here, and rattlesnakes can be quite common...watch out! This association provides shade for the stream and woody debris to slow the torrential springtime floods typical of these steep drainages. Wild and domestic ungulate use is generally low to moderate depending on the density of animals and the time of year. Poison ivy, cleavers, perfoliated minerslettuce, chervil, cheatgrass, and Kentucky bluegrass are disturbance-related species and may receive a competitive advantage when grazing pressure is unsuitably high. Possible succession relationships: PSME/ACGL-PHMA5-SYAL, ABGR/ACGL, and PIPO/SYAL.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Crawford (2003) described three white alder types for the Columbia River basin: white alder/water birch, white alder/Lewis' mock orange, white alder/netleaf hackberry. Jankovsky-Jones et al. (2001) described a white alder/ Lewis' mock orange type for southwestern Idaho. Miller (1976) provided an extensive classification of white alder types for the Snake River through Hells Canyon and the adjacent Salmon River of western Idaho including white alder community type, white alder/smooth sumac, white alder/netleaf hackberry, white alder/water birch, white alder/Lewis' mock orange, white alder/Western serviceberry, white alder/common elderberry, and white alder/grand fir.

Floristically similar types include black cottonwood/ common snowberry (p. 66).

White Alder/Blackberry Plant Community Type *Alnus rhombifolia/Rubus* spp. SW2101 ALRH

ALRH2/RUBUS

N = 3

Physical environment—

The white alder/blackberry plant community type occurred on low-elevation (396 to 787 m) floodplains and terraces in Hells Canyon. Sample sites were located in low-gradient (1 to 3 percent), V- and trough-shaped valleys. Soils were typically well-drained loamy sands to sandy loams over rocky alluvium. Depth to water table ranged from 41 to 107 cm.

Vegetation composition—

White alder forms a dense overstory tree layer sometimes accompanied by black cottonwood. White alder seedlings may be present in the understory but are typically lacking owing to shading by the thick bramble layer. Blackberry species, including Himalayan and cutleaf blackberry, monopolize the shrub layer. Various other shrub species are found scattered throughout including Lewis' mock orange, western serviceberry, Rocky Mountain maple, alder-leaved buckthorn, blue elderberry, black hawthorn, prickly currant, chokecherry, and red raspberry.

Herbaceous species include cleavers, chervil, perfoliated minerslettuce, lesser burdock, climbing nightshade, ripgut brome, western coneflower, blue wildrye, mountain sweetcicely, enchanter's nightshade, and horsetails (*Equisetum* spp.).

Landform environment	(n = 3)	Mean	Range
Elevation (m) Plot slope (percent)		565 2	396–787 0–3
Aspect	Mostly southerly		
Valley environment (n =	3)	Mode	Range
Valley gradient (percent)			1–3
Valley width (m)		30–100	10–100
Valley aspect	Mostly northerly		
Soil surface cover (n = 3	3)	Mean	Range
Submerged (percent)		3	0–10
Bare ground		7	0–15
Gravel		2	0-5
Rock		7	0–15
Bedrock		0	
Litter		73	60-90
Moss		8	5–10

Soil profile characteristics (n = 3)

Parent material Great group(s)

Basalt, alluvium Fluvaquents, Udipsamments

		Mean	Range
Water table depth (cm)			>41–107
Rock fragments (percent)		30	5-60
Available water capacity of	pit (cm/m)	9	8–11
pH (n = 3)		6.06	5.60-6.64
Depth to redoximorphic fea	tures (cm)	NA	
Occurrence of redoximorph (percentage of soils)	nic features	0	
Surface organic layer (cm)			0-9
Surface layers Thickness (cm)			3–25
Texture(s) ^a	LS, S, SL		• =•
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			27–76
Texture(s) ^a	L, LS, S, SL		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal sp	Principal species				MIN	MAX
				Per	cent	
Primary over ALRH2	story trees: White alder	Alnus rhombifolia	100	68	50	95
Shrubs: AMAL2 PHLE4 RHPU RHRA6 RUDI2 RUID RUID RULA	Western serviceberry Lewis' mock orange Alder-leaved buckthorn Poison ivy Himalayan blackberry American red raspberry Cutleaf blackberry	Amelanchier alnifolia Philadelphus lewisii Rhamnus purshiana Rhus radicans Rubus discolor Rubus idaeus Rubus laciniatus	66 100 66 66 66 33	6 4 3 8 72 1 70	1 3 5 50 1 70	10 5 10 95 1 70
Forbs: ANSC8 ARMI2 GAAP2 MOPE3 OSCH SODU	Chervil Lesser burdock Cleavers Perfoliated minerslettuce Mountain sweetcicely Climbing nightshade	Anthriscus scandicina Arctium minus Galium aparine Montia perfoliata Osmorhiza chilensis Solanum dulcamara	66 66 66 66 66	18 18 18 9 5 10	15 15 15 3 5 5	20 20 20 15 5 15
Grasses: BRRI8 ELGL	Ripgut brome Blue wildrye	Bromus rigidus Elymus glaucus	66 100	10 6	5 3	15 10

Stand characteristics—

Basal	area	Diameter	at breast he	ight (d.b.h.)
Average	Range	Average	Minimum	Maximum
m²	/ha		- Centimeters	S
26	5-41	31.8	15.5	62.0
9	_	35.6	34.0	37.3
Si	te tree ave	rages		
d.b.h.	Age	e Hei	ight	
Centimeters	s Year	s Me	ters	
39.4	NA		7	
	Average m ² 26 9 Si d.b.h. Centimeters	m ² /ha 26 5-41 9 — Site tree ave d.b.h. Age Centimeters Year	AverageRangeAverageAverageAverage265-41935.6Site tree averagesd.b.h.AgeCentimetersYears	AverageRangeAverageMinimumm²/haCentimeters265-4131.815.59-35.634.0Site tree averagesd.b.h.AgeHeightCentimetersYears

Management considerations—

These sites were located in drainages of Hells Canyon with history of homesteading and ranching. Two plots were on current cattle allotments. The blackberry species are nonnative and most likely were introduced by homesteaders. The prevalence of weedy species in the herbaceous layer also speaks of human influence. Blackberries are a highly preferred food item for black bears and many bird species. Backpackers and wranglers who chance upon this association in the late summer/early fall might also enjoy foraging (but don't forget your chaps, OUCH!). Dense thicket-forming blackberry stems and strong alder roots help maintain streambanks and provide shade and woody debris to the stream channel. Invasion of a site by nonnative blackberries would typically follow a large flood or forest fire. In the absence of these introductions, these sites would resemble the ALRH2/SHRUB plant community in floristic composition. Once blackberry colonies take root, they are particularly difficult to remove, as they are seral species and will regenerate strongly following disturbance.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	forested wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The white alder/blackberry plant community type has not previously been described. Miller (1976), when describing his white alder/smooth sumac and white alder/Lewis' mock orange types, noted that colonies of Himalayan blackberry are sometimes found in the understory of these two types. Similarly, Crawford (2003) noted similar occurrence of Himalayan blackberry in his white alder/Lewis' mock orange type.

Arctic Willow Plant Association Salix arctica

SW1133

Physical environment—

The arctic willow plant association was found on highelevation (2357 to 2439 m) floodplains and terraces in the Eagle Cap Wilderness. Sample plots were located in lowgradient (<3 percent), U-shaped, glacial cirques. Soils were somewhat poorly drained organic-rich sands to sandy loams over sands to loamy sands. A thin (1 to 10 cm) organic veneer resides over the mineral soil layers. Depth to water table ranged from the surface to 35 cm, and redoximorphic features were common throughout. The average pH of the soils was 6.9, most likely a factor of the calcareous geology, including limestones and mudstones, of the cirque basins associated with this type.

Vegetation composition—

Arctic willow forms a thick carpet of shrubs growing less than 5 cm tall. Booth's willow always occurs in a dwarf form at low abundance. The herbaceous layer features a thick sedge compenent with scattered forbs.

Common herbaceous species include Holm's Rocky Mountain sedge, few-flowered spikerush, nearlyblack sedge, elephanthead lousewort, alpine meadow butterweed, Canby's licorice-root, yellow Wallowa Indian paintbrush, tundra aster, and alpine milkvetch.

Adjacent riparian/wetland vegetation types: Floodplains and terrace: CAAQ. Meadows: mixed subalpine forb. Lake edge: SAFA/CAAQ.

Adjacent upland type: Ridges: PIAL-JUOC.

SAAR27

N = 3

Landform environment (n = 3)		Mean	Range
Elevation (m) Plot slope (percent)		2384 1	2357–2439 .5–1
Aspect	Mostly northerly		
Valley environment (n =	3)	Mode	Range
Valley gradient (percent)		<1	<1–3
Valley width (m)		30–100	NA
Valley aspect	Mostly northerly		
Soil surface cover (n = 3	3)	Mean	Range
Submerged (percent)		0	
Bare ground		4	0–10
Gravel		0	
Rock		0	
Bedrock		0	
Litter		12	0-30
Moss		80	60-99

Soil profile characteristics (n = 3)

	· · ·			
Parent material	Mazama ash, limestone, mudstone, peat			
Great group(s)	Cryaquands, Cryos	aprists, Hap	olocryands	
		Mean	Range	
Water table depth (cm)			20-35	
Rock fragments (percent)		0		
Available water capacity of	pit (cm/m)	24	12–46	
pH (n = 3)		6.97	6.70-7.23	
Depth to redoximorphic fea	itures (cm)		17–20	
Occurrence of redoximorph (percentage of soils)	nic features	66		
Surface organic layer (cm)			1–10	
Surface layers				
Thickness (cm)			6–28	
Texture(s) ^a	LS, SL, sapric			
Redoximorphic features	Depletions			
Subsurface layers				
Thickness (cm)			9->68	
Texture(s) ^a	LS, SL, S			
Redoximorphic features	Depletions, iron oxi	de concentr	ations	

^aSee "Soil Texture Codes" section.

Principal sp	rincipal species		CON	COV	COV MIN MAX Percent	
			Perc			
Shrubs: SAAR27 SABO2 SAFA	Arctic willow Booth's willow Farr's willow	Salix arctica Salix boothii Salix farriae	100 100 33	67 14 3	30 1 3	95 35 3
Forbs: ANEMO ASAL2 ASAL7 CACH16 DOAL LICA2 PAF13 PEGR2 SECY ZIEL2	Anemone Tundra aster Alpine milkvetch Yellow Wallowa Indian paintbrush Alpine shootingstar Canby's licorice-root Fringed grass of Parnassus Elephanthead lousewort Alpine meadow butterweed Mountain deathcamas	Anemone Aster alpigenus Astragalus alpinus Castilleja chrysantha Dodecatheon alpinum Ligusticum canbyi Parnassia fimbriata Pedicularis groenlandica Senecio cymbalarioides Zigadenus elegans	33 33 33 33 33 33 33 100 33 33	5 1 3 1 5 1 6 1 1	5 1 3 1 5 1 1 1	5 1 3 1 5 1 10 1
Grasses: DECE	Tufted hairgrass	Deschampsia cespitosa	33	1	1	1
Sedges and CAPR4 CASC12 CASU7 ELPA6	other grasslikes: Early sedge Holm's Rocky Mountain sedge Nearlyblack sedge Few-flowered spikerush	Carex praeceptorium Carex scopulorum Carex subnigricans Eleocharis pauciflora	33 66 66 66	1 18 26 46	1 5 1 3	1 30 50 90
Ferns and he EQVA		Equisetum variegatum	33	50	50	50

Management considerations—

Total forage biomass ranged from 224 to 1195 (avg. 710) kg/ha. Wild ungulate use is typically moderate to high at these sites; the low-growing willow species represent highly nutritional browse in these isolated cirque basins. **Overuse by wild ungulates, horses, and humans can lead to trampling of the wet, cryic soils and damage to the willow mat. Therefore, these sites are particularly vulnerable to horse pasturing and perennial human trails.**

USDI Fish and Wildlife Service wetlands classification—

System:palustrineClass:scrub-shrub wetlandSubclass:broad-leaved deciduousWater regime:(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Arctic willow types have been classified for Alaska (Viereck et al. 1992) but not for the contiguous United States.

Booth's Willow/Holm's Rocky Mountain Sedge Plant Association Salix boothii/Carex scopulorum SW1138

SABO2/CASC12

N = 10

Physical environment—

The Booth's willow/Holm's Rocky Mountain sedge plant association occurred on low-gradient floodplains, streambanks, and moist/wet meadows above 2100 m elevation (2152 to 2375 m) throughout the Eagle Cap Wilderness and Seven Devils Mountains. Valleys were very low (<1 percent) to low (1 to 3 percent) gradient and U- or trough-shaped. Soils were very poorly to poorly drained, and moist/wet year round. The water table ranged from the surface to 48 cm, and redoximorphic features were common. Soil profiles ranged from organic horizons in various stages of decomposition to organic loams to siltyclay loams above sand or rocky alluvium.

Vegetation composition—

Booth's willow forms a thick overstory above a dense herbaceous layer of Holm's Rocky Mountain sedge. Scattered forbs and graminoids occur throughout the understory including, among others, high mountain cinquefoil, alpine meadow butterweed, explorer's gentian, subalpine fleabane, licorice-root, tufted hairgrass, and violets. Few-flowered spikerush occurs at sites with highly organic soils on the wetter end of the SABO2/CASC12 environmental tolerance gradient.

Adjacent riparian/wetland vegetation types:

Meadows: CAUT, SALIX/MESIC FORB, CALE9, CASC12, VERAT, CACA4, PHEM MOUNDS. Lake edges: CAVE6.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Landform environment (n = 10)	Mean	Range
Elevation (m) Plot slope (percent)		2242 1	2152–2375 0–4
Aspect	Mostly northerly		
Valley environment (n =	9)	Mode	Range
Valley gradient (percent) Valley width (m)		<1 100–300	<1–3 10–300
Valley aspect	Mostly northerly		
Soil surface cover (n = 8)	Mean	Range
Submerged (percent)		7	0–25
Bare ground		7	0-30
Gravel		0	
Rock		0	
Bedrock		0	
Litter		38	3–70
Moss		50	15–91

Soil profile characteristics (n = 9)

```
Parent material
Great group(s)
```

Quartz diorite, sedge peat, alluvium Cryaquepts, Cryofluvents, Cryohemists, Cryosaprists, Epiaquents

		Mean	Range
Water table depth (cm)			0-48
Rock fragments (percent)		2	0–17
Available water capacity of	pit (cm/m)	20	9-50
pH (n = 6)		5.81	5.20-6.47
Depth to redoximorphic fea	tures (cm)		9–12
Occurrence of redoximorph (percentage of soils)	ic features	30	
Surface organic layer (cm)			0->14
Surface layers			
Thickness (cm)			10->43
Texture(s) ^a	L, SC, SIL, SL, fibric, I	nemic	
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			4->80
Texture(s) ^a	L, LS, SI, SCL, SICL,		
Redoximorphic features	Depletions, iron oxide	concentr	ations

^aSee "Soil Texture Codes" section.

Principal sp	pecies	CON COV		MIN	MAX	
				Per	cent	
Shrubs: SABO2	Booth's willow	Salix boothii	100	70	30	90
Forbs: GECA LITE2 POFL3 SECY	Explorer's gentian Idaho licorice-root High mountain cinquefoil Alpine meadow butterweed	Gentiana calycosa Ligusticum tenuifolium Potentilla flabellifolia Senecio cymbalarioides	40 40 60 40	5 2 11 16	1 1 1	15 5 20 30
Sedges and CASC12 ELPA6	other grasslikes: Holm's Rocky Mountain sedge Few-flowered spikerush	Carex scopulorum Eleocharis pauciflora	100 40	62 26	35 5	85 50

Management considerations—

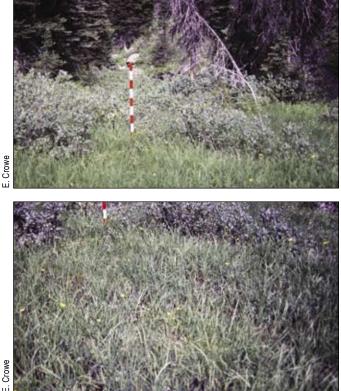
Booth's willow is an important colonizer of streambanks and floodplains, providing initial soil stabilization. The strong roots and stems of Booth's willow slow floodwaters, trap sediments, and increase streambank and alluvial bar stability, thus enhancing fish habitat and the overall quality of the stream. Booth's willow can propogate from broken stems, produce roots at leaf nodes of buried stems, and regenerate from seed.

Forage biomass values ranged widely, 179 to 1605 (avg. 1054) kg/ha. Elk and deer browse on Booth's willow at low to moderate intensity. Owing to the wet nature of the soils, these sites are not ideal for horse pasturing. Wranglers should look to slightly drier, more resilient meadows such as CACA4, CASC12, and SALIX/FORB adjacent to the SABO2/CASC12 association for pasturing opportunities. Possible successional trajectories: SALIX/CACA4, SALIX/FORB, ABLA/VASC.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	scrub-shrub wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—


The Booth's willow/Holm's Rocky Mountain sedge plant association has not previously been described. Kovalchik and Clausnitzer (2004) described a willow/Holm's Rocky Mountain sedge type that sometimes features Booth's willow co-occurring with Drummond's willow.

Floristically similar types include undergreen willow/ Holm's Rocky Mountain sedge (p. 80), willow/mesic forb (p. 82).

Undergreen Willow/Holm's Rocky Mountain Sedge Plant Association Salix commutata/Carex scopulorum SW1121

SACO2/CASC12

N = 5

Crowe

Physical environment—

The undergreen willow/Holm's Rocky Mountain sedge plant association occurred on floodplains, swales, and wet meadows between 1945 and 2253 m elevation. Crowe and Clausnitzer (1997) described this association within the same range of elevation and higher (1970 to 2348 m) on seepy slopes and wet meadows. Sample sites were found in U-shaped valleys of low (1 to 3 percent) to very high (>8 percent) gradient. Soils were poorly drained. Soils were moist/wet throughout the growing season with water being supplied from the stream water table (surface to 55 cm) and, oftentimes, lateral flow from adjacent wet meadows or seeps. Typically an organic horizon caps organic-rich sands to silt loams with redoximorphic features common throughout the soil profile (8 to 55 cm).

Vegetation composition—

Undergreen willow forms a dense shrub layer often overhanging the streambanks. Chance occurrences of Labrador tea and other willow species such as Sitka willow are possible. Subalpine fir seedlings are sometimes found in the understory.

Landform environment (n = 5)		Mean	Range	
Elevation (m)		2087	1945-2253	
Plot slope (percent)		3	1–8	
Aspect	All			
Valley environment (n	= 4)	Mode	Range	
Valley gradient (percent	:)	1–3	1–5, >8	
Valley width (m)		30–100	10–300	
Valley aspect	Mostly northerly			
Soil surface cover (n =	= 5)	Mean	Range	
Submerged (percent)		7	2–20	
Bare ground		24	1–80	
Gravel		0		
Rock		3	0–10	
Bedrock		0		
Litter		27	2–51	
Moss		38	10-60	

Soil profile characteristics (n = 4)

Parent material	
Great group(s)	

Quartz diorite, sedge peat, alluvium Cryaquepts, Cryofluvents

		Mean	Range
Water table depth (cm)			0-55
Rock fragments (percent)		0	
Available water capacity of	pit (cm/m)	9	6–12
pH (n = 1)		5.4	
Depth to redoximorphic fea	tures (cm)		8-55
Occurrence of redoximorph (percentage of soils)	nic features	75	
Surface organic layer (cm)			5->50
Surface layers Thickness (cm)			14–32
Texture(s) ^a	LS, S, SIL, SL, hemic		
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			25->66
Texture(s) ^a	S, SL, fibric		
Redoximorphic features	Depletions, iron oxide	concentra	ations
a			

^aSee "Soil Texture Codes" section.

Holm's Rocky Mountain sedge forms a dense herbaceous layer with scattered forbs and graminoids throughout. High mountain cinquefoil and alpine meadow butterweed are nearly always found in the herbaceous layer at low abundance. The occurrence of this type in wet meadows is often typified by the presence of few-flowered spikerush in the herbaceous layer.

Principal s	pecies		CON	COV	MIN	MAX
				Perc	ent	
Understory ABLA	trees: Subalpine fir	Abies lasiocarpa	40	2	1	3
Shrubs: SACO2	Undergreen willow	Salix commutata	100	61	20	90
Forbs	C C					
ACCO4 ANAR3 ARCH3 ARMO4	Columbian monkshood Lyali's angelica Chamisso arnica Hairy arnica	Aconitum columbianum Angelica arguta Arnica chamissonis Arnica mollis	40 40 40 40	2 4 1 6	2 3 1 1	2 5 1 10
ERPE3 HASA HYAN2	Subalpine fleabane Slender bog orchid Tinker's penny	Erigeron peregrinus Habenaria saccata Hypericum anagalloides	40 40 40	2 1 8	1 1 1	2 1 15
HYFON LUPO2 MILE2	Norton's St. Johnswort Bigleaf lupine Purple monkeyflower	Hypericum formosum var. nortoniae Lupinus polyphyllus Mimulus lewisii	40 40 40	1 2 1	1 2 1	1 3 1
MIMO3 MIPE PAFI3	Muskflower Fivestamen miterwort Fringed grass of Parnassus	Mimulus moschatus Mitella pentandra Parnassia fimbriata	40 40 40	1 2 1	1 1 1	1 2 1
PEGR2 POFL3 SECY VIOLA	Elephanthead lousewort High mountain cinquefoil Alpine meadow butterweed Violet	Pedicularis groenlandica Potentilla flabellifolia Senecio cymbalarioides Viola	40 100 80 60	1 3 4 3	1 1 1 1	1 5 10 5
Grasses: CACA4	Bluejoint reedgrass	Calamagrostis canadensis	40	16	3	30
Sedges and CAMI7	other grasslikes: Smallwing sedge	Carex microptera	40	1	1	1
CASC12 JUDR JUEN LUCA2	Holm's Rocky Mountain sedge Drummond's rush Swordleaf rush Field woodrush	Carex scopulorum Juncus drummondii Juncus ensifolius Luzula campestris	100 40 40 20	56 1 1	30 1 1 1	85 1 1
Ferns and h EQAR		Equisetum arvense	60	2	1	5

Adjacent riparian/wetland vegetation types:

Meadows: CACA4, CASC12, ELPA6, ALVA-CASC12, CANI2, LEGL/CASC12, ABLA-PIEN/LEGL; Streambanks: ALSI3.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Management considerations—

Undergreen willow is an important colonizer of streambanks and floodplains, providing initial soil stabilization. The strong roots and stems of undergreen willow slow floodwaters, trap sediments, and increase streambank and alluvial bar stability, thus enhancing fish habitat and the overall quality of the stream. Undergreen willow can propogate from broken stems, produce roots at leaf nodes of buried stems, and regenerate from seed.

Forage biomass ranged from 672 to 1717 (avg. 1045) kg/ha. Elk and deer browse on undergreen willow at low to moderate intensity. The presence of scattered forbs may be an aftereffect of past sheep grazing at these sites, when native forbs were allowed a brief competitive advantage over rhizomatous sedges owing to distubance of the sod layer. Presently, because of wilderness designations and

rest from grazing, these fingerprints of historical land use are nearly smudged out. Given the wet nature of the soils, these sites are not ideal for horse pasturing. Wranglers should look to slightly drier more resilient meadows such as CACA4, CASC12, and SALIX/FORB adjacent to the SACO2/CASC12 association for pasturing opportunities. Possible successional trajectories: SALIX/CACA4, SALIX/ FORB, PIEN-ABLA/LEGL, ABLA/VASC.

USDI Fish and Wildlife Service wetlands classification— System: palustrine

Class:	scrub-shrub wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Undergreen willow/Holm's Rocky Mountain sedge types have been described for midmontane regions of the Blue Mountains in Oregon (Crowe and Clausnitzer 1997). Floristically similar types include Booth's willow/Holm's Rocky Mountain sedge (p. 78), willow/mesic forb (p. 82); undergreen willow/Holm's sedge (*Carex scopulorum* var. *bracteosa*)–showy sedge (Kovalchik and Clausnitzer 2004).

Willow/Mesic Forb Plant Community Type Salix/mesic forb SW1125

SALIX/MESIC FORB

N = 10

Physical environment—

The willow/mesic forb plant community type occurred on moderately steep (<1 to 15, avg. 4 percent) floodplains, streambanks, and moist/wet meadows from 2073 to 2518 m elevation. Sample sites occurred in very low (<1 percent) to very high gradient (>8 percent) U- and trough-shaped valleys. Soils were somewhat poorly drained to moderately well drained, moderately deep (26 to 58 cm) to very deep (>170 cm), and moist year round. Spring flooding was common, but soil surface horizons dry out late in the season. Soil profiles were characterized by a thin (<10 cm) organic layer over sandy loam to silt loam surface horizons, followed by sandy loam to clay subsurface horizons. Depth to water table ranged from the surface to 92 cm. Redoximorphic features were common throughout.

Vegetation composition—

The willow/mesic forb plant community type is associated with any of the following willow species: Booth's willow, undergreen willow, or Drummond's willow. Grouse huckleberry and various conifer seedlings can sometimes be found in the understory.

Landform environment (n = 10)	Mean	Range
Elevation (m) Plot slope (percent) Aspect	All	2215 4	2073–2518 <1–15
Valley environment (n = ²	10)	Mode	Range
Valley gradient (percent) Valley width (m) Valley aspect	Mostly northerly	1–3 100–300	<1–>8 10–300
Soil surface cover (n = 8)		Mean	Range
Submerged (percent) Bare ground Gravel Rock Bedrock Litter Moss		5 17 2 4 0 38 26	0-30 0-80 0-25 10-85 5-60
Soil profile characteristi	cs (n = 10)		
Parent material Great group(s)	Mazama ash, quartz diorite, granite, alluvium Cryaquands, Cryaquepts, Cryofluvents, Cryorthents, Dystrocryepts, Haplocryalfs		
	oryonalona, byou	Mean	Range
Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 5) Depth to redoximorphic fea Occurrence of redoximorp (percentage of soils) Surface organic layer (cm)	atures (cm) hic features	27 10 5.86 60	0-92 0-100 1-16 4.79-6.86 2-25 0-10
Surface layers			
Thickness (cm) Texture(s) ^a Redoximorphic features	L, LS, SIL, SL, boul Depletions, iron oxi		7–40 ations
Subsurface layers			0 \$470
Thickness (cm) Texture(s) ^a	C, CL, LS, S, SIC, S	SIL, SL	9–>170

Redoximorphic features Depletions, iron oxide concentrations

^aSee "Soil Texture Codes" section.

A rich herbaceous layer, characterized by forbs, includes high mountain cinquefoil, Pacific onion, shootingstar, explorer's gentian, Norton's St. Johnswort, licorice-root, elephanthead lousewort, and alpine meadow butterweed at colder/moister sites. Alpine leafybract aster, Columbian monkshood, tall fringed bluebells, arrowleaf groundsel, and heartleaf minerslettuce abound at warmer/drier sites.

Principal sp	pecies		CON	COV	MI	MAX
				Pe	rcen	ŀ
Shrubs: SABO2 SACO2	Booth's willow Undergreen willow	Salix boothii Salix commutata	50 40	65 44	22 10	95 100
Forbs:						
ALVA ASOC DOAL GECA HYFON	Pacific onion Western mountain aster Alpine shootingstar Explorer's gentian Norton's St. Johnswort	Allium validum Aster occidentalis Dodecatheon alpinum Gentiana calycosa Hypericum formosum	40 40 70 40 50	12 9 5 18 6	1 1 5 1	40 20 15 30 20
LICA2 LITE2 PEGR2 POFL3 SAAR13 SECY SETR VIOLA	Canby's licorice-root Idaho licorice-root Elephanthead lousewort High mountain cinquefoil Brook saxifrage Alpine meadow butterweed Arrowleaf groundsel Violet	var. nortoniae Ligusticum canbyi Ligusticum tenuifolium Pedicularis groenlandica Potentilla flabellifolia Saxifraga arguta Senecio cymbalarioides Senecio triangularis Viola	40 40 90 40 70 40 40	9 2 23 2 16 7 8	1 1 1 1 1 1	15 10 5 60 3 40 20 15
Grasses: DECE PHAL2 TRWO3	Tufted hairgrass Alpine timothy Wolf's trisetum	Deschampsia cespitosa Phleum alpinum Trisetum wolfii	60 50 40	13 1 4	3 1 1	30 3 10
Sedges and CASC12	other grasslikes: Holm's Rocky Mountain sedge	Carex scopulorum	80	11	1	30

The mostly scattered grass component includes alpine bentgrass, timber oatgrass, prairie Junegrass, alpine timothy, and Wolf's trisetum. Bluejoint reedgrass and tufted hairgrass may occur at higher than average cover in moist microsites.

Holm's Rocky Mountain sedge is often found growing in moist microsites uncharacteristic of the associated landform. Grasslikes typical of the drier end of the environmental spectrum include field woodrush, Jones' sedge, and Mertens' rush.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows: CASC12, ALVA-CASC12, CACA4, and CAAQ.

Adjacent upland vegetation types: Sideslopes: ABLA/VASC, VASC/VAME.

Management considerations—

Willows are an important colonizer of streambanks, floodplains, and rocky bars, providing initial soil stabilization. The strong roots and stems of willows slow floodwaters, trap sediments, and increase streambank and alluvial bar stability, thus enhancing fish habitat and the overall quality of the stream. Willows can propogate from broken stems, produce roots at leaf nodes of buried stems, and regenerate from seed.

Forage biomass values ranged between 821 and 1867 (avg. 1344) kg/ha. Elk and deer use is typically higher at these sites relative to various willow/sedge associations probably as a result of the slightly drier conditions and greater abundance of higher quality forage. The prevalence of forbs is most likely an historical effect of past sheep grazing similar to that described for the SACO2/CASC12 plant association combined with natural succession from wetter willow/sedge types. Possible successional trajectories include ABLA/VASC, SALIX/CACA4, PIEN-ABLA/VACCI.

USDI Fish and Wildlife Service wetlands classification—

System:palustrineClass:scrub-shrub wetlandSubclass:broad-leaved deciduousWater regime:(nontidal) seasonally
to temporarily flooded.

Adjacent riparian/wetland classifications—

Willow/mesic forb types are common throughout riparian zones in the Western United States, the particular species of willow-Booth's, undergreen, Drummonds', which may constitute the willow/mesic forb plant association described here are less wide ranging. Crowe and Clausnitzer (1997) described a willow/mesic forb plant community type, that may feature Booth's or Geyer willow. Padgett et al. (1989) described a Salix boothii/mesic forb type for Utah and southeastern Idaho, and Kovalchik and Clausnitzer (2004) described an undergreen willow/mesic forb type for eastern Washington. Youngblood et al. (1985) in their Riparian Community Type Classification of Eastern Idaho–Western Wyoming, described a Booth's willow/starry false Solomon's seal type. Lastly, Manning and Padgett (1995) described two willow/forb types for Nevada and eastern California: low Salix/mesic forb, which sometimes features undergreen willow, and [tall] Salix/mesic forb, which often features Booth's willow.

Other floristically similar types include: *Salix boothii/ Equisetum arvense* (common horsetail), *Salix boothii/*mesic graminoid (Padgett et al. 1989); *Salix boothii/Equisetum arvense* (Youngblood et al. 1985). Willow/Bluejoint Reedgrass Plant Association Salix spp./Calamagrostis canadensis SW1124

SALIX/CACA4

N = 4

Physical environment—

The willow/bluejoint reedgrass plant association occurred at high-elevation (2046 to 2177 m) floodplain and moist meadow sites in the Eagle Cap Wilderness and Seven Devils Mountains. Sample plots occurred in low-gradient (<1 to 3 percent) U- and trough-shaped valleys. Soils were somewhat poorly drained to moderately well drained, moderately deep to deep, loams to silt loams in the surface layer over sands to sandy loams in the subsurface. A thin (2 to 13 cm) organic veneer was sometimes present over the mineral soil horizons. Depth to water table ranged from the surface to greater than 1 m, and redoximorphic features were found in the subsurface layers of all soils sampled.

Vegetation composition—

Willow species, Booth's or undergreen, represent the primary shrub species with chance occurrences of huckleberry or alpine laurel. Bluejoint reedgrass forms a thick sward with scattered subalpine fleabane, Idaho licorice-root, and high mountain cinquefoil. Holm's Rocky Mountain sedge is always present, often growing in wet microsites.

Landform environmen	nt (n = 4)	Mean	Range
Elevation (m) Plot slope (percent)		2137 1	2046–2177 1–2
Aspect	Northerly		
Valley environment (n	= 4)	Mode	Range
Valley gradient (percent Valley width (m)	t)	1–3 100–300	<1–3 10–300
Valley aspect	Northerly		
Soil surface cover (n =	= 4)	Mean	Range
Submerged (percent)		0	
Bare ground		3	0-5
Gravel		0	
Rock		0	
Bedrock		0	
Litter		76	45-94
Moss		17	3–5

Soil profile characteristics (n = 4)

Parent material
Great group(s)

Mazama ash, quartz diorite, peat Cryaquepts, Cryofluvents

		Mean	Range
Water table depth (cm)			5->100
Rock fragments (percent)		5	0–12
Available water capacity of	pit (cm/m)	10	8–11
pH (n = 2)		5.56	5.31–5.80
Depth to redoximorphic fea	tures (cm)		5–15
Occurrence of redoximorph (percentage of soils)	nic features	100	
Surface organic layer (cm)			0–13
Surface layers			
Thickness (cm)			5->50
Texture(s) ^a	L, LS, SIL, SL		
Redoximorphic features	Iron oxide concentrati	ons	
Subsurface layers			
Thickness (cm)			25->90
Texture(s) ^a	LS, S, SL		
Redoximorphic features	Depletions, iron oxide	concentr	ations
20 "0 "T 1 0 1 "			

^aSee "Soil Texture Codes" section

Less frequent members of the herbaceous layer include subalpine fleabane, explorer's gentian, elephanthead lousewort, Payette beardtongue, violets, alpine bentgrass, Wolf's trisetum, and alpine timothy. Bladder sedge, few-flowered spikerush, and tufted hairgrass are species representative of the wetter end of the environmental conditions experienced by this type.

Principal s	pecies		CON	COV	MIN	MAX
				Per	rcent	
Shrubs: SABO2 SACO2	Booth's willow Undergreen willow	Salix boothii Salix commutata	50 50	72 75	50 65	95 85
Forbs: ARCH3 ERPE3 GECA LITE2 PEGR2 POFL3 VIOLA	Chamisso arnica Subalpine fleabane Explorer's gentian Idaho licorice-root Elephanthead lousewort High mountain cinquefoil Violet	Arnica chamissonis Erigeron peregrinus Gentiana calycosa Ligusticum tenuifolium Pedicularis groenlandica . Potentilla flabellifolia Viola	50 75 50 100 50 100 50	1 10 1 5 1 12 2	1 1 1 1 2 2	1 20 1 10 1 30 3
Grasses: AGHU CACA4 DECE PHAL2 TRWO3	Alpine bentgrass Bluejoint reedgrass Tufted hairgrass Alpine timothy Wolf's trisetum	Agrostis humilis Calamagrostis canadensis Deschampsia cespitosa Phleum alpinum Trisetum wolfii	50 100 75 75 50	2 66 5 1	1 45 1 1	3 90 10 1 1
Sedges and CASC12 CAUT	other grasslikes: Holm's Rocky Mountain sedge Bladder sedge	Carex scopulorum Carex utriculata	100 50	12 6	3 3	30 10

Adjacent riparian/wetland vegetation types:

Floodplains and meadows:

SABO2/CASC12, CAAQ, CASC12, PHEM MOUNDS, CANI2, KAMI/CANI2, ABLA-PIEN/LEGL, SALIX/MESIC FORB, CAUT, PIEN-ABLA/SETR.

Lakes: SPAN2.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Management considerations—

Forage biomass values ranged from 1008 to 1344 (avg.1548) kg/ha. Bluejoint reedgrass and willows are preferred food items of wild ungulates, although palatability of bluejoint reedgrass varies from moderate to high depending on the season (Hansen et al. 1995). Livestock grazing is typically not an issue at the high elevations where this association is typically found. These sites are not as resilient to grazing pressure as the CACA4/CASC12 association given that the soil surface layers remain wet for longer periods after melt-off and also given the lack of a thick surface layer of sod. Sustained high levels of grazing can result in damage to willow stems and a shift to forbs (SALIX/FORB) in the understory as the competitive advantage of bluejoint reedgrass is thwarted by destruction of the thick sod layer.

These sites provide habitat for small mammals including voles, deer mice, weasels, and snowshoe hares. Bluejoint reedgrass and willows have low fire tolerance, but fires are rare in this moist association. Dense rhizomes and thick willow roots hold soil tenaciously, often leading to undercut streambanks, a favorite hiding place for trout.

This association may follow from SABO2/CASC12 or SACO2/CASC12 given a decrease in soil moisture, and may shift back to these types given an increase in soil moisture. Other possible successional relationships include PIEN-ABLA/CACA4 (not described in this classification effort).

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	scrub-shrub wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Willow/bluejoint reedgrass types are common throughout riparian zones in the Western United States, the particular species of willow, Booth's and undergreen, which may constitute the willow/bluejoint reedgrass plant association described here, are less widespread.

Kovalchik and Clausnitzer (2004) described a willow/ bluejoint reedgrass type that may feature Booth's, undergreen, and Drummonds' willow. Padgett et al. (1989) and Youngblood et al. (1985) described *Salix boothii/ Calamagrostis canadensis* types for Utah-southeastern Idaho and eastern Idaho-western Wyoming, respectively.

Other floristically similar types include [Geyer] willow/ bluejoint reedgrass (Crowe and Clausnitzer 1997); *Salix geyeriana* (Geyer willow)/*Calamagrostis canadensis*, *Salix planifolia* (planeleaf willow)/*Calamagrostis canadensis* (Padgett et al. 1989).

Coyote Willow Plant Association Salix exigua SW1117

Physical environment—

The coyote willow plant association occurred on cobble and gravel bars at a wide range of elevations. Elevations ranged from 512 to 976 m in Hells Canyon and the Malheur National Forest to 1524 to 2134 m along drainages in the Eagle Cap Wilderness. Crowe and Clausnitzer (1997) described a very similar association as occurring between 914 and 1328 m. The coyote willow plant community type was never observed above 2134 m elevation.

Valley aspects at the upper range in elevation ranged from southeast to southwest, whereas the elevation at the lowest occurrence was almost directly north (10°) suggesting a possible correlation between aspect and elevation at the extremes in elevation. Midelevations showed no clear elevation-aspect trend. Valley shape ranged from V-shaped and flat in the canyon country to U-shaped in the subalpine. For most sites, valley gradient ranged from very low (<1 percent) to moderate (4 to 5 percent).

Soils were typically undeveloped, usually consisting of alluvial gravels and cobbles sometimes covered with a thin (<30 cm) veneer of sand or loam.

Vegetation composition—

Coyote willow forms an interweaving tall shrub layer and is sometimes accompanied by other willow species including Pacific willow and rigid willow. Other less common shrub species include red-osier dogwood, twinberry honeysuckle, and shrubby cinquefoil. Engelmann spruce and black cottonwood seedlings are commonly found growing up through the thick shrub layer.

The sparse herbaceous layer might include white sagebrush, curly dock, common horsetail, falsegold groundsel, arrowleaf groundsel, tall ragwort, giant mountain aster, and smallwing sedge.

N = 12

Landform environment (n = 13)	Mean	Range
Elevation (m)		1413	512-2134
Plot slope (percent)		7	<1–30
Aspect	All		
Valley environment (n = [·]	13)	Mode	Range
Valley gradient (percent)		1–3	<1–>8
Valley width (m)		30–100	10-300
Valley aspect	All		
Soil surface cover (n = 1	3)	Mean	Range
Submerged (percent)		2	0-20
Bare ground		20	0-63
Gravel		7	0–15
Rock		16	0-60
Bedrock		0	
Litter		46	0-89
Moss		5	0-25

Soil profile characteristics (n = 12)

SAEX

Parent material	Granite, basalt, alluviur	n	
Great group(s)	Udifluvents		
		Mean	Range
Water table depth (cm)			>13
Rock fragments (percent) Available water capacity of pH (n = 1)	pit(cm/m)	78 2 6.24	0–100 1–8
Depth to redoximorphic fea		0	NA
Occurrence of redoximorph (percentage of soils)	lic features	0	
Surface organic layer (cm)		0	
Surface layers			
Thickness (cm)			9->50
Texture(s) ^a	L, S, SIL, SL, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			>13
Texture(s) ^a	SICL, cobble, boulders		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Low-elevation floodplains and terraces: ACNE2, CANU5.
High-elevation floodplains and terraces: PICO-PIEN/POPR.
High-elevation springs and seeps: CAUT.
Adjacent upland vegetation types: Low-elevation sideslopes: ABGR/SYAL,

JUOC/AGSP, and various AGSP types;

High-elevation sideslopes: ABLA/VASC.

Principal s	pecies		CON	COV	MIN	MAX
				cent		
Shrubs: SAEX SARI2	Coyote willow Rigid willow	Salix exigua Salix rigida	100 46	63 28	8 15	90 45
Forbs ARLU RUOC2	White sagebrush Western coneflower	Artemisia ludoviciana Rudbeckia occidentalis	46 46	4 3	1 1	10 10
Grasses POPR	Kentucky bluegrass	Poa pratensis	46	9	1	30
Ferns and h EQAR	norsetails Common horsetail	Equisetum arvense	61	17	1	5

Management considerations—

The coyote willow plant association is characterized by annual flood scour and deposition of alluvium. Coyote willow is an important colonizer of gravel and cobble bars providing initial soil stabilization. The strong roots and stems of coyote willow slow floodwaters, trap sediments, and increase streambank and alluvial bar stability, thus enhancing fish habitat and the overall quality of the stream. Coyote willow can propogate from broken stems, produce roots at leaf nodes of buried stems, and regenerate from seed. A variety of birds can be found nesting and feeding here including willow flycatchers, yellow warblers, redwinged blackbirds, kingfishers, and great blue herons.

Coyote willow is fairly palatable (Crowe and Clausnitzer 1997) to wild and domestic ungulates and can provide important winter forage for elk and deer. The typically sparse understory provides little herbaceous forage biomass (11 to 22 kg/ha). Coyote willow is a highly preferred food of beavers. Coyote willow is often replaced over time by black cottonwood and alder tree types at low elevations and black cottonwood and Engelmann spruce types at high elevations.

USDI Fish and Wildlife Service wetlands classification—

- System: palustrine
 - Class: scrub-shrub wetland
- Subclass: broad-leaved deciduous

Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Coyote willow is a common riparian species cover type throughout the Western United States. A number of variations of the coyote willow plant association have been described in adjacent classifications including coyote willow plant association (Crowe and Clausnitzer 1997, Crawford 2003); coyote willow and Pacific willow community types (Hansen et al. 1995); coyote willow/mesic forb, coyote willow/Woods' rose, coyote willow/bench, Pacific willow/ mesic forb (Manning and Padgett 1995); coyote willow riparian type (Padgett 1981); *Salix exigua*/mesic forb, *Salix exigua*/barren (Padgett et al. 1989); coyote willow/barren, coyote willow/Woods' rose (Jankovsky-Jones et al. 2001); coyote willow/Kentucky bluegrass, coyote willow/common horsetail community type (Youngblood et al. 1985).

The Pacific willow/coyote willow (Crawford 2003) and Pacific willow/bench (Manning and Padgett 1995) are two types that feature coyote willow as a subordinate willow species and are similar enough to the coyote willow plant community type to mention here.

Miscellaneous Willow Types

Booth's Willow/Inflated Sedge Plant Community Salix boothi/Carex vesicaria SW1139 SABO2

SABO2/CAVE6

This community was found in a wet meadow at 2348 m in the Eagle Cap Wilderness. Soils were moderately deep to bedrock, very poorly drained organic loams over sandy clay loam and silty clay loam layers. Depth to water table was 70 cm, and the available water capacity was 13 cm/m. Booth's willow (*Salix boothii*) (90 percent foliar cover) forms a thick monocultural stand over inflated sedge (30 percent) and early sedge (10 percent). Curled starwort was found scattered throughout the herbaceous layer.

N = 1

Adjacent riparian types: Meadows: SABO2/CASC12, CAVE6. Lake edges: CAVE6.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

The Booth's willow/inflated sedge plant community has not previously been described.

Willow/Aquatic Sedge Plant Association Salix spp./Carex aquatilis SW1114

SALIX/CAAQ

N = 2

The willow/aquatic sedge plant association occurred near Frances Lake in the Eagle Cap Wilderness, where an alluvial fan meets the lake. Sample plots were located at 2348 m. Soil great groups were Cryofluvents. Soils were moderately deep, very poorly drained, silt loams over sands and gravels. The water table was at or near the surface for most of the year.

Farr's (60 percent) or Booth's (92 percent) willow forms the shrub layer, Farr's willow in clumps and Booth's willow as continuous coverage. Depth to water table is the distinguishing environmental characteristic between Farr's (deeper) and Booth's willow (shallower). Aquatic sedge (avg. 70 percent) forms a thick herbaceous layer along with trace amounts of Holm's Rocky Mountain sedge, few-flowered spikerush, alpine meadow butterweed, variegated scouringrush, Idaho licorice-root, alpine smartweed, alpine shootingstar, and common yarrow. In this case, both plots occurred directly adjacent to each other. Booth's willow occurred directly along the lake edge, whereas Farr's willow occurred slightly higher (~0.5 m). Aquatic sedge occurred throughout. Total forage biomass was 1195 kg/ha.

Adjacent riparian/wetland vegetation types: Alluvial fans: SAFA/ALVA. Meadows: POFR4-BEGL, SAAR27.

This community type has been described for Booth's willow by Padgett et al. (1989), Crowe and Clausnitzer (1997), and Kovalchik (1987). Kovalchik and Clausnitzer (2004) described a Farr's willow/bladder sedge type in which aquatic sedge is an alternate indicator species.

Farr's Willow/Pacific Onion Plant Community Salix farriae/Allium validum SW1134 SA

The Farr's willow/Pacific onion plant community occurred on an alluvial fan near the edge of Frances Lake in the Eagle Cap Wilderness at 2351 m. The soil great group was Cryofluvents. The soil was moderately deep, somewhat poorly drained, organic silt loams over sandy loams and gravels. Depth to water table ranged from the surface during spring runoff to 70 cm late in the season. Farr's willow (60 percent) occurred in clumps with Booth's willow (18 percent) scattered throughout. Pacific onion (80 percent) fills in around the willow clumps with alpine meadow butterweed (20 percent) and trace amounts of

SAFA/ALVA

N = 1

high mountain cinquefoil, white marsh marigold, alpine smartweed, and Chamisso arnica. Holm's Rocky Mountain sedge, rock sedge, and tufted hairgrass round out the herbaceous layer.

Adjacent riparian types: Lakeshore: SALIX/CAAQ. Meadows: POFR4-BEGL.

The Farr's willow/Pacific onion plant community type has not previously been described.

Undergreen Willow/Bladder Sedge Plant Community Type Salix commutata/Carex utriculata SW1127 SACO2/CAUT

The undergreen willow/bladder sedge plant community type was found on a moderately steep (13 percent), seepy meadow adjacent to Blue Creek in the Eagle Cap Wilderness at 2024 m. The soils were Cryohemists. Soils were poorly drained, organic loams. Depth to water table was 30 cm in late August. Undergreen willow (50 percent) occurred scattered throughout with a thick understory of bladder sedge (80 percent). Other herbaceous species include Holm's Rocky Mountain sedge, woodrush sedge, Mertens' rush, alpine meadow butterweed, fringed grass of Parnassus, darkthroat shootingstar, and common horsetail. Forage biomass totaled 1120 kg/ha, and deer and elk use was high with most of the grazing concentrated on undergreen willow. Adjacent riparian wetland vegetation type: Moist meadows: CACA4.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Crowe and Clausnitzer (1997) described an undergreen willow/bladder sedge plant community that is similar to the undergreen willow/bladder sedge community described above.

N = 1

Drummond's Willow/Arrowleaf Groundsel Plant Community Salix drummondiana/Senecio triangularis SW1137 SADR/SETR

The Drummond's willow/arrowleaf groundsel plant community was found growing in and along a low-gradient section (1 to 3 percent) of Granite Creek, near the headwaters, in the Seven Devils Mountains at 2049 m. Soil great groups were Cryaquents. Soils were very poorly drained sands with a thin organic veneer. The water table remains running above the surface throughout the year. A thick tangle of Drummond's willow (80 percent) stems overtops a mesic herbaceous layer including arrowleaf groundsel (20 percent), slender bog orchid, fringed willowherb, violets, muskflower, tall mannagrass, drooping woodreed, and Holm's Rocky Mountain sedge. Drummond's willow has low tolerance for anaerobic conditions and requires a

N = 1

renewable source of well-oxygenated water to survive in saturated soils (USDA NRCS 2002b). Drummond's willow provides streambank stability and shade to the stream channel, is a filter for nutrient and sediments, and is habitat to many bird species.

The Drummond's willow/arrowleaf groundsel plant community has not previously been described. Similar types include Drummond's willow community type, willow/tall forb (Manning and Padgett 1995); Drummond's willow/ bluejoint reedgrass, Drummond's willow/beaked sedge (Hansen et al. 1995); willow/Douglas spiraea, willow/tall mannagrass (Kovalchik and Clausnitzer 2004).

Lemmon's Willow/Mesic Forb Plant Community Type Salix lemmonii/mesic forb SW1135

SALE/MESIC FORB

N = 1

The Lemmon's willow/mesic forb plant community type was found on a high-elevation (1951 m) floodplain of Cliff Creek, a moderate-gradient (4 percent) stream with a cobble bed, in the Eagle Cap Wilderness. The soils were Cryofluvents. The soils were moderately well drained, moderately deep (52 cm) to cobbles, and sandy loam in texture.

Lemmon's willow (70 percent) was joined by undergreen (20 percent) and covote (10 percent) willow forming a thick tall shrub layer. Other shrubs include Sitka alder, twinberry honeysuckle, stinking currant, and prickly currant. Lyall's angelica (10 percent), alpine leafybract aster (15 percent), fireweed (10 percent), tall fringed bluebells (5 percent),

arrowleaf groundsel (10 percent), vieny meadow-rue (20 percent), American saw-wort (5 percent) and violets (15 percent) include the important forbs species. Graminoids include bluejoint reedgrass (30 percent), fringed brome (10 percent), blue wildrye (5 percent), Mertens' rush (1 percent), and woodrush (1 percent).

Adjacent riparian/wetland vegetation type: POFR4-BEGL.

Manning and Padgett (1995) described Lemmon's willow/mesic forb and Lemmon's willow/mesic graminoid types for Nevada and eastern California that are similar to the willow/mesic forb plant community described above.

Sitka Willow/Common Horsetail Plant Community Salix sitchensis/Equisetum arvense S SW1136

The Sitka willow/common horsetail plant community was found on a midstream cobble bar in the Wenaha-Tucannon Wilderness at 732 m. Soils were excessively drained cobbles, with a sandy matrix.

Sitka willow (70 percent) and mountain alder (35 percent) form a dense shrub layer along with red-osier dogwood and streambank wild hollyhock. Young black cottonwoods (10 percent) were found throughout the shrub layer, suggesting the most likely successional trajectory for this community. Common horsetail (30 percent) was found throughout the herbaceous layer, along with Canada goldenrod, stinging nettle, peppermint, and fowl bluegrass. Spring flood scour and deposition is characteristic of this site, as evidenced by fresh sand deposits across the bar surface. Sitka willow and common horsetail are important early seral species on cobble bars providing initial soil stabilization for the

establishment of later successional species such as black cottonwood. Sitka willow is a highly nutritional browse species of wild ungulates and provides nesting and feeding habitat for willow flycatchers.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: ABGR/ACGL-FLOODPLAIN, ALIN2/GLEL, ABGR/SYAL.

Diaz and Mellon (1996) described two Sitka willow types for northwestern Oregon including Sitka willow plant community type, Sitka willow/arctic sweet coltsfoot. Kovalchik and Clausnitzer (2004), in their willow series, described three types for southeastern Oregon that are floristically similar to the Sitka willow/common horsetail community including willow/common horsetail, willow/alluvial bar, and willow/mesic forb.

N = 1

Alpine Laurel/Black Alpine Sedge Plant Association Kalmia microphylla/Carex nigricans SW901

KAMI/CANI2

N = 4

Physical environment—

The alpine laurel/black alpine sedge plant association was found at high-elevation (2177 to 2515 m) floodplain and moist/wet meadow sites in the Eagle Cap Wilderness. Sample sites were located in low-gradient (<3 percent) U- and trough-shaped valleys. Soils were somewhat poorly drained silt loam to silty clay overlying fine sand to sandy loam subsurface layers. Depth to water table ranged from the surface to 36 cm, and redoximorphic features were found in the subsurface layers of all soils sampled.

Vegetation composition—

Alpine laurel is found growing throughout forming a sporadic low shrub layer, its pink flowers often mixing with those of pink mountainheath, the red flowers of dwarf bilberry, and the white of western moss heather, alpine spicywintergreen, grouse huckleberry, and Labrador tea, providing a delicate balance of colors against an evergreen background. A variety of willow species including arctic, Booth's, and undergreen willow may also be found in the shrub layer. Various conifer seedlings are often found growing in the understory.

Black alpine and Holm's Rocky Mountain sedge are always found in the herbaceous layer and may be joined by other graminoids including Drummond's and Mertens' rush, few-flowered spikerush, woodrush sedge, tufted hairgrass, timber oatgrass, and field woodrush.

The sparse forb layer always includes subalpine fleabane, explorer's gentian, Idaho licorice-root, high mountain cinquefoil, and alpine meadow butterweed. Other species may include yellow Wallowa Indian paintbrush, Pacific onion, elephanthead lousewort, and hooded ladies'-tresses.

Landform environment (n = 4)	Mean	Range
Elevation (m)	2283	2177-2515
Plot slope (percent)	1	.5–1
Valley environment (n = 4)	Mode	Range
Valley gradient (percent)	1–3	<1–3
Valley width (m)	30–100	10–300
Soil surface cover (n = 4)	Mean	Range
Submerged (percent)	0	
Bare ground	2	0-3
Gravel	0	
Rock	10	0-40
Bedrock	0	
Litter	45	1–77
Moss	34	5-65

Soil profile characteristics (n = 4)

Parent material	Mazama ash, quartz c	liorite, pe	at
Great group(s)	Cryaquents, Cryaquer Dystrocryepts		
		Mean	Range
Water table depth (cm)			6–36
Rock fragments (percent)		0	
Available water capacity of	pit(cm/m)	10	6–12
pH (n = 3)		5.54	5.11-6.12
Depth to redoximorphic fea	()		6–36
Occurrence of redoximorph (percentage of soils)	nic features	100	
Surface organic layer (cm)			0–11
Surface layers			
Thickness (cm)			9–36
Texture(s) ^a	CL, SI, SIC, SIL		
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			17–56
Texture(s) ^a	LS, S, SC, SIC		
Redoximorphic features	Depletions, iron oxide	concentr	ations

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and meadows: CALE9, CANI2, SALIX/CACA4, ABLA-PIEN/LEGL-FLOODPLAIN, CASC12, SAAR27.

Adjacent upland vegetation types: Footslope and sideslopes: ABLA/VASC, FEVI.

Principal s	pecies		CON	COV	MIN	MAX
				Pe	rcent	
Understory						
PICO	Lodgepole pine	Pinus contorta	50	4	1	7
Shrubs:						
GAHU	Alpine spicywintergreen	Gaultheria humifusa	50	20	20	20
KAMI	Alpine laurel	Kalmia microphylla	100	29	10	50
PHEM	Pink mountainheath	Phyllodoce empetriformis	75	2	1	3
SABO2	Booth's willow	Salix boothii	50	4	1	8
VACA13	Dwarf bilberry	Vaccinium caespitosum	50	12	10	15
VASC	Grouse huckleberry	Vaccinium scoparium	50	1	1	1
Forbs:						
ALVA	Pacific onion	Allium validum	50	9	3	15
CACH16	Yellow Wallowa Indian paintbrush	Castilleja chrysantha	50	1	1	1
ERPE3	Subalpine fleabane	Erigeron peregrinus	100	1	1	2
GECA	Explorer's gentian	Gentiana calycosa	100	6	1	15
LITE2	Idaho licorice-root	Ligusticum tenuifolium	100	2	1	5
PEGR2	Elephanthead lousewort	Pedicularis groenlandica	50	1	1	1
POFL3	High mountain cinquefoil	Potentilla flabellifolia	100	4	1	10
SECY	Alpine meadow butterweed	Senecio cymbalarioides	100	4	1	10
SPRO	Hooded ladies'-tresses	Spiranthes romanzoffiana	50	1	1	1
Grasses:						
AGHU	Alpine bentgrass	Agrostis humilis	50	2	2	2
DAIN	Timber oatgrass	Danthonia intermedia	75	1	1	1
DECE	Tufted hairgrass	Deschampsia cespitosa	75	3	2	3
Sedges and	l other grasslikes:					
CAIL	Sheep sedge	Carex illota	50	3	1	5
CALU7	Woodrush sedge	Carex luzulina	50	6	1	10
CANI2	Black alpine sedge	Carex nigricans	100	34	15	50
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	100	18	3	45
ELPA6	Few-flowered spikerush	Eleocharis pauciflora	50	2	2	2
JUDR	Drummond's rush	Juncus drummondii	75	1	1	1
LUCA2	Field woodrush	Luzula campestris	50	1	1	1

Management considerations—

Total forage biomass ranged from 435 to 1792 (avg. 892) kg/ha. Deer and elk use is low to moderate with most browsing/grazing on willow species and Holm's sedge. The wet, cryic soils of this association are sensitive to trampling; therefore sites are vulnerable to horse pasturing and perennial human trails. These sites are most likely successional to PHEM MOUNDS as soil gradually builds up around the scattered shrub species shifting the potential to PHEM as the mounds form and the soils dry out.

USDI Fish and Wildlife Service wetlands classification—

System:palustrineClass:scrub-shrub wetlandSubclass:broad-leaved evergreen

Water regime: (nontidal) saturated.

Adjacent riparian/wetland classifications—

Hansen et al. (1995) described a small-leaved laurel (*Kalmia microphylla*)/ Holm's Rocky Mountain sedge type that is similar to the alpine laurel/black alpine sedge plant association described above.

Other floristically similar types include pink mountainheath mounds (p. 94); Merten moss-heather (*Cassiope mertensiana*)–red mountain-heath (*Phyllodoce empetriformis*) (Kovalchik and Clausnitzer 2004).

Pink Mountainheath Mounds Plant Association Phyllodoce empetriformis SS1912

PHEM MOUNDS

N = 5

Physical environment—

The pink mountainheath mounds plant association occurred in moist meadows at the upper terminus of glacial valleys above 2134 m elevation in the Eagle Cap Wilderness and Elkhorn Mountains. Valleys were all U-shaped, broad (100 to 300 m) to very broad (>300 m), with very low (<1 percent) to moderate (1 to 3 percent) gradient. Soils were mounded (10 to 26 cm), often with a buried surface horizon at the bottom of the mounds and buried subsurface horizons throughout the subsurface layer. Surface horizons were typically loams, and subsurface horizons ranged from gravelly sandy loams to gravelly loams. Soils were well drained in the mounds to moderately well drained in the intermounds. Depth to water table ranged from 35 to greater than 77 cm. Soil pH was low ranging from 5.2 to 5.8 representing a typical range for ericaceous shrub communities. Redoximorphic features were rare.

Vegetation composition—

The vegetation composition of the pink mountainheath mounds plant association tends to be distinct between mound and intermound microsites. Mound species tend to be those that require slightly drier conditions, whereas intermound species are those that prefer slightly moister conditions. Some species are generalists and grow on or between mounds without preference.

Pink mountainheath, alpine laurel, grouse huckleberry, western moss heather, and alpine spicywintergreen are low shrub species commonly found growing on the mounds, only rarely growing between the mounds. Explorer's gentian and creeping sibbaldia are herbaceous species always found growing on the mounds. Less common mound species include subalpine fleabane, alpine pussytoes,

Landform environment	(n = 5)	Mean	Range
Elevation (m)		2274 2	2195–2439 1–3
Plot slope (percent) Aspect	All	2	1-3
Valley environment (n =	4)	Mode	Range
Valley gradient (percent)		<1	<1–3
Valley width (m)		100-300	30->300
Valley aspect	Mostly northerly		
Soil surface cover (n = 4	4)	Mean	Range
Submerged (percent)		0	
Bare ground		24	5-40
Gravel		0	
Rock		5	1–10
Bedrock		0	
Litter		51	20-85
Moss		13	5-20

Soil profile characteristics (n = 5)

Parent material	Mazama ash, Eol	-	-
Great group(s)	Cryaquands, Cryo (mounds), Crya		
		Mean	Range
Water table depth (cm)			35->77
Rock fragments (percent)		9	0–18
Available water capacity of	pit (cm/m)	13	10–16
pH (n = 5)		5.54	5.20-5.82
Depth to redoximorphic fea	atures (cm)	49	
Occurrence of redoximorpl (percentage of soils)	nic features	20	
Surface organic layer (cm)			0-3
Surface layers			
Thickness (cm)			3–27
Texture(s) ^a	L, SIL		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			5->21
Texture(s) ^a	L, SL		
Redoximorphic features	Depletions		
a			

^aSee "Soil Texture Codes" section.

and woodrush. Species that may be growing on or between mounds include high mountain cinquefoil, black alpine sedge, Drummond's rush, licorice-root, and Indian paintbrush.

Intermound herbaceous species include Holm's Rocky Mountain sedge, Pacific onion, shootingstar, marsh violet, and elephanthead lousewort.

Principal s	pecies		CON	COV	MIN	MAX
				Pei	rcent	
Shrubs: CAME7 KAMI PHEM VASC	Western moss heather Alpine laurel Pink mountainheath Grouse huckleberry	Cassiope mertensiana Kalmia microphylla Phyllodoce empetriformis Vaccinium scoparium	60 100 100 80	10 8 46 10	1 1 35 1	15 20 65 15
Forbs: ALVA ANAL4 DOAL EPILO ERPE3 GECA LEPY2 LICA2 POFL3 RAPO SIPR VIPA4	Pacific onion Alpine pussytoes Alpine shootingstar Willowherb Subalpine fleabane Explorer's gentian Alpine lewisia Canby's licorice-root High mountain cinquefoil Popular buttercup Creeping sibbaldia Marsh violet	Allium validum Antennaria alpina Dodecatheon alpinum Epilobium Erigeron peregrinus Gentiana calycosa Lewisia pygmaea Ligusticum canbyi Potentilla flabellifolia Ranunculus populago Sibbaldia procumbens Viola palustris	40 60 40 100 60 40 100 40 100 40 80	22 22 3 15 10 6 11 2 17 8	5 10 5 3 5 1 3 1 3 1 3 1	40 45 10 35 20 10 25 3 50 15
Grasses: AGHU DAIN FEVI Sedges and	Alpine bentgrass Timber oatgrass Greenleaf fescue d other grasslikes:	, Agrostis humilis Danthonia intermedia Festuca viridula	40 40 40	15 12 6	10 5 1	20 20 10
CĂNI2 JUDR	Black alpine sedge Drummond's rush	Carex nigricans Juncus drummondii	80 80	18 8	5 1	40 10

Adjacent riparian/wetland vegetation types: Meadows: ABLA-PIEN/LEGL–FLOODPLAIN, ALVA-CASC12, ELPA6, CANI2, and CASC12.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Management considerations—

Mound development could be the result of a number of factors. Mounds may have been formed from frost heaving or eolian (wind) deposition.

Mound formation may be the result of eolian deposition of fines around the decumbent shrubs. Winds carrying airborne sediments would be slowed by the dense stems of pink mountainheath, alpine laurel, and grouse huckleberry resulting in the deposition of those sediments. Given enough time, mounds would form and the slight shift in microclimate would lend toward the success of the slightly more xeric shrubs on the mounds.

Eolian deposition is considered the most probable cause of mound formation given the buried surface horizons found in some of the soil profiles. Frost heaving is often associated with mixing of the soil horizons leading to a lower probability of finding an intact buried surface horizon.

It is plausible that soils lacking the buried horizon may have been formed by frost heaving, as this process of mound formation is well known in the subarctic (Johnson 2004b). The exact casual agents of mound formation are difficult to surmise, perhaps a combination of the above factors have led to mound formation, perhaps none.

The moist, cryic soil mounds of this association are sensitive to trampling; therefore sites are vulnerable to horse pasturing and perennial human trails.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: scrub-shrub wetland

Subclass: broad-leaved evergreen

Water regime: (nontidal) saturated to temporarily flooded.

Adjacent riparian/wetland classifications—

A number of variations on the pink mountainheath theme have been described throughout the Pacific Northwest including red mountainheath (*Phyllodoce empetriformis*) association (Kovalchik 1987); red mountain-heath (*P. empetriformis*)–Cascade huckleberry, Merten mossheather (*Cassiope mertensiana*)–red mountain-heath (Kovalchik and Clausnitzer 2004).

Other floristically similar types include alpine laurel/ black alpine sedge (p. 92); Aleutian mountainheath (*Phyllodoce aleutica*)-moss heather (*Cassiope* spp.)huckleberry (*Vaccinium* spp.); Aleutian mountainheath– western moss heather (Viereck et al. 1992).

Miscellaneous Low Shrub Types

Labrador Tea/Holm's Rocky Mountain Sedge Plant Community Ledum glandulosum/Carex scopulorum SW0101 LEGL/CASC12

N = 1

N = 2

This community was found on a floodplain of the Minam River in the Eagle Cap Wilderness at 2079 m. The soils were Cryofibrists, moderately deep to bedrock, somewhat poorly drained, organic sedge peat (54 cm) over a thin layer of loamy fine sand (3 cm). Depth to water table was 65 cm in mid-August and available water capacity was 14 cm/m.

The vegetation composition is remarkably similar to the PIEN-ABLA/LEGL with the exception of the tree species. Laborador tea (48 percent) forms a low shrub layer along with pink mountainheath (22 percent), grouse huckleberry, alpine spicywintergreen, and dwarf bilberry. Holm's Rocky Mountain sedge (25 percent) and Pacific onion (30 percent) form a thick herbaceous layer with lesser amounts of high mountain cinquefoil, explorer's gentian, umber pussytoes, few-flowered spikerush, bluejoint reedgrass, and tufted hairgrass. Total forage biomass was 821 kg/ha, and wild ungulate use appeared to be low.

This community is self-perpetuating; the thick, acidic organic layer at the surface precluding the establishment of conifers at the site. Potential exists for the ABLA-PIEN/LEGL plant association given an influx of fresh sediment that would allow for the establishment of conifer species. This community has not previously been described.

Shrubby Cinquefoil–Bog Birch Plant Community Type *Potentilla fruiticosa-Betula glandulosa* SS6001 POFR4-BEGL

The shrubby cinquefoil-bog birch plant community type occurred on high-elevation (1985 and 2351 m) dry/moist meadows in the Eagle Cap Wilderness. Soil great groups were Cryopsamments and Cryorthents. Soils were moderately well drained, very fine sandy loam to loam overlying sands and gravels.

Shrubby cinquefoil (avg. 63 percent) and bog birch (avg. 55 percent) are found growing in clumps scattered throughout the community with a variety of conifer seedlings slowly "invading" the understory. A rich understory of forbs and graminoids may include tufted hairgrass, timber oatgrass, subalpine fleabane, alpine meadow butterweed, falsegold groundsel, western meadowrue, slender muhly, simple bog sedge, nearlyblack sedge, and northern singlespike sedge, among others. Elk and pastured horses may occasionally browse on shrubby cinquefoil and bog birch when the availability of high-quality forage is low.

A number of shrubby cinquefoil types (Crowe and Clausnitzer 1997; Hansen et al. 1995; Kovalchik and Clausnitzer 2004; Manning and Padgett 1995; Padgett et al. 1989, Youngblood et al. 1985) and one bog birch type (Hansen et al. 1995) have been described in adjacent areas. Two types have been described for Alaska that feature the two species together: shrubby cinquefoil-sweetgale-bog birch/black crowberry, shrubby cinquefoil-sweetgale-bog birch-marsh Labrador tea (Viereck et al. 1992).

Sitka Alder/Mesic Forb Plant Community Type *Alnus sinuata/mesic forb* SW2113 ALSI3/N

Physical environment—

Sitka alder/mesic forb plant community type was found along typically steep (2 to 50, avg. 19 percent) streambanks and floodplains at moderately high elevations (1707 to 1890 m) throughout the Eagle Cap Wilderness and Seven Devils Mountains. This type was never found in the Strawberry Mountain Wilderness where mountain alder is the ecological equivalent to Sitka alder. Valleys were typically steep (>8 percent); narrow (10 to 30 m); V-, U-, and troughshaped, and flat. Soils ranged from cobbles to excessively drained sandy loams to loams over cobbly/bouldery sands to loamy sands. Soils were shallow (18 cm) to deep (89 cm) over coarse alluvium or bedrock.

Vegetation composition—

Sitka alder forms a tall thick shrub overstory and is often joined by prickly currant. A rich understory of herbaceous species includes common cowparsnip, mountain sweetcicely, fragrant bedstraw, heartleaf minerslettuce, tall fringed bluebells, arrowleaf groundsel, claspleaf twistedstalk, violets, Lyall's angelica, veiny meadow-rue, and blue wildrye. Brook saxifrage, enchanter's nightshade, ladyfern, and drooping woodreed occur rarely at or near the stream edge.

Adjacent riparian/wetland vegetation types: Terraces and floodplains: COST4, ACGL/OSCH. Meadows: CASC12.

Adjacent upland vegetation types: Sideslopes: ABGR/ACGL, ABLA/VAME, ABLA/VASC, ABGR/ALSI3, and ABGR/VAME.

ALSI3/MESIC FORB

N = 8

Landform environment	(n = 8)	Mean	Range
Elevation (m)		1927	1707–1890
Plot slope (percent)		19	2–50
Aspect	Mostly northerly		
Valley environment (n =	: 7)	Mode	Range
Valley gradient (percent)		>8	4->8
Valley width (m)		10-30	<10–100
Valley aspect	Mostly northerly		
Soil surface cover (n =	7)	Mean	Range
Submerged (percent)		2	0–10
Bare ground		11	0–20
Gravel		3	0–10
Rock		16	5–40
Bedrock		0	
Litter		58	35–75
Moss		8	1–25

Soil profile characteristics (n = 8)

Parent material	
Great group(s)	

Quartz diorite, granite, alluvium Cryofluvents, Cryorthents, Udifluvents, Udorthents)

		Mean	Range
Water table depth (cm)			28->89
Rock fragments (percent)		58	0–100
Available water capacity of	pit (cm/m)	4	1–11
pH (n = 5)		5.63	5.20-6.40
Depth to redoximorphic fea	itures (cm)	0	
Occurrence of redoximorpl (percentage of soils)	nic features	0	
Surface organic layer (cm)			0-9
Surface layers Thickness (cm) Texture(s) ^a	L, SIL, SL, cobble		0–23
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			13–55
Texture(s) ^a	LS, SIL, SL, S, cobble		
Redoximorphic features	None		
•			

^aSee "Soil Texture Codes" section.

Management considerations—

Johnson and Clausnitzer (1992) described a Sitka alder community type for upland sites as occurring on disturbance-related sites such as avalanche paths, stand-replacing burns, and stand-replacing tree harvest operations. The Sitka alder/mesic forb plant community

SITKA ALDER SERIES

Principal s	pecies		CON	I COV	MIN	I MAX
				Per	cent	
Understory	trees:					
ABLA	Subalpine fir	Abies lasiocarpa	50	4	3	5
Shrubs:						
ALSI3	Sitka alder	Alnus sinuata	100	86	70	100
RILA	Prickly currant	Ribes lacustre	63	8	1	20
VAME	Big huckleberry	Vaccinium membranaceum	50	12	3	35
Forbs:						
ANAR3	Lyall's angelica	Angelica arguta	63	3	3	3
ARMA18	Largeleaf sandwort	Arenaria macrophylla	38	2	1	5
CIAL	Enchanter's nightshade	Circaea alpina	38	27	7	65
GATR3	Fragrant bedstraw	Galium triflorum	100	3	1	5
GEMA4	Largeleaf avens	Geum macrophyllum	38	2	1	5
HELA4	Common cowparsnip	Heracleum lanatum	75	21	3	60
MECI3	Tall fringed bluebells	Mertensia ciliata	63	12	1	40
MOCO4	Heartleaf minerslettuce	Montia cordifolia	38	9	2	20
OSCH	Mountain sweetcicely	Osmorhiza chilensis	100	2	1	3
SETR	Arrowleaf groundsel	Senecio triangularis	38	3	1	5
STAM2	Claspleaf twistedstalk	Streptopus amplexifolius	50	6	2	10
THVE	Veiny meadow-rue	Thalictrum venulosum	38	8	5	10
URDI	Stinging nettle	Urtica dioica	38	3	2	4
VIOLA	Violet	Viola L.	63	15	1	60
Grasses:					_	_
BRVU	Columbia brome	Bromus vulgaris	50	4	3	7
ELGL	Blue wildrye	Elymus glaucus	63	2	1	3

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

type differs in that it is found on disturbance-related sites along streambanks and floodplains. Sitka alder, an earlysuccessional, nitrogen-fixing species, is one of the first to colonize rocky streambanks and floodplains providing initial soil stabilization and enrichment. The Sitka alder/ mesic forb plant community type buffers streambanks against the effects of the powerful floods characteristic of steep stream reaches. The association provides shade and nutrient-rich litter to the stream channel. Sitka alder has a low tolerance for fire, but fire is infrequent in this moist association (Crowe and Clausnitzer 1997). Possible successional relationships: ABLA/VAME–FLOODPLAIN, ABGR/ALSI3, ABGR/VAME, and ABLA/VAME.

USDI Fish and Wildlife Service wetlands classification—

	0
System:	palustrine
Class:	scrub-shrub wetland
Subclass:	broad-leaved deciduous
ter regime	(nontidal) intermittently

Water regime: (nontidal) intermittently to temporarily flooded.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) and Kovalchick and Clausnitzer (2004) described Sitka alder/mesic forb types for the midmontane wetlands of the Blue Mountains in Oregon and eastern Washington, respectively. There were no floristically similar types.

Miscellaneous Sitka Alder Types

Sitka Alder/Ladyfern Plant Association Alnus sinuata/Athyrium filix-femina SW2111

ALSI3/ATFI

N = 2

The Sitka alder/ladyfern plant association occurred on a steep (12 percent) streambank and a low-gradient (1 percent) floodplain at approximately 1860 m elevation. Valleys were narrow (10 to 30 m) and moderately steep (4 to 5 percent) to very steep (>8 percent). The soil surface was typically rocky (avg. 20 percent) and partly submerged for much of the growing season (avg. 13 percent). Soils ranged from mosscovered boulders to moderately deep loamy sands and sands over gravel and cobble. Soil great groups were Cryofluvents. The water table ranged from the surface in early summer to 41 cm later in the season, and the soils remain moist throughout the growing season. Annual flooding is typical at these sites. Sitka alder (avg. 68 percent) forms a dense shrub layer along with prickly (avg. 14 percent) and stinking currant (avg. 7 percent). Ladyfern (avg. 8 percent) is always present along with a variety of mesic forbs including arrowleaf groundsel (avg. 8 percent), brook saxifrage (avg. 16 percent), and claspleaf twistedstalk (avg. 5 percent). The Sitka alder/ladyfern plant association provides shade and nutrient-rich litter to the stream channel and buffers the soil during peak flow periods. Ladyfern contains filicic acid and may be poisonous to some classes of livestock (Walkup 1991). Crowe and Clausnitzer (1997) described a Sitka alder/ ladyfern plant association for midmontane northeastern Oregon. Other floristically similar types include: Sitka alder/drooping woodreed, mountain alder/ladyfern, and red-osier dogwood/brook saxifrage (Crowe and Clausnitzer 1997); Sitka alder (Hansen et al. 1995).

Sitka Alder/Drooping Woodreed Plant Association Alnus sinuata/Cinna latifolia SW2112

The Sitka alder/drooping woodreed plant association occurred in U-shaped valleys of low (1 to 3 percent) to moderate gradient (4 to 5 percent) between 1677 and 1829 m elevation. The plant association occurred on a lowgradient (2 percent) wet floodplain and a moderate-gradient (4 percent) seep. Soils were poorly drained loams and sandy loams over gravels. Redoximorphic features always occurred within 60 cm of the soil surface suggesting that the soil profile is saturated for at least part of the growing season. The floodplain soil water table ranged from the soil surface early in the summer to >64 cm near the end of the growing season. The water table at the seep remained at or near the surface (18 cm) throughout the growing season. Soil great groups were Udifluvents and Endoaquents, respectively. Sitka alder (avg. 85 percent) forms a thick shrub layer enveloping a diverse array of mesic forbs and grasses including drooping woodreed (avg. 15 percent).

ALSI3/CILA2

N = 2

A close look at the herbaceous layer might unveil Lyall's angelica, fragrant bedstraw, slender bog orchid, purple monkeyflower, fivestamen miterwort, arrowleaf groundsel, and tall mannagrass. Sitka alder converts airborne nitrogen into biologically useful forms resulting in the nutrientrich soils related to this and other alder types. Drooping woodreed is of limited value as forage for livestock (Crowe and Clausnitzer 1997). The Sitka alder/drooping woodreed plant association provides important habitat for songbirds and amphibians. The Sitka alder/drooping woodreed plant association has been described for midmontane northeastern Oregon riparian zones and wetlands by Crowe and Clausnitzer (1997). Other floristically similar types include Sitka alder/mesic forb, mountain alder/tall mannagrass, and currants/drooping woodreed (Crowe and Clausnitzer 1997).

Mountain Alder/Ladyfern Plant Association Alnus incana/Athyrium filix-femina SW2116

N = 3

Physical environment—

The mountain alder/ladyfern plant association occurred on a variety of landforms including a seasonal channel, a spring, and a gravel bar exclusively in the Wenaha-Tucannon and North Fork Umatilla Wilderness. Elevations ranged from 700 to 1000 m. Crowe and Clausnitzer (1997) described this type occurring at moderate elevations (avg. 1273 m). Valleys ranged from low (1 to 3 percent) to moderate (4 to 5 percent) gradient, flat and V- and troughshaped. Sample site slopes were always low (1 percent). Soils were poorly drained, with low available water capacity (1 to 7 cm/m) and high percentage of rock fragments. Soil textures ranged from water-worked gravels to silt loams over loams and loamy sands. Redoximorphic features were rare. Water flows over the surface during spring and early summer, and the soil profile remains moist/wet year round.

Vegetation composition—

Mountain alder forms a dense tall shrub layer along with red-osier dogwood, stinking currant and prickly currant. Coniferous species from adjacent plant communities sometimes shade this association.

Ladyfern, always present, is joined by a diverse chorus of herbaceous species that may include largeleaf avens, common cowparsnip, seep monkeyflower, arrowleaf groundsel, starry false Solomon's seal, tall mannagrass, Dewey sedge, and common horsetail.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: PSME/SYAL-FLOODPLAIN. ABGR/ACGL-FLOODPLAIN.

Adjacent upland vegetation type: Sideslopes: PSME/mixed shrub.

Landform environment (n = 3)		Mean	Range
Elevation (m) Plot slope (percent)		894 1	744–976 NA
Aspect	Mostly southerly		
Valley environment (n =	3)	Mode	Range
Valley gradient (percent) Valley width (m)		1–3 30–100	1–5 30–300
Valley aspect	Mostly southerly		
Soil surface cover (n = 3)	Mean	Range
Submerged (percent)		10	0–20
Bare ground		5	0–10
Gravel		0	0–1
Rock		0	
Bedrock		0	
Litter		61	35–83
Moss		23	5-40

Soil profile characteristics (n = 3)

Parent material	Alluvium
Great group(s)	Endoaqu

Endoaquents

		Mean	Range
Water table depth (cm)			35–83
Rock fragments (percent)		64	27–100
Available water capacity of	pit (cm/m)	4	1–7
pH (n = 2)		7.73	6.97-8.48
Depth to redoximorphic features (cm)		9	
Occurrence of redoximorph (percentage of soils)	ic features	33	
Surface organic layer (cm)			0-8
Surface layers Thickness (cm)			0–9
Texture(s) ^a	SIL, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			20->65
Texture(s) ^a	L, SL, LS		
Redoximorphic features	Iron oxide concentratio	ns	

^aSee "Soil Texture Codes" section

Management considerations—

Mountain alder is a nitrogen-fixing, early colonizing species, able to withstand long-term anaerobic conditions (USDA NRCS 2002b). Mountain alder provides shade, soil stability, and nitrogen-rich litter to streams and rivers but is of limited value to wild and domestic ungulates as a browse species. Ladyfern contains filicic acid and may be poisonous to some classes of livestock (Walkup 1991).

Principal s	pecies		CON	cov	MIN MAX	
			Percent			
Shrubs: ALIN2 COST4 RIHU RILA	Mountain alder Red-osier dogwood Northern black currant Prickly currant	Alnus incana Cornus stolonifera Ribes hudsonianum Ribes lacustre	100 100 67 67	82 10 23 4	60 5 5 2	100 20 40 5
Forbs: CIAL GATR2 GEMA4 HELA4 MIGU MOCO4 RAUN RUOC2 SETR SMST STAM2 TITR URDI	Enchanter's nightshade Threepetal bedstraw Largeleaf avens Common cowparsnip Seep monkeyflower Heartleaf minerslettuce Woodland buttercup Western coneflower Arrowleaf groundsel Starry false Solomon's seal Claspleaf twistedstalk Threeleaf foamflower Stinging nettle	Circaea alpina Galium trifidum Geum macrophyllum Heracleum lanatum Mimulus guttatus Montia cordifolia Ranunculus uncinatus Rudbeckia occidentalis Senecio triangularis Smilacina stellata Streptopus amplexifolius Tiarella trifoliata Urtica dioica	67 67 100 67 100 67 67 67 67 67 67	10 3 6 9 1 9 19 5 3 1 10 4 6 3	10 1 3 5 1 3 5 2 1 5 3 2 3	10 5 10 15 3 3 1 5 5 10 3
Grasses: FESU GLEL	Bearded fescue Tall mannagrass	Festuca subulata Glyceria elata	67 67	20 16	5 2	35 30
Sedges and CADE9	d other grasslikes: Dewey sedge	Carex deweyana	100	30	10	50
Ferns and h ATFI EQAR	norsetails: Ladyfern Common horsetail	Athyrium filix-femina Equisetum arvense	100 100	17 5	5 1	25 10

The mountain alder/ladyfern plant association is of limited forage value to livestock.

USDI Fish and Wildlife Service wetlands classification—

System: palust	rine
----------------	------

- Class: scrub-shrub wetland
- Subclass: broad-leaved deciduous

Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described a mountain alder/ladyfern plant association for midmontane northeastern Oregon riparian areas and wetlands.

Floristically similar types include: red-osier dogwood/ ladyfern (p. 121), mountain alder/Dewey sedge (p. 105); Sitka alder/ladyfern, mountain alder/Dewey sedge (Crowe and Clausnitzer 1997).

Mountain Alder–Red-Osier Dogwood/Mesic Forb Plant Association *Alnus incana-Cornus stolonifera*/mesic forb SW2216 ALIN2-COST4/MESIC FORB

Physical environment—

The mountain alder–red-osier dogwood/mesic forb plant association occurred on low-elevation (726 to 1189 m) floodplains throughout the Wenaha-Tucannon and North Fork Umatilla Wilderness. Valleys ranged from low (1 to 3 percent) to moderate (4 to 5 percent), V-, and troughshaped. Sample site slopes were slightly steeper than those of ALIN2/ATFI ranging between 1 and 3 percent (avg. 2 percent). Soils ranged from cobbles to very-extremely gravelly/cobbly loams and loamy sands over silt loams and cobbles. Annual flood/scour events are typical at these sites during peak runoff.

Vegetation composition—

Mountain alder and red-osier dogwood compose a doghair tall shrub layer. Other shrubs include common snowberry and Lewis' mock orange. Moister versions of this type may also include prickly currant in the tall shrub layer. Grand fir seedlings may inhabit the understory layers.

Common horsetail is always present in the typically sparse understory. Common cowparsnip, largeleaf avens, Lyall's angelica, blue wildrye, and Dewey sedge are some of the more common herbaceous species present. Ladyfern, small-fruit bulrush, and inflated sedge occur rarely (constancy <40 percent) and at low abundance (<5 percent) in the wettest portions of the landform. The mountain alder–red-osier dogwood plant association is generally drier than the mountain alder/ladyfern and mountain alder/tall mannagrass plant associations.

Landform environment (n = 3)	Mean	Range
Elevation (m) Plot slope (percent)	Maratha and a sub-	986 2	726–1189 1–3
Aspect	Mostly southerly		
Valley environment (n = 3	3)	Mode	Range
Valley gradient (percent)		1–3	1–5
Valley width (m) Valley aspect	Mostly southerly	100–300	10–300
	wostry southerry		
Soil surface cover (n = 3)		Mean	Range
Submerged (percent)		2	0–5
Bare ground		10	1–15
Gravel Rock		6 18	2–10 5–25
Bedrock		0	5-25
Litter		35	5-50
Moss		28	0-80
Soil profile characteristi	cs (n = 3)		
Parent material	Alluvium		
Great group(s)	Udifluvents		
		Mean	Range
Water table depth (cm)			47–77
Rock fragments (percent)		63	41–100
Available water capacity of	f pit (cm/m)	4	1–5
pH (n = 2)		6.11	5.84-6.37
Depth to redoximorphic fea	atures (cm)	NA	
Occurrence of redoximorp (percentage of soils)	hic features	0	
Surface organic layer (cm)			0
Surface layers			
Thickness (cm)			0–12
Texture(s) ^a	L, LS, cobble		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			40->65
Texture(s) ^a	SL, LS, cobble		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal s	pecies		CON COV		MIN MAX	
				Per	rcent	
Understory						
ABGR	Grand fir	Abies grandis	67	6	1	10
Shrubs:						
ALIN2	Mountain alder	Alnus incana	100	75	25	100
COST4	Red-osier dogwood	Cornus stolonifera	100	45	35	60
PHLE4	Lewis' mock orange	Philadelphus lewisii	67	23	15	30
RUPA	Thimbleberry	Rubus parviflorus	67	35	30	40
SYAL	Common snowberry	Symphoricarpos albus	67	18	5	30
Forbs:						
ACRU2	Red baneberry	Actaea rubra	67	1	1	1
ANAR3	Lyall's angelica	Angelica arguta	67	3	1	5
CIAL	Enchanter's nightshade	Circaea alpina	67	6	1	10
GEMA4	Largeleaf avens	Geum macrophyllum	67	2	1	2 3
HELA4	Common cowparsnip	Heracleum lanatum	67	2	1	
MECI3	Tall fringed bluebells	Mertencia ciliata	67	8	1	15
MOCO4	Heartleaf minerslettuce	Montia cordifolia	67	8 2	1	15
OSCH	Mountain sweetcicely	Osmorhiza chilensis	67	Z	1	3
Grasses:						
ELGL	Blue wildrye	Elymus glaucus	67	3	1	4
Sedges and	other grasslikes					
CADE9	Dewey sedge	Carex deweyana	67	12	3	20
Ferns and h		•				
EQAR	Common horsetail	Equisetum arvense	100	6	2	10
					-	.0

Management considerations—

Mountain alder is a nitrogen-fixing, early colonizing species, able to withstand long-term anaerobic conditions (USDA NRCS 2002b). Mountain alder and red-osier dogwood provide shade, soil stability, and nutrient-rich litter to streams and rivers, but mountain alder is of limited value to wild and domestic ungulates as a browse species.

Red-osier dogwood, on the other hand, is relatively unpalatable to livestock but will be browsed when more desirable forage species are lacking (Crowe and Clausnitzer, 1997). Mule deer are heavy browsers of leaves and sprouts of red-osier dogwood in summer and light browsers in fall and winter. Elk browse red-osier dogwood in winter. See Crowe and Clausnitzer (1997: 135) for more details regarding management consideration for the mountain alder–red-osier dogwood/mesic forb plant association.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
·	scrub-shrub wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) temporarily to intermittently
	flooded.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described a mountain alder–red-osier dogwood/mesic forb plant association for midmontane riparian areas of northeastern Oregon.

Floristically similar types include mountain alder/Dewey sedge (p. 105); mountain alder/Dewey sedge, mountain alder/common snowberry (Crowe and Clausnitzer 1997).

Miscellaneous Mountain Alder Types

Mountain Alder/Tall Mannagrass Plant Association Alnus incana/Glyceria elata SW2215

ALIN2/GLEL

N = 2

N = 1

The mountain alder/tall mannagrass plant association occurred in the Strawberry Mountain Wilderness on a moderate-gradient (3 percent) floodplain and steep headwater spring (12 percent) between 1921 and 2287 m. Soils were typically moderately deep (50 to 100 cm) to deep (>100 cm) to the water table, and redoximorphic features were common. Annual flooding is common during peak runoff, and the soils remain moist/wet throughout the growing season. Soil great groups were Cryofluvents and Endoaqualfs.

Mountain alder (avg. 90 percent) forms a thick tall shrub layer sometimes accompanied by stinking currant (avg. 35 percent). Tall mannagrass (avg. 19 percent) is always present along with common cowparsnip, arrowleaf groundsel, and common horsetail. Muskflower, drooping woodreed, and big-leaved sedge may occur in the wettest portions of the landform. Tall mannagrass is a rhizomatous grass, with high tolerance for anaerobic conditions, low drought and fire tolerance, and high palatability to wild and domestic ungulates. Given the low average cover of tall mannagrass in this association, the forage potential is limited. Crowe and Clausnitzer (1997) described a mountain alder/tall mannagrass plant association for midmontane northeastern Oregon. Other floristically similar types include willow/ mesic forb, currants/tall mannagrass, Sitka alder/drooping woodreed (Crowe and Clausnitzer 1997).

Mountain Alder/Common Horsetail Plant Association Alnus incana/Equisetum arvense SW2117 ALIN2/EQAR

The mountain alder/common horsetail plant association occurred along a narrow (about 3 m wide), moderately steep (5 percent) streambank, along Big Wall Creek in the Umatilla National Forest at 854 m elevation. Soils were cobbly loams over extremely cobbly sands and cobbles. Soils were Endoaquents. At the time of sampling (late June), the water table was lower than 50 cm, but signs of spring flooding were evident.

Mountain alder (90 percent) forms a thick tall shrub layer strongly overhanging the stream channel. Common horsetail (25 percent) is always present in the diverse herbaceous

layer. Wet species such as tall mannagrass, Creeping spikerush, arrowleaf groundsel, and American speedwell occur along the stream edge, whereas drier species including pioneer violet, woodland buttercup, and western mountain aster occur higher on the streambank.

Common horsetail slows floodwaters, reduces erosion, and improves water quality for salmonid species by acting as a nutrient and sediment filter. Crowe and Clausnitzer (1997) described a mountain alder/common horsetail plant association for midmontane riparian zones and wetlands of the Blue Mountains.

N = 1

Mountain Alder–Common Snowberry Plant Association Alnus incana-Symphoricarpos albus SW2211

The mountain alder-common snowberry plant association occurred on a low-gradient (1 percent) floodplain of the North Fork Asotin Creek in the Umatilla National Forest at 854 m elevation. Soils were silt loam and sandy loam over gravel and had a shallow water table (33 cm). Soils were Udifluvents.

Mountain alder (30 percent) and common snowberry (55 percent) head the lineup of a diverse shrub layer including water birch, oceanspray, red-osier dogwood, Lewis' mock orange, and prickly currant. The herbaceous layer consists of a number of mesic forbs and grasses including

ALIN2-SYAL

pioneer violet, heartleaf minerslettuce, threepetal bedstraw, enchanter's nightshade, heartleaf arnica, and drooping woodreed.

Common snowberry will resprout from rootstock following fire, but fire is rare in this moist association. Common snowberry is a highly palatable and much preferred browse species for wild and domestic ungulates. Crowe and Clausnitzer (1997) described a mountain aldercommon snowberry plant association for midmontane riparian zones and wetlands of the Blue Mountains.

Mountain Alder/Dewey Sedge Plant Community Type Alnus incana/Carex deweyana SW2118

The mountain alder/Dewey sedge plant community type occurred on a low-gradient (1 percent) cobble bar and streamside spring in the Wenaha-Tucannon wilderness between 823 and 884 m elevation. The soil surface is flooded in the spring but typically dries up following spring runoff. Soils ranged from cobbles to organic loams and silt-loams.

Mountain alder (88 percent) forms a dense tall shrub layer accompanied by red-osier dogwood, and thimbleberry. The herbaceous layer consists of a number of mesic forbs and grasses, including Dewey sedge (8 percent), heartleaf minerslettuce, common cowparsnip, stinging nettle, and ladyfern in the wettest portions of the landform.

ALIN2/CADE9

N = 2

The duration and extent of soil water retention represent the key environmental factors that distinguish ALIN2/ GLEL from ALIN/CADE9. Unlike tall mannagrass, Dewey sedge has low tolerance for anaerobic soil conditions, but is moderately drought tolerant (USDA NRCS 2002b). Dewey sedge, a tuft-forming species, is fire tolerant, and will regenerate strongly after light/moderate ground fires. Dewey sedge is of low forage value to domestic and wild ungulates. Crowe and Clausnitzer (1997) described a mountain alder/Dewey sedge plant community type for mid-montane riparian zones and wetlands of the Blue Mountains. Other floristically similar types include mountain alder-red-osier dogwood/mesic forb (p. 102), mountain alder/ladyfern (p. 100), red-osier dogwood/ladyfern (p. 121); mountain alder-red-osier dogwood/mesic forb (Crowe and Clausnitzer 1997).

Water Birch/Mesic Forb Plant Community Type Betula occidentalis/mesic forb SW3112 BEOC2/M

BEOC2/MESIC FORB

N = 13

Physical environment—

The water birch/mesic forb plant community type was found on floodplains, terraces, steep streambanks, and swales between 402 and 1006 m in stream valleys throughout Hells Canyon. Plot WW4801, was found on a floodplain at 1723 m in the Eagle Cap Wilderness. Canyons were typically V- or trough-shaped and low (1 to 3 percent) to high (6 to 8 percent) gradient. Soils were typically welldrained very to extremely gravelly/cobbly sands to silt loams, but also included rocky alluvium with very little soil development. Annual flooding in spring was common, and the water table remains within the rooting zone of water birch for much of the year.

Vegetation composition—

Clumps of water birch, the branches reaching skyward, form a dense canopy over a diversity of shrub species including Lewis' mock orange, chokecherry, Rocky Mountain maple, black hawthorn, common snowberry, netleaf hackberry, red-osier dogwood, alder-leaved buckthorn, and blue elderberry. Poison ivy can often be found in the lower shrub layer.

A rich herbaceous layer may include enchanter's nightshade, mountain sweetcicely, starry false Solomon's seal, stinging nettle, blue wildrye, Dewey sedge, and scouringrush horsetail. Weedy species, including chervil, cleavers, perfoliated minerslettuce, cheatgrass, ripgut brome, Kentucky bluegrass, and common chickweed, are often found in the herbaceous layer at the expense of the above-mentioned species.

Landform environment	(n = 13)	Mean	Range
Elevation (m)		676	402–1723
Plot slope (percent)		10	<1–40
Aspect	Mostly northerly		
Valley environment (n =	13)	Mode	Range
Valley gradient (percent)		1–3	1–>8
Valley width (m)		30–100	<10->300
Valley aspect	Mostly northerly		
Soil surface cover (n = ²	13)	Mean	Range
Submerged (percent)		2	0–15
Bare ground		8	0-45
Gravel		9	0-70
Rock		13	0-60
Bedrock		0	
Litter		58	25–95
Moss		7	0-40

Soil profile characteristics (n = 11)

Great group(s)

Serpentine, basalt, alluvium, colluvium Ustifluvents, Udifluvents, Ustorthents

0 1()	,	,	
		Mean	Range
Water table depth (cm)			42–91
Rock fragments (percent)		49	5–100
Available water capacity of	pit (cm/m)	6	1–14
pH (n = 8)		6.99	6.13-8.48
Depth to redoximorphic fea	tures (cm)	42	
Occurrence of redoximorph (percentage of soils)	nic features	8	
Surface organic layer (cm)			0–10
Surface layers			0 -0
Thickness (cm)			2–>50
Texture(s) ^a	L, LS, SI, SIL, SL, cob	ble, boul	ders
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			31–58
Texture(s) ^a	L, LS, S, SCL, SL, cob	ble, boul	ders
Redoximorphic features	Iron oxide concentration	ons	

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Terraces and floodplains: CRDO2/MESIC FORB, SYAL.

Adjacent upland vegetation types:

Sideslopes: CERE2/AGSP, AGSP/ASCU5, RHGL/ AGSP, CELE3, GLNE/AGSP, FEID/KOCR, ARTRV/AGSP, and various other AGSP types.

Principal species			CON COV		MIN MA)		
			Percent				
Shrubs:							
ACGL	Rocky Mountain maple	Acer glabrum	46	14	5	30	
BEOC2	Water birch	Betula occidentalis	100	72	30	95	
CERE2	Netleaf hackberry	Celtis reticulata	46	11	1	25	
CRDO2	Black hawthorn	Crataegus douglasii	46	13	1	30	
PHLE4	Lewis' mock orange	Philadelphus lewisii	92	16	1	40	
PRVI	Chokecherry	Prunus virginiana	53	9	1	40	
RHRA6	Poison ivy	Rhus radicans	76	13	1	40	
SYAL	Common snowberry	Symphoricarpos albus	46	9	2	25	
Forbs:							
ANSC8	Chervil	Anthriscus scandicina	69	18	1	55	
GAAP2	Cleavers	Galium aparine	69	16	3	50	
MOPE3	Perfoliated minerslettuce	Montia perfoliata	46	15	1	60	
TAOF	Dandelion	Taraxacum officinale	46	1	1	3	
Grasses:							
ELGL	Blue wildrye	Elymus glaucus	46	8	1	25	
Ferns and h	norsetails:						
EQHY	Scouringrush horsetail	Equisetum hyemale	46	8	1	40	

Management considerations—

The relatively open understory of the water birch/mesic forb plant community type makes this type highly preferred by cattle for forage, resting, and shade. Overuse is common, and in a similar trend, overgrazing of the water birch/ mixed mesic forb plant association results in weedy species prevailing within the herbaceous and low shrub layers. Lacking the thick shrub layer common to other shrub types in the canyon country, streambanks are highly susceptible to erosion and damage from trampling. Forage values are typically low (<168 kg/ha) for this association in its present state, but the potential exists for increasing forage value given proper grazing management. Managers and landowners may want to consider a few years rest from grazing followed by short-term grazing in spring and early summer.

USDI Fish and Wildlife Service wetlands classification—

System:palustrineClass:scrub-shrub wetlandSubclass:broad-leaved deciduousWater regime:(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Water birch/mesic forb types have been described for riparian/wetland sites of midmontane northeastern Oregon (Crowe and Clausnitzer 1997), southwestern Idaho (Jankovsky-Jones et al. 2001), Nevada and eastern California (Manning and Padgett 1995), and Utah and southeastern Idaho (Padgett et al. 1989).

Floristically similar types include black cottonwood/ mountain alder–red-osier dogwood (p. 102); white alder/ water birch (Crawford, 2003).

Red-Osier Dogwood Plant Association *Cornus stolonifera* SW5112

N = 9

Physical environment—

The red-osier dogwood plant association was found on steep, rocky floodplains and streambanks throughout the lower elevations of the study area. Sample sites occurred in mostly moderate (4 to 5 percent) to very steep (>8 percent) gradient, V-shaped valleys. Often soils were undeveloped, usually consisting of alluvial gravels and cobbles and sometimes covered with a thin (<30 cm) veneer of sand or loam. More developed soils were typically well-drained, shallow (<50 cm), very gravelly/cobbly sandy loams to silt loams overlying cobble/boulder beds. The water table is within the rooting zone of red-osier dogwood throughout most of the year.

Vegetation composition—

A rich shrub layer featuring red-osier dogwood is often accompanied by Rocky Mountain maple, Lewis' mock orange, thimbleberry, water birch, and prickly currant. Various coniferous seedlings may be found scattered in the understory.

The sparse herbaceous layer might include Fendler's waterleaf, common cowparsnip, enchanter's nightshade, Canadian white violet, western meadow-rue, blue wildrye, tall mannagrass, and horsetails.

Adjacent riparian/wetland vegetation types:

Floodplains and terraces:

CERE2, ALRH2/MESIC SHRUB, PSME/ACGL-PHMA5–FLOODPLAIN, and PIPO/SYAL–FLOODPLAIN.

Adjacent upland types:

Sideslopes: PSME/HODI, ABGR/ACGL–PHMA5, ABGR/CARU, and various AGSP types.

Landform environme	nt (n = 9)	Mean	Range
Elevation (m)		793	424–1128
Plot slope (percent)		10	1–35
Aspect	All		
Valley environment (r	n = 9)	Mode	Range
Valley gradient (percer	nt)	>8	1–5, >8
Valley width (m)	,	30–100	<10-100
Valley aspect	All		
Soil surface cover (n	= 9)	Mean	Range
Submerged (percent)		5	0-30
Bare ground		10	0-60
Gravel		3	0–10
Rock		8	0-20
Bedrock		0	
Litter		27	2–76
Moss		43	<1–90

Soil profile characteristics (n = 9)

Parent material	Basalt, alluvium		
Great group(s)	Endoaquents, Endoaqu	iepts, Ud	ifluvents
		Mean	Range
Water table depth (cm)			0–78
Rock fragments (percent)		54	0–100
Available water capacity of	pit (cm/m)	7	1–17
pH (n = 6)		6.99	5.6–7.6
Depth to redoximorphic feat	tures (cm)	41	
Occurrence of redoximorph (percentage of soils)	ic features	11	
Surface organic layer (cm)			0–19
Surface layers			
Thickness (cm)			8–18
Texture(s) ^a	L, SIL, SL, cobble, grav	/el	
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			2->28
Texture(s) ^a	LS, SICL, SIL, SL, cobl	ble, grave	el
Redoximorphic features	Iron oxide concentratio	ns	

^aSee "Soil Texture Codes" section.

Principal s	pecies		CON	COV	MIN	MAX
				cent	cent	
Shrubs: ACGL COST4 PHLE4 RUPA SYAL	Rocky Mountain maple Red-osier dogwood Lewis' mock orange Thimbleberry Common snowberry	Acer glabrum Torr. Cornus stolonifera Philadelphus lewisii Rubus parviflorus Symphoricarpos albus	66 100 66 44 44	10 52 10 30 21	1 21 5 1 2	15 100 12 50 40
Forbs: GAAP2	Cleavers	Galium aparine	55	7	1	15
Grasses: ELGL	Blue wildrye	Elymus glaucus	33	1	1	1
Sedges and CADE9	d other grasslikes: Dewey sedge	Carex deweyana	33	2	1	3
Ferns and h EQHY	norsetails: Scouringrush horsetail	Equisetum hyemale	66	3	1	7

Management considerations—

Total dry herbaceous biomass ranged from 112 to 2576 (avg. 1187) kg/ha. The range of herbaceous biomass is obviously highly variable and depends on the density of the red-osier dogwood canopy, the gradient of the site, and the soil texture (Crowe and Clausnitzer 1997). Red-osier dogwood is relatively unpalatable to livestock but will be browsed when more desirable forage species are lacking. Mule deer are heavy browsers of leaves and sprouts of redosier dogwood in summer and light browsers in fall and winter. Elk browse red-osier dogwood in winter.

Red-osier dogwood is an important early colonizer species on rocky bars and streambanks throughout its range. The red-osier dogwood association buffers the effects of flooding on streambanks thus reducing erosion, and provides shade and high-quality litter to the stream channel. See Crowe and Clausnitzer (1997: 152) for more details regarding management consideration for the red-osier dogwood plant association.

USDI Fish and Wildlife Service wetlands classification—

System:	palustrine
Class:	scrub-shrub wetland
Subclass:	broad-leaved deciduous
Water regime:	(nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Although a variety of red-osier dogwood types have been described for adjacent riparian areas (see below) the redosier dogwood association described above is more similar (based on ordering a Bray/Curtis similarity matrix) to other shrub types (red-osier dogwood/ladyfern, Rocky Mountain maple/mountain sweetcicely, mountain alder/Dewey sedge, thimbleberry, mallow ninebark) described in this classification than it is to red-osier dogwood types from surrounding classifications, including the red-osier dogwood types described for midmontane riparian zones and wetlands of the Blue Mountains found in Crowe and Clausnitzer (1997). This suggests that although red-osier dogwood is a widespread species, the particular assemblage of plants that make up the red-osier dogwood association are unique, most likely a result of the large number of sample plots that were located in the environmentally distinct Hells Canyon.

Red-osier dogwood types from adjacent riparian and wetland classifications include Pacific willow/red-osier dogwood (Crawford 2003); red-osier dogwood plant association, red-osier dogwood/brook saxifrage (Crowe and Clausnitzer 1997); red-osier dogwood plant association (Diaz and Mellon 1996); red-osier dogwood community type (Hansen et al. 1995); red-osier dogwood plant association, red-osier dogwood (Jankovsky-Jones et al. 2001); red-osier dogwood/common snowberry, red-osier dogwood/mesic forb, red-osier dogwood/ladyfern, red-osier dogwood/horsetail (Kovalchik and Clausnitzer 2004); Cornus sericea (red-osier dogwood) community type, Cornus sericea-Salix community type (Manning and Padgett 1995); Cornus stolonifera (red-osier dogwood)/Heracleum lanatum (common cow parsnip) (Padgett et al., 1995); Cornus stolonifera/ Heracleum lanatum; Cornus stolonifera/Galium triflorum (fragrant bedstraw) (Youngblood et al. 1985).

Floristically similar types include red-osier dogwood/ brook saxifrage, western serviceberry (Crowe and Clausnitzer 1997); red-osier dogwood/ladyfern, Rocky Mountain maple, common snowberry (Kovalchik and Clausnitzer 2004).

Black Hawthorn/Mesic Forb Plant Community Type Crataegus douglasii/mesic forb SW3111

CRDO2/MESIC FORB

N = 17

Physical environment—

The black hawthorn/mesic forb plant community type was found on low to midelevation (579 to 1232 m) floodplains, terraces, steep streambanks, and a moist meadow. Valley types included low (1 to 3 percent) to high (6 to 8 percent) gradient V- and trough-shaped and flat canyons. Landform slope ranged from 1 to 6 percent on floodplains, terraces, and meadows to 4 to 85 percent on streambanks. Soils were poorly drained to moderately well drained, gravelly/cobbly loams and silt loams in the surface layers to loams and clays in the subsurface layers. Water flows over the surface most or part of the year, and the soil profile remains moist/wet for the entire growing season. Black hawthorn, a drought-intolerant species, requires slightly higher soil moisture content or less intense solar radiation exposure than common snowberry, a more drought-tolerant species.

Vegetation composition—

Black hawthorn forms a tangled tall shrub layer with common snowberry frequently present. Other shrub species sometimes present at low abundance include Lewis' mock orange, western serviceberry, Rocky Mountain maple, mallow ninebark, currants, and poison ivy.

A diverse understory of mesic forbs and grasses includes enchanter's nightshade, blue wildrye, mountain sweetcicely, Canadian white violet, Dewey sedge, and scouringrush horsetail. Heavy grazing may lead to the prevalence of weedy species such as cleavers, chervil, perfoliated minerslettuce, dandelion, and lesser burdock.

Landform environment (n = 17)		Mean	Range
Elevation (m)		830	579–1232
Plot slope (percent)		8	<1–85
Aspect	All		
Valley environment (n =	17)	Mode	Range
Valley gradient (percent)		4–5	1–>8
Valley width (m)		30–100	<10->300
Valley aspect	All		
Soil surface cover (n = ·	17)	Mean	Range
Submerged (percent)		2	0–15
Bare ground		5	0-60
Gravel		0	
Rock		2	0-5
Bedrock		0	
Litter		75	39-95
Moss		16	0-47

Soil profile characteristics (n = 17)

Parent material	Mazama ash, basalt, a	alluvium	
Great group(s)	Endoaquands, Haplustolls, Hapludalfs, Haplustands, Ustifluvents, Ustorthents		
		Mean	Range
Water table depth (cm)			23->100
Rock fragments (percent)		15	0-36
Available water capacity of	pit (cm/m)	12	6–19
pH (n = 15)		6.48	5.11–7.01
Depth to redoximorphic fea	tures (cm)		25–45
Occurrence of redoximorph (percentage of soils)	nic features	18	
Surface organic layer (cm)			0–7
Surface layers			
Thickness (cm)			9–81
Texture(s) ^a	C, L, LS, S, SICL, SIL,	SL	
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			26->79
Texture(s) ^a	C, CL, L, LS, S, SIL, S	L	
Redoximorphic features	Iron oxide concentration	ons	
a Coo "Coil Touturo Codoo" oo	- 1 ¹		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: PSME/ACGL-PHMA-FLOODPLAIN and ALRH2/MESIC SHRUB.

Adjacent upland vegetation types:

Sideslopes: PIPO/SYAL, ABGR/ACGL, and various bluebunch wheatgrass types.

Principal species			CON	cov	MIN	MAX
				Per	rcent	
Shrubs: CRDO2 PHLE4 SYAL	Black hawthorn Lewis' mock orange Common snowberry	Crataegus douglasii Philadelphus lewisii Symphoricarpos albus	100 70 94	86 11 20	40 1 1	100 25 50
Forbs: ANSC8 CIAL GAAP2 MOPE3 OSCH VICA4	Chervil Enchanter's nightshade Cleavers Perfoliated minerslettuce Mountain sweetcicely Canadian white violet	Anthriscus scandicina Circaea alpina Galium aparine Montia perfoliata Osmorhiza chilensis Viola canadensis	64 64 82 82 52 41	44 9 21 16 11 11	1 1 1 3 1	90 50 70 60 30 50
Grasses: ELGL	Blue wildrye	Elymus glaucus	58	18	1	85
Sedges and CADE9	other grasslikes: Dewey sedge	Carex deweyana	41	10	1	40

Management considerations—

Black hawthorn foliage is readily eaten by livestock although stout thorns discourage heavy browsing (Habeck 1991). Common snowberry is browsed by deer, elk, and cattle. It is a nutritious species for cattle late in the season but probably sustains the least damage if grazed in spring. Common snowberry reproduces by rhizomes and can increase or decrease following heavy grazing depending on the season and yearly moisture condition (Snyder 1991). Mallow ninebark is little browsed by livestock and wild ungulates (Habeck 1992).

Although the aboveground parts of black hawthorn are killed by even low-intensity fires, some plants may survive and resprout from the root crown. Fire can be used to reduce or contain a black hawthorn population (Habeck 1991). Fires of low to moderate intensity will generally cause snowberry to sprout vigorously from its rhizomes. Severe fires may kill snowberry plants (Snyder 1991). Mallow ninebark is fire resistant and will resprout vigorously from horizontal rhizomes following fire (Habeck 1992).

Black hawthorn is a valuable source of food and cover for wildlife. Fruits are eaten by blue and sharp-tailed grouse, mule deer, and small mammals. The dense branching in a hawthorn thicket provides good nesting for black-billed magpies and thrushes, long-eared owls, and other birds. Mice, voles, deer, and birds use hawthorn for hiding and thermal cover (Habeck 1991). Snowberry provides good nesting cover for small mammals and many birds, including ruffed grouse, wild turkey, and various songbirds. The fruits are eaten by quail, pheasant, grouse, and other animals (Snyder 1991). (The above three paragraphs were taken from Crowe and Clausnitzer 1997.) Total dry herbaceous biomass ranged from 112 to 2577 (avg. 1077) kg/ha. The black hawthorn/mixed mesic forb plant community type often occupy long narrow, stretches along streams on the benchlands of Hells Canyon providing important travel corridors, bedding, feeding, and watering sites for wildlife in an otherwise harsh and forbidding environment.

The black hawthorn/mesic forb plant association has the potential to shift to the common snowberry plant association given a reduction in soil moisture combined with fire. Intense shading and dense thickets can result in black hawthorn inhabiting these sites for long periods, often until a disturbance event, such as a fire, shifts the competitive advantage to other species.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: scrub-shrub wetland Subclass: broad-leaved deciduous

Water regime: (nontidal) saturated to temporarily flooded.

Adjacent riparian/wetland classifications—

Crawford (2003) described two black hawthorn types for the Columbia River basin: black hawthorn/common snowberry and black hawthorn/Woods' rose. Crowe and Clausnitzer (1997) described a black hawthorn type for the midmontane wetlands of the Blue Mountains in Oregon. Lastly, Kovalchik and Clausnitzer (2004) described a black hawthorn/Douglas spirea type for eastern Washington.

Floristically similar types include Rocky Mountain maple (p. 114).

Common Snowberry Plant Community Type Symphoricarpos albus SM3110

Physical environment—

The common snowberry plant community type occurred on floodplains and terraces throughout the deep canyons of the study area (400 to 1200 m). Valley types included low (1 to 3 percent) to high (6 to 8 percent) gradient V- and troughshaped and flat canyons. Soils are moderately well-drained gravelly/cobbly sands and loams in the surface layers to loams and silty-clay loams in the subsurface layers. The soil surface is flooded in the spring but typically dries up following spring runoff. Subsurface soils do not retain significant amounts of moisture throughout the year. Sample sites occurred in areas fully exposed to intense solar radiation.

Vegetation composition—

Common snowberry monopolizes the tall shrub layer and may occasionally be overtopped by tall shrub species at low abundance including black hawthorn, Lewis' mock orange, Wood's rose, oceanspray, Rocky Mountain maple, netleaf hackberry, and mallow ninebark. The shrub layer is often so thick that regeneration of conifers is rare.

Cleavers is always found in the typically sparse understory, and is often accompanied by enchanter's nightshade, starry false Solomon's seal, mountain sweetcicely, brittle bladderfern, common cowparsnip, Canada thistle, chervil, Kentucky bluegrass, and Dewey sedge.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: CERE2, POTR15/ALIN2-COST4, CRDO2/MESIC FORB, EQAR, and ALRH2/MESIC SHRUB.

Adjacent upland vegetation types: Sideslopes: PSME/ACGL-PHMA5, PIPO/AGSP, various AGSP types. N = 6

Landform environment (n = 6)		Mean	Range
Elevation (m)		817	442-1223
Plot slope (percent)		3	1–7
Aspect	Mostly northerly		
Valley environment (n = 6)		Mode	Range
Valley gradient (percent)		4–5	1–8
Valley width (m)		30–100	30->300
Valley aspect	Mostly northerly		
Soil surface cover (n = 6)		Mean	Range
Submerged (percent)		0	
Bare ground		13	0-75
Gravel		0	
Rock		7	0–15
Bedrock		0	
Litter		64	15–95
Moss		16	0-60

Soil profile characteristics (n = 6)

SYAL

Parent material	Alluvium		
Great group(s)	Hapludalfs, Udifluver Udorthents	nts, Ustifiu	vents,
		Mean	Range
Water table depth (cm)			91->100
Rock fragments (percent)		26	0–100
Available water capacity of	pit (cm/m)	11	1–15
pH (n = 5)		6.45	5.63-7.25
Depth to redoximorphic features (cm)			
Occurrence of redoximorph (percentage of soils)	ic features	0	
Surface organic layer (cm)			0-6
Surface layers			
Thickness (cm)			5–9
Texture(s) ^a	L, S, SCL, SL, cobbly	y loam	
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			5->26
Texture(s) ^a	CL, L, LS, SICL, SL,	cobble, bo	oulders
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal s	pecies		CON	COV	MIN	MAX
				Per	rcent	
Shrubs: CRDO2 HODI PHLE4 ROWO SYAL	Black hawthorn Oceanspray Lewis' mock orange Woods' rose Common snowberry	Crataegus douglasii Holodiscus discolor Philadelphus lewisii Rosa woodsii Symphoricarpos albus	50 50 50 50 100	9 22 28 27 64	6 5 25 2 40	10 40 30 40 90
Forbs: CIAL CIAR4 GAAP2 MOPE3 OSCH SMST	Enchanter's nightshade Canada thistle Cleavers Perfoliated minerslettuce Mountain sweetcicely Starry false Solomon's seal	Circaea alpina Cirsium arvense Galium aparine Montia perfoliata Osmorhiza chilensis Smilacina stellata	66 50 100 50 50 66	12 2 9 9 8 11	1 1 3 5	20 3 25 15 10 20
Grasses: POPR	Kentucky bluegrass	Poa pratensis	50	6	3	10
Ferns and h	norsetails: Brittle bladderfern	Cystopteris fragilis	50	5	1	10

Management considerations—

Common snowberry is a highly palatable and much preferred browse species for wild and domestic ungulates, especially later in the season (USDA NRCS 2002b). However, overuse of the common snowberry floodplain plant association can result in weedy species such as cleavers, chervil, Kentucky bluegrass, Canada thistle, and perfoliated minerslettuce overtaking the herbaceous layer. Common snowberry reproduces mainly by rhizomes and may increase or decrease following heavy grazing, depending on the season and moisture conditions of the soil (Crowe and Clausnitzer 1997).

High-intensity fires may kill common snowberry, whereas low to moderate fires tend to cause vigorous resprouting from rhizomes. The thick shrub layer and abundant berries provide nesting and feeding habitat for songbirds and small mammals. Intense shading by snowberry and dense thickets can result in common snowberry occupying these sites for long periods, often until a disturbance event, such as a fire or flood, shifts the competitive advantage to other species. The common snowberry plant community type has the potential to shift to black hawthorn/mixed mesic forb given an increase in soil moisture content combined with disturbance. Conversely, the black hawthorn/mixed mesic forb plant association has the potential to shift to the common snowberry plant association given a reduction in soil moisture combined with moderate-intensity fire. Possible successional trajectories include PSME/SYAL, PIPO/SYAL, POTR15/SHRUB, CRDO2/MESIC FORB, ALIN2-SYAL.

USDI Fish and Wildlife Service wetlands classification— System: palustrine

Class: scrub-shrub wetland

Subclass: broad-leaved deciduous

Water regime: (nontidal) saturated to temporarily flooded.

Adjacent riparian/wetland classifications—

Kovalchik and Clausnitzer (2004) described a common snowberry community type for eastern Washington.

There are no floristically similar types.

Rocky Mountain Maple Plant Community Type Acer glabrum HD01

ACGL

N = 7

Physical environment—

The Rocky Mountain maple plant community type occurred on moderate to steep (2 to 15 percent) terraces, streambanks, and abandoned channels throughout the lower reaches of the Blue Mountains (524 to 1079 m). Valleys were typically moderate (4 to 5 percent) to high (6 to 8 percent) gradient and V-shaped or flat. Rocky Mountain maple is often found growing up between moss-covered boulders with very little soil development. When soil development was evident, soils were typically well-drained, very to extremely gravelly/cobbly sands to loams over boulders.

Vegetation composition—

Rocky Mountain maple forms the tall shrub layer and is often accompanied by Lewis' mock orange at low abundance. Western serviceberry, black hawthorn, oceanspray, common snowberry, and blue elderberry may also be found in the tall shrub layer. White spirea, thimbleberry, and poison ivy are characteristic of the low shrub layer.

Mountain sweetcicely is usually found in the typically sparse herbaceous layer along with enchanter's nightshade, blue wildrye, Alaska oniongrass, Dewey sedge, and scouringrush horsetail. Less common are heartleaf arnica, feathery false Solomon's seal, manyflower tonella, and California brome. Disturbance-related species include chervil, cleavers, perfoliated minerslettuce, and ripgut brome.

Landform environment (n = 8)		Mean	Range
Elevation (m) Plot slope (percent)		745 6	524–1079 2–15
Aspect	All		
Valley environment (n =	8)	Mode	Range
Valley gradient (percent)		4–5	4–8
Valley width (m)		10–30	<10–300
Valley aspect	Mostly northerly		
Soil surface cover (n = 8)		Mean	Range
Submerged (percent)		0	
Bare ground		2	0–10
Gravel		1	0–5
Rock		20	0-65
Bedrock		0	
Litter		31	13–70
Moss		45	15–82

Soil profile characteristics (n = 8)

Parent material	Basalt, alluvium, collu	vium	
Great group(s)	Haplustands, Udorthe Ustorthents	luvents,	
		Mean	Range
Water table depth (cm)			>40
Rock fragments (percent)		60	0–100
Available water capacity of	pit (cm/m)	6	1–16
pH (n = 5)		6.30	5.93–7.08
Depth to redoximorphic fea	NA		
Occurrence of redoximorph (percentage of soils)	nic features	0	
Surface organic layer (cm)			0-6
Surface layers			
Thickness (cm)			1–5
Texture(s) ^a Redoximorphic features	L, LS, S, SICL, SIL, S None	L, boulde	rs
Subsurface layers			
Thickness (cm)			11–>18
Texture(s) ^a	L, LS, S, SL, boulders		
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Terraces and floodplains: PSME/ACGL-PHMA5-FLOODPLAIN,

ABGR/ACGL–FLOODPLAIN, ALRH2/MESIC SHRUB.

Adjacent upland vegetation types:

Sideslopes: PIPO/AGSP, ABGR/ACGL, GLNE/AGSP, and various bluebunch wheatgrass types.

Principal s	Principal species			COV	MIN	MAX
				Per	rcent	
Shrubs: ACGL PHLE4 SYAL	Rocky Mountain maple Lewis' mock orange Common snowberry	Acer glabrum Philadelphus lewisii Symphoricarpos albus	100 87 50	74 23 10	20 10 2	100 35 20
Forbs: ANSC8 CIAL GAAP2 MOPE3 OSCH	Chervil Enchanter's nightshade Cleavers Perfoliated minerslettuce Mountain sweetcicely	Anthriscus scandicina Circaea alpina Galium aparine Montia perfoliata Osmorhiza chilensis	50 50 75 87 75	30 2 16 10 8	3 1 2 1 3	70 3 40 25 15
Grasses: ELGL MESU	Blue wildrye Alaska oniongrass	Elymus glaucus Melica subulata	62 50	3 5	2 1	5 10
Ferns and h EQHY	norsetails: Scouringrush horsetail	Equisetum hyemale	50	2	1	3

Management considerations—

Deer and elk will browse at these sites, but the steep nature and undulating boulder-strewn surface preclude high use by cattle. A variety of birds including rufous-sided towhee, Lazuli buntings, winter wrens, and grouse feed on the abundant fruits found in the shrub layer. Squirrels and chipmunks feed on the winged seeds of Rocky Mountain maple. Rocky Mountain maple is fire tolerant and will resprout vigorously from rootstocks following fires (USDA NRCS 2002b). Flooding is rare, and fire may represent the most important natural disturbance influencing these sites. Light ground fires, not livestock grazing, may be the principal disturbance factor leading to the establishment of weedy species in the herbaceous layer of steeper sites. Possible successional trajectories include PSME/ACGL-PHMA5-SYAL and ABGR/ACGL.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: scrub-shrub wetland Subclass: broad-leaved deciduous Water regime: (nontidal) temporarily to intermittently flooded.

Adjacent riparian/wetland classifications—

Kovalchik and Clausnitzer (2004) described a Rocky Mountain maple series for eastern Washington that features a variety of Rocky Mountain maple known as Douglas Rocky Mountain maple (*Acer glabrum* Torr. var. *douglasii* (Hook.) Dippel). The Douglas Rocky Mountain maple series is similar environmentally to the Rocky Mountain maple plant community type.

Floristically similar types include black hawthorn/ mesic forb (p. 110), thimbleberry (p. 123). Netleaf Hackberry/Brome Plant Community Type Celtis reticulata/Bromus spp. SD5612

Physical environment—

The netleaf hackberry/brome plant community type is very common on low-elevation (393 to 643 m) terraces of Hells Canyon. Sample sites were typically located near the mouths of tributary streams as they flowed into the Snake River. Valleys were typically low (1 to 3 percent) to very high (6 to 8 percent) gradient and V-, trough-, or boxshaped. Soils were well drained, rocky, and moderately coarse textured. A typical soil might consist of an organic horizon (0 to 30 cm) over a thin (<10 cm) loamy surface horizon, below which is a deep (20 to 100 cm), very gravelly/cobbly loam subsurface layer often ending in bedrock or boulders. The water table, although deep, remains available to hackberry throughout the year.

Vegetation composition—

Netleaf hackberry creates a thick overstory layer with Lewis' mock orange thoughout. Chokecherry, blue elderberry, oceanspray, common snowberry, and black hawthorn may also occur in the tall shrub layer. Poison ivy and snow currant may be found in the low shrub layer.

The herbaceous layer is often completely composed of exotic brome grasses, chervil, cleavers, and perfoliated minerslettuce. Various native, mesic species often occur scattered throughout including mountain sweetcicely, waterleaf, manyflower tonella, brodiaea, tapertip onion, and blue wildrye.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: ALRH2/SHRUB, SYAL.

Adjacent upland vegetation types:

Sideslopes: CERE2/AGSP, RHGL/AGSP, GLNE/ASGP, AGSP/POSA12, and FEID/AGSP.

CERE2/BROMU

N = 14

Landform environment (n = 14)		Mean	Range
Elevation (m)		502	393-643
Plot slope (percent)		14	2–54
Aspect	Mostly northerly		
Valley environment (n =	14)	Mode	Range
Valley gradient (percent)		4–5	1–>8
Valley width (m)		30–100	10–100
Valley aspect	All		
Soil surface cover (n = 1	4)	Mean	Range
Submerged (percent)		0	
Bare ground		0	
Gravel		2	0-30
Rock		5	0-30
Bedrock		1	0-6
Litter		83	47–95
Moss		5	0-30

Soil profile characteristics (n = 14)

Parent material	
Great group(s)	

Basalt, alluvium, colluvium Haplustands, Haplustolls, Ustifluvents, Ustorthents

		Mean	Range
Water table depth (cm)			70–114
Rock fragments (percent)		42	0–100
Available water capacity of	pit (cm/m)	7	1–16
pH (n = 13)		6.76	4.72–7.83
Depth to redoximorphic feat	ures (cm)	NA	
Occurrence of redoximorph (percentage of soils)	ic features	0	
Surface organic layer (cm)			0-30
Surface layers			
Thickness (cm)			9–56
Texture(s) ^a	CL, L, LS, S, SIL, SL, sandy loam, cobbles	extremely	/ cobbly
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			8–102
Texture(s) ^a	L, LS, S, SIL, SL, extra bouldery sand, cobb	,	obly/
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal s	Principal species		CON	cov	MIN	MAX
Chruba				Perc	cent	
Shrubs: CERE2 PHLE4 RHRA6 SACE3	Netleaf hackbery Lewis' mock orange Poison ivy Blue elderberry	Celtis reticulata Philadelphus lewisii Rhus radicans Sambucus cerulea	100 78 64 42	72 23 13 10	45 1 5 1	95 60 40 25
Forbs: ANSC8 GAAP2 MOPE3	Chervil Cleavers Perfoliated minerslettuce	Anthriscus scandicina Galium aparine Montia perfoliata	92 85 50	47 25 14	3 1 5	85 70 30
Grasses: BRRI8 BRTE	Ripgut brome Cheatgrass	Bromus rigidus Bromus tectorum	42 35	38 46	5 3	85 85

Management considerations—

Johnson and Simon (1987) described a similar plant association in uplands sites associated with seepage and on stream tearraces of Hells Canyon. The netleaf hackberry/ brome plant community type differs from the netleaf hackberry/bluebunch wheatgrass association in that mesic shrubs and herbs are present in the former.

These sites tend be heavily impacted by livestock and humans because of their location in the riparian zone where water availability and a cooler microenvironment temper the high summer temperatures. Also, travel is much easier along low-gradient canyon bottoms relative to the steep sideslopes charateristic of Hells Canyon. Livestock and humans take advantage of the shade provided at these sites by the thick shrub layer, often the only escape from the sun available in the hot, dry lower reaches of Hells Canyon. Continual disturbance of the soil surface has perpetuated exotic and weedy species such as cheatgrass, chervil, and poison ivy.

Fires encourage cheatgrass, which is not only fire tolerant but can alter the natural fire cycle, negatively impacting native species such as bluebunch wheatgrass (USDA NRCS 2002b). In the absence of disturbance, these sites would most likely resemble the netleaf hackberry/bluebunch wheatgrass association of Johnson and Simon (1987) with high coverage of mesic rather than xeric forbs and an absence of cheatgrass. The netleaf hackberry/brome plant community type represents a disclimax association in valley bottoms of Hells Canyon.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: scrub-shrub wetland Subclass: broad-leaved deciduous Water regime: (nontidal) temporarily to intermittently flooded.

Adjacent riparian/wetland classifications—

Miller (1976) first described a netleaf hackberry community type for Hells Canyon similar to the association described above with cheatgrass and a "multitude" of disturbance species occupying the understory. Jankovsky-Jones et al. (2001) noted that although no netleaf hackberry types were sampled in southwestern Idaho they expected such types to occur. Crawford (2003) described a netleaf hackberry/Lewis' mock orange type with cheatgrass always found in the understory.

Floristically similar types include Lewis' mock orange/ mesic forb (p. 118).

Lewis' Mock Orange/Mesic Forb Plant Community Type Philadelphus lewisii/mesic forb SM3001

PHLE4/MESIC FORB

N = 9

Physical environment—

The Lewis' mock orange/mesic forb plant community type occurred on floodplains, terraces, streambanks, and abandoned channels mostly below 762 m (Plot WW5621, 854 m). Sample sites occurred exclusively in Hells Canyon near the mouths of tributaries to the Snake River. Sample sites were moderate (4 to 5 percent) to very high (6 to 8 percent) gradient and mostly V-shaped valleys with troughshaped and flat valleys occurring as well. Soils were excessively drained and ranged from moss-covered boulders to a thin veneer of silt loam over cobbles/boulders.

Vegetation composition—

The multiple stems of Lewis' mock orange create an arborlike canopy with scattered netleaf hackberry, Rocky Mountain maple, blue elderberry, western serviceberry, and red-osier dogwood throughout the tall shrub layer. Poison ivy is often found in the low shrub layer.

Mesic species such as common cowparsnip, mountain sweetcicely, blue wildrye, Dewey sedge, and scouringrush horsetail tend to occur at low constancy and abundance in the herbaceous layer. Weedy species prevail at these sites including cleavers, chervil, perfoliated minerslettuce, cheatgrass, ripgut brome, and Kentucky bluegrass. Common St. Johnswort, an invasive species in Oregon, was found in the herbaceous layer of this association.

Landform environment (n = 7)	Mean	Range
Elevation (m) Plot slope (percent)	540 8	354–854 2–20
Aspect All		
Valley environment (n = 7)	Mode	Range
Valley gradient (percent)	4–5	4->8
Valley width (m)	<10	>10-300
Valley aspect All		
Soil surface cover (n = 7)	Mean	Range
Submerged (percent)	2	0–10
Bare ground	4	0-20
Gravel	2	0-5
Rock	16	0-40
Bedrock	2	0–10
Litter	53	2–100
Moss	19	0-85

Soil profile characteristics (n = 7)

```
Parent material
Great group(s)
```

Alluvium, colluvium, basalt Ustifluvents, Ustorthents

		Mean	Range
Water table depth (cm)			66->100
Rock fragments (percent)		64	0–100
Available water capacity of	pit (cm/m)	5	1–16
pH (n = 3)		7.13	6.80-7.60
Depth to redoximorphic feat	tures (cm)	NA	
Occurrence of redoximorph (percentage of soils)	ic features	0	
Surface organic layer (cm)			0-5
Surface layers			
Thickness (cm)			1–8
Texture(s) ^a	L, SIL, SL, cobble, bou	ulders	
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			9->84
Texture(s) ^a	L, LS, SL, cobble, bou	lders	
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: CERE2/BROMU,

ALRH2/MESIC SHRUB.

Adjacent upland vegetation types:

Sideslopes: PSME/HODI, PIPO/HODI, RHGL/AGSP, FEID-AGSP/PHCO10, AGSP-POSA12/PHCO10, and other AGSP types.

Principal s	rincipal species			cov	MIN	MAX
				Pere	cent	
Shrubs: CERE2 PHLE4 RHRA6	Netleaf hackbery Lewis' mock orange Poison ivy	Celtis reticulata Philadelphus lewisii Rhus radicans	66 100 44	16 55 7	1 6 1	35 90 20
Forbs: ANSC8 GAAP2 MOPE3 URDI	Chervil Cleavers Perfoliated minerslettuce Stinging nettle	Anthriscus scandicina Galium aparine Montia perfoliata Urtica dioica	77 77 44 44	27 6 12 4	1 1 2 3	65 10 30 5
Grasses: AGSP BRRI8 BRTE POPR	Bluebunch wheatgrass Ripgut brome Cheatgrass Kentucky bluegrass	Agropyron spicatum Bromus rigidus Bromus tectorum Poa pratensis	44 33 44 55	6 27 35 7	1 10 25 1	15 50 60 15

Management considerations—

The Lewis' mock orange/mixed mesic forb plant community type occurred in stream valleys of Hells Canyon with historical or present-day ranching activity including Eureka Creek, Downey Gulch, Jones Creek, Pittsburg Creek, Hominy Creek, and Two Corral Creek. Lewis' mock orange is a highly palatable browse species for domestic and wild ungulates and will resprout from rootstock following low to moderate disturbance. Constant trampling has smothered out other shrub seedlings at these sites, and perpetuated Lewis' mock orange and poison ivy in a positive feedback cycle. The prevalence of weedy herbaceous species is the result of past or current overgrazing; mesic forbs were trampled, allowing a competitive advantage to agressive species like chervil and cheatgrass. In the absence of grazing, these sites would likely have succeeded to netleaf hackberry or Rocky Mountain maple plant associations. Lewis' mock orange has low tolerance to fire, but often will resprout from rootstock following low- to moderate-intensity fires.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: scrub-shrub wetland Subclass: broad-leaved deciduous Water regime: (nontidal) temporarily to intermittently flooded.

Adjacent riparian/wetland classifications—

Crawford (2003) described a Lewis' mockorange/common snowberry type for the Columbia River basin in Washington. Jankovsky-Jones (2001) described a Lewis' mock orange association for southwestern Idaho with a combination of mesic forbs similar to the Lewis' mock orange/mesic forb plant community type described here.

Floristically similar types include: netleaf hackberry/ brome (p. 116).

Miscellaneous Tall Shrub Types

Twinberry Honeysuckle/Common Ladyfern Plant CommunityLonicera involucrata/Athyrium filix-feminaSW0102LOIN5/ATFI

This community was found along steep streambanks (15 percent) of a narrow (2 m), steep (>8 percent), forested headwater stream in the Strawberry Mountain Wilderness at 1875 m. The soils fell into the Cryofluvents great group. Soils were deep, well-drained, very cobbly sandy loams to loams over extremely cobble coarse sands.

Twinberry honeysuckle occurred at low abundance (15 percent) along with Greene's mountain ash, prickly currant, rock spirea, and trace amounts of thimbleberry and grouse huckleberry. Douglas-fir and lodgepole pine were overhanging the community from adjacent uplands. Ladyfern (25 percent) and Canadian burnet (25 percent) inhabit the herbaceous layer along with a variety of other herbaceous species at lower abundance including willowherb, fringed grass of Parnassus, Columbian monkshood, western columbine, twistedstalk, arrowleaf groundsel, and brook saxifrage, among others.

Twinberry honeysuckle is highly palatable to wild and domestic ungulates making this community highly important for food and water in the Strawberry Mountain Wilderness where high-quality food and water are difficult to find later in the season. This community is also important for streambank stability along these steep streams that are characterized by powerful spring flood events.

Adjacent upland vegetation type: Sideslopes: PSME/VASC.

This type has not previously been described.

Water Birch/Wet Sedge Plant Community Type Betula occidentalis/Carex SW3113 BEOC2/V

BEOC2/WET SEDGE

The water birch/wet sedge plant community type was found growing in sunny seeps and springs on stream terraces in low-gradient (1 to 3 percent), flat valleys of the Umatilla National Forest. Soil great groups were Endoaquepts. Soils were poorly drained loams to silt loams over sandy loam.

Scattered water birch (avg. 38 percent) and mountain alder (avg. 9 percent) occur throughout the spring with a thick understory of big-leaved sedge (avg. 75 percent). Largeleaf avens, Dewey sedge, ladyfern, seep monkeyflower, and leafy white orchis are characteristic understory species. Kentucky bluegrass always occurred at low coverage (1 percent). These rich spring sites offer cover and water for small mammals and grouse, habitat for amphibians, and a diversity of flowers for butterflies.

The water birch/wet sedge plant community type has not previously been described in adjacent riparian areas. Crowe and Clausnitzer (1997) described a water birch/wet sedge plant community for midmontane northeastern Oregon. Jankovsky-Jones et al. (2001) described a single occurrence of water birch/Lewis' mock orange that featured a trace of big-leaved sedge in the herbaceous layer. Floristically similar types include red-osier dogwood/ladyfern (p. 121) and mountain alder/big-leaved sedge (Crowe and Clausnitzer 1997).

N = 1

N = 2

Water Birch/Reed Canarygrass Plant Community Betula occidentalis/Phalaris arundinacea SM41

This community was found in a swale at 695 m elevation along Crooked Creek in the Wenaha-Tucannon Wilderness. The soils were Endoaquents. Soils were shallow, welldrained sandy loam over cobbles. The swale was flooded in spring but slowed to a trickle in summer with standing water in the channel. Water birch (80 percent) was rooted on the streambanks overhanging and shading the seasonal channel. Other shrubs include Lewis' mock orange, stinking currant, streambank wild hollyhock, and red-osier dogwood. Reed canarygrass (40 percent) was rooted along the streambanks and in standing water. Other herbaceous species include enchanter's nightshade, male fern, threepetal bedstraw, leafy white orchis, common cowparsnip, waterleaf, woodland buttercup, Canadian white violet, Dewey sedge, western coneflower, and oxeye daisy.

Reed canarygrass is an aggressive, rhizomatous species native to North America. It is considered a noxious weed or invasive species throughout the Western United States (Whitson et al. 1996). Reed canarygrass is a facultative wetland species throughout the Pacific Northwest (USDA

BEOC2/PHAR3

N = 1

NRCS 2002b). Owing to its aggressive nature, reed canarygrass often takes over large areas, crowding out other species and reducing species diversity. The strong rhizomes of reed canarygrass help maintain streambank integrity, and the dense stems slow overland flow and act as a filter for nutrients and sediment. Reed canarygrass is moderately fire tolerant and is most suitable for grazing early in the season before the seed heads form. Moderate disturbance levels may actually increase species diversity in areas where reed canarygrass has formed thick monocultural stands. The community provides food and shelter for many species of birds and small mammals.

Adjacent riparian/wetland vegetation type: Floodplains: ALRU2/SYAL/CADE9.

The water birch/reed canarygrass plant community has not previously been described. Hansen et al. (1995) and Crawford (2003) described a reed canarygrass habitat type and association, respectively. Jankovsky-Jones et al. (2001) noted the occurrence of reed canarygrass in similar communities, but no samples were taken of this type.

Red-Osier Dogwood/Ladyfern Plant Association Cornus stolonifera/Athyrium filix-femina SW4133

The red-osier dogwood/ladyfern plant association occurred in a shady spring on a stream terrace in a flat valley and on the sides of a steep, seepy box canyon in the Umatilla National Forest. Soil great groups were Hapludalfs and Udorthents. Soils ranged from poorly drained organics over clay to poorly drained silt loams over extremely cobbly sands to sandy loams. Both sites were constantly supplied with cold, well-aerated water that saturated the soil throughout the summer.

Red-osier dogwood (avg. 60 percent) occurs with a variety of shrubs including mountain alder, thimbleberry, water birch, black hawthorn, prickly currant, and devilsclub. Ladyfern (avg. 40 percent) is always found in the rich herbaceous layer, its elegant fronds unfurling from perennial rhizomes in early summer. Other characteristic herbaceous species include enchanter's nightshade, starry false Solomon's seal, largeleaf avens, waterleaf, seep

COST4/ATFI

N = 2

monkeyflower, heartleaf minerslettuce, brook saxifrage, twistedstalk, stinging nettle, false bugbane, bearded fescue, tall mannagrass, maidenhair, and brittle bladderfern.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: ABGR/ACGL-FLOODPLAIN, ABGR/TABR2/LIBO3-FLOODPLAIN.

Adjacent upland vegetation type: Sideslopes: ABGR/mixed shrub.

Kovalchik and Clausnitzer (2004) described a red-osier dogwood/ladyfern type for eastern Washington. Other floristically similar types include mountain alder/ladyfern (p. 100), water birch/wet sedge (p. 120); Sitka alder/ladyfern, mountain alder/ladyfern, and red-osier dogwood/ brook saxifrage (Crowe and Clausnitzer 1997).

Pacific Ninebark Plant Community Physocarpus capitatus SM1901

The Pacific ninebark community was found on an artificial levee, along a restored section of Thomas Creek in the North Umatilla Wilderness at 890 meters. The soils were Udorthents. Soils were deep, well-drained gravelly sandy loam over very gravelly loamy coarse sand with a 10-cmthick organic cap.

The levee was crowded with Pacific ninebark (95 percent) and a generous coverage of common snowberry (40 percent) in the lower shrub layer. A variety of other shrubs were also present, including alder-leaved buckthorn, Rocky Mountain maple, western serviceberry, Lewis' mock orange, red-osier dogwood, Oregon boxleaf, and thimbleberry. Grand fir

PHCA11

N = 1

seedlings were present in the understory. The herbaceous layer, consisting exclusively of forbs, featured Fendler's waterleaf (40 percent) along with fairybells, British Columbia wildginger, dutchman's breeches, and starry false Solomon's seal.

Adjacent riparian/wetland vegetation type: Abandoned channels: POTR15/SYAL.

Adjacent upland vegetation type: Sideslopes: PSME/ACGL.

This community has not previously been described.

Mallow Ninebark–Common Snowberry Plant Community Type *Physocarpus malvaceus–Symphoricarpos albus* SM1111 PHMA5-SYAL

The mallow ninebark-common snowberry plant community type was found on steep (7 and 75 percent) streambanks in the bench lands of Hells Canyon (915 and 1204 m). Soil great groups were Paleustalfs. Soils were shallow, well-drained loam over clay loam to silty clay loam.

Mallow ninebark (avg. 43 percent) and common snowberry (avg. 15 percent) are joined by western serviceberry, white spirea, thimbleberry, oceanspray, black hawthorn, and red raspberry, forming a thick shrub layer. Characteristic herbaceous species include heartleaf arnica, yellow avalanche-lily, cleavers, perfoliated minerslettuce, feathery false Solomon's seal, manyflower tonella, American vetch, Ross' sedge, and brittle bladderfern.

The mallow ninebark plant community type may be the result of stand-replacing fires in PSME/ACGL-PHMA5-SYAL floodplain stands (Johnson and Clausnitzer 1992).

N = 2

Mallow ninebark is highly fire tolerant and will resprout vigorously following fire. The strong roots and thick stems slow overland flow and hold streambanks together, thus reducing soil erosion following fire. Possible successional relationships include PSME/ACGL-PHMA5– FLOODPLAIN. The highly competitive nature of mallow ninebark may result in this community type persisting for many years on these steep streambanks.

Adjacent upland vegetation types: Sideslopes: PIPO/SYAL, PSME/SYAL.

Johnson and Simon (1987) described a mallow ninebarkcommon snowberry for upland slopes in the Wallowa-Snake Province, but it has not previously been described for riparian/wetland areas. Floristically similar types include thimbleberry (p. 123), black hawthorn/common snowberry (Crawford 2003), and western serviceberry (Crowe and Clausnitzer 1997).

Thimbleberry Plant Community Type *Rubus parviflorus* SM5912

The thimbleberry plant community was found on lowelevation (579 to 1128 m) terraces in Hells Canyon. Sample sites were located in low (1 to 3 percent)- to high (6 to 8 percent)-gradient V-shaped valleys. Soils ranged from Entisols, including excessively drained bouldery colluvium, to Paleustalfs, consisting of well-drained, moderately deep sandy loams to clay loams. Water table ranged from shallow (42 cm) to moderately deep (92 cm).

Thimbleberry (avg. 95 percent) forms a thick overstory and is often joined on the edges of the community by Rocky Mountain maple and Lewis' mock orange. The thick overstory results in a scattered, but rich, understory of forbs, including cleavers, chervil, perfoliated minerslettuce, enchanter's nightshade, waterleaf, and mountain sweetcicely. Graminoids include Dewey sedge, Columbia brome, and pinegrass. Ferns and horsetails may include male fern, western brakenfern, and scouringrush horsetail.

RUPA

N = 3

N = 1

Thimbleberry is a highly fire-tolerant shrub species that resprouts quickly from aggressive rhizomes. The dense rhizomes and thick stems slow overland water flow and hold streambanks together, thus reducing soil erosion following fire. The thick, berry-producing stands provide food and cover for small mammals and birds as well as black bears. These sites are early seral and may develop over time into the ACGL or CRDO2/FORB plant association.

Adjacent riparian/wetland vegetation type: Floodplains and terraces: BEOC2/MESIC FORB.

Adjacent upland vegetation types: Sideslopes: PSME/ACGL-PHMA, PIPO/SYAL.

The Thimbleberry plant community type has not been previously described. Floristically similar types include Rocky Mountain maple (p. 114) and mallow ninebark– common snowberry (p. 122).

Barton's Raspberry Plant Community Rubus bartonianus SM5001

This community was found on a steep (30 percent) floodplain of a high-gradient stream (>8 percent) in Hells Canyon. Barton's raspberry (85 percent) was growing between boulders, forming a dense shrub canopy approximately 2 m tall. Trace amounts of Pennsylvania pellitory, cleavers, manyflower tonella, Oregon cliff fern, and cheatgrass occurred throughout the understory. Barton's raspberry is endemic to Hells Canyon, growing only on the

RUBA

slopes, and in the drainages between Hells Canyon Dam and Steep Creek (Carrey et al. 1979). Barton's raspberry was first discovered in 1933 at Battle Creek by one of the first settlers in the canyon, Lenora Barton.

Adjacent upland vegetation types: Sideslopes and cliffs: GLNE, GLNE/AGSP.

The Barton's raspberry plant community has not previously been described.

Himalayan Blackberry Plant Community *Rubus discolor* SM5002

This community was found on a floodplain of Big Canyon Creek in Hells Canyon at 360 m elevation. Soils were Ustifluvents. Soils were excessively well-drained loams over extremely gravelly/cobbly loamy sands. Depth to water table was 64 cm, and the available water capacity of the soil was 5 cm/m. Himalayan blackberry (90 percent) forms an almost impenetrable shrub layer guarded by thick, sharp thorns. Red-osier dogwood, poison ivy, Lewis' mock orange, netleaf hackberry, and rock clematis occur scattered throughout the blackberry patch. Climbing nightshade, ripgut brome, and bluebunch wheatgrass make up the sparse understory.

RUDI2

N = 1

Himalayan blackberry is an introduced species in the United States. Its aggressive rhizomes can take over areas quickly following disturbance by fire or flooding. Dense thicket-forming blackberry stems help maintain streambanks, provide shade and woody debris to the stream channel, and supply habitat for small mammals. Blackberries are a highly preferred food item for black bears and many bird species.

Adjacent upland vegetation types: Sideslopes and cliffs: GLNE, GLNE/AGSP.

Jankovsky-Jones et al. (2001) noted the occurrence of Himalayan blackberry at riparian sites in southwestern Idaho, but no samples of this type were taken.

Aquatic Sedge Plant Association Carex aquatilis MM2914

Physical environment—

The aquatic sedge plant association occurred along highelevation (2067 to 2409 m) floodplains, lake edges, and wet meadows. One site occurred at 823 m along a rocky stream edge, in a 4- to 5-percent-gradient flat valley, in the Umatilla National Forest. High-elevation sites occurred in broad (>100 m), U-shaped valleys of low (<3 percent) gradient. High-elevation soils were very poorly drained peat. Depth to water table ranged from the surface to 40 cm late in the season. The low-elevation soil was composed of inundated alluvial gravels and cobbles.

Vegetation composition—

Aquatic sedge forms a veritable monoculture of stout stems anchored to the soil with dense rhizomatous roots. Other species occur infrequently and at low abundance including bladder sedge, Holm's Rocky Mountain sedge, tufted hairgrass, common horsetail, high mountain cinquefoil, western mountain aster, and alpine shootingstar. Watercress was found growing at the low-elevation site.

Adjacent riparian/wetland vegetation types: Low-elevation terraces: PIPO/SYAL-FLOODPLAIN,

PSME/ACGL-PHMA5-FLOODPLAIN.

High-elevation floodplains and meadows: ELPA6, CASC12, CANI2, DECE.

Lake edges: CAUT.

Adjacent upland vegetation types: Footslope and sideslopes: ABLA/VASC.

CAAQ

N = 7

Landform environme	nt (n = 7)	Mean	Range
Elevation (m) Plot slope (percent)		1995 1	823–2409 0–2
Aspect	All		
Valley environment (n	= 7)	Mode	Range
Valley gradient (percen	t)	<1	1–5
Valley width (m)		100–300	30–300
Valley aspect	Northerly		
Soil surface cover (n	= 7)	Mean	Range
Submerged (percent)		35	0-65
Bare ground		9	0-60
Gravel		0	
Rock		4	0-30
Bedrock		0	
Litter		45	10-70
Moss		7	0–25

Soil profile characteristics (n = 7)

Parent material
Great group(s)

Cryofibrists, Cryohemists, Cryosaprists, Endoaquents

		Mean	Range
Water table depth (cm)			0-40
Rock fragments (percent)		14	0–100
Available water capacity of	pit (cm/m)	37	1–49
pH (n = 2)		6.07	5.83-6.30
Depth to redoximorphic fea	tures (cm)	30	
Occurrence of redoximorph (percentage of soils)	nic features	15	
Surface organic layer (cm)			7–28
Surface layers			
Thickness (cm)			7–28
Texture(s) ^a	S, fibric, hemic, sapric		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			3->22
Texture(s) ^a	Sapric		
Redoximorphic features	None		

Peat, alluvium

^aSee "Soil Texture Codes" section.

WET GRAMINOID SERIES

Principal s	species		CON	cov	MI	N MAX
				Per	cent	
Grasses: DECE	Tufted hairgrass	Deschampsia cespitosa	42	7	1	15
Sedges an CAAQ	d other grasslikes: Aquatic sedge	Carex aquatilis	100	74	55	85
Ferns and EQAR	horsetails: Common horsetail	Equisetum arvense	42	2	1	3

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Management considerations—

Total forage biomass ranged from 560 to 3080 (avg. 1681) kg/ha. Elk and deer use is moderate to high. Livestock grazing is typically not an issue at high-elevation sites, whereas at more moderate elevations livestock grazing can become an issue. Livestock grazing and horse pasturing is prohibited within 30 m of subalpine lakes in wilderness areas; therefore, when this association occurs along lakeshores it should see no livestock use. Aquatic sedge may be grazed late in the season (August-September) when soils have dried out (Crowe and Clausnitzer 1997). Grazing when soils are wet will eventually lead to soil erosion and a shift in species composition to forbs and Kentucky bluegrass.

The thick sod-producing rhizomes of aquatic sedge provide soil stability to streambanks and floodplains, and the dense stems slow floodwaters and filter sediments acting as an important nutrient filter in headwater streams. The dense stems also provide habitat and forage for small mammals, amphibians, waterfowl, and other birds including sandhill cranes, green-winged teals, common snipes, common yellowthroat, red-winged blackbirds, and lesser yellow legs (Crowe and Clausnitzer 1997). Overhanging vegetation provides hiding places for trout.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent

Water regime: (nontidal) permanently flooded to saturated.

Adjacent riparian/wetland classifications—

Aquatic sedge types have been described throughout the Western United States including midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), Nevada and eastern California (Manning and Padgett 1995), Utah and southeastern Idaho (Padgett et al. 1989), Alaska (Viereck et al. 1992), and eastern Idaho-western Wyoming (Youngblood et al. 1985). Hansen et al. (1995) described a two-phase aquatic sedge habitat type, a wetter aquatic sedge phase and a slightly drier tufted hairgrass phase. The aquatic sedge plant association described here is most similar to the aquatic sedge phase.

Floristically similar types include woodrush sedge (p. 142).

Bladder Sedge Plant Association Carex utriculata MM2917

Physical environment—

The bladder sedge plant association occurred on seepy slopes, swales, and lake edges throughout the upper reaches (1966 to 2354 m) of the Eagle Cap Wilderness, Seven Devils and Elkhorn Mountains. Crowe and Clausnitzer (1997) described this type on similar landforms from 1177 to 2277 m throughout the Blue Mountains. Sample sites were located in low-gradient (<3 percent), U- and trough-shaped valleys.

Available water capacity of soils varied depending on landform. Available water capacity of lake edge soils averaged 49 cm/m, and the water table was at or near the surface for most of the growing season. Available water capacity of soils in seeps and swales averaged 16 cm/m. Seep and swale soils were poorly drained, organic loams to silty clay loams, and depth to water table was mostly from the surface to 66 cm. The depth to water table for one site in a swale was 89 cm, with redoximorphic features occurring in every soil horizon. That particular soil had a slowly permeable silty clay loam surface horizon that retained water at the surface during the early growing season.

Vegetation composition—

Bladder sedge forms a near monoculture with occasional occurrences of common horsetail, seep monkeyflower, glaucus willowherb, and mountain bentgrass.

CAUT

N = 7

0->4

27-49

25->46

Landform environment (n = 7)	Mean	Range
Elevation (m) Plot slope (percent)	A.I.	2096 4	1966–2354 0–1
Aspect	All		
Valley environment (n = 7	7)	Mode	Range
Valley gradient (percent) Valley width (m) Valley aspect	All	1–3 30–100	<1–3 30–>300
Soil surface cover (n = 7)		Mean	Range
Submerged (percent) Bare ground Gravel Rock Bedrock		24 5 0 0	0–45 0–20
Litter Moss		59 9	20–95 0–30
Soil profile characteristic	cs (n = 7)		
Parent material Great group(s)	Peat, alluvium Cryaquepts, Cryosar	orists, End	paqualfs
		Mean	Range
Water table depth (cm) Rock fragments (percent)		1	0-89 0-4
Available water capacity of pH (n = 2) Depth to redoximorphic fea Occurrence of redoximorph	atures (cm)	29 5.82 18 14	13–49 5.07–6.57

^aSee "Soil Texture Codes" section.

Redoximorphic features

(percentage of soils)

Surface organic layer (cm)

Surface layers

Texture(s)^a

Thickness (cm)

Subsurface layers

Thickness (cm)

Texture(s)^a

Adjacent riparian/wetland vegetation types: Floodplains and meadows: JUBA, CAMI7, CACA4, CASC12, SABO2/CASC12, DECE. Seeps: PIEN/EQAR. Lake edges: CAAQ.

Redoximorphic features Iron oxide concentrations

CL, L, SCL, SICL, sapric

CL, SICL, SIL, SL, sapric

Iron oxide concentrations

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Principal	species		CON	COV	MIN	I MAX
				Perc	ent	
Forbs: EPGL MIGU	Glaucus willowherb Seep monkeyflower	Epilobium glaberrimum Mimulus guttatus	28 28	10 8	10 5	10 10
Grasses: AGVA	Mountain bentgrass	Agrostis variabilis	28	3	3	3
Sedges an CAUT	d other grasslikes: Bladder sedge	Carex utriculata	100	86	65	100
Ferns and EQAR	horsetails: Common horsetail	Equisetum arvense	28	20	15	25

Management considerations—

Total forage biomass ranged from 168 to 3136 (avg. 1829) kg/ha. Elk and deer use is low to moderate. Livestock grazing is typically not an issue at high-elevation sites, whereas at more moderate elevations livestock grazing can become an issue. Livestock grazing and horse pasturing is prohibited within 30 m of subalpine lakes in wilderness areas; therefore, when this association occurs along lakeshores it should see no livestock use. Bladder sedge may be grazed late in the season (August-September) when soils have dried out and upland vegetation becomes less palatable (Kovalchik 1987). Grazing when soils are wet can lead to soil erosion, and an eventual shift to forbs and Nebraska sedge or Baltic rush, at lower elevations (<1900 m), and mesic forbs and smallwing sedge at higher elevations.

The thick sod-producing rhizomes of bladder sedge provide soil stability to streambanks and floodplains, while the dense stems slow floodwater/overland flow and filter sediments acting as an important nutrient filter in headwater streams. The dense stems also provide habitat and forage for small mammals, amphibians, and waterfowl.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) permanently flooded to saturated.

Adjacent riparian/wetland classifications—

Bladder sedge types have been described for many of the Western States including the Columbia River basin (Crawford 2003), midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), Nevada and eastern California (Manning and Padgett 1995), Utah and southeastern Idaho (Padgett et al. 1989), Alaska (Viereck et al. 1992), and eastern Idaho–western Wyoming (Youngblood et al. 1985).

Hansen et al. (1995) described a three-phase bladder sedge habitat type, the wettest being the bladder sedge phase where other species are often sparse or absent. The intermediate aquatic sedge phase finds aquatic sedge and bladder sedge co-occurring. Lastly, the tufted hairgrass phase, the driest of the three, finds significant amounts of tufted hairgrass and Baltic rush throughout. The bladder sedge association described here is most similar to the bladder sedge phase.

Floristically similar types include buckbean (Crowe and Clausnitzer 1997).

Inflated Sedge Plant Association

Carex vesicaria

MW1923

Aaron Wells

Physical environment—

The inflated sedge plant association occurred along high-elevation (1933 to 2348 m) lakeshores in the Eagle Cap and Strawberry Mountain Wilderness and the Seven Devils Mountain Range. Sample sites occurred mostly in low-gradient (<3 percent), U-shaped basins. Crowe and Clausnitzer (1997) described this type as occurring between 933 and 1933 m elevation in wet basins, floodplains, and along pond edges. Soils were very poorly drained organic sedge peat to sandy clays with a thin organic veneer (≤ 10 cm). Water table ranged from the surface to 33 cm, and redoximorphic features were common.

Vegetation composition—

Inflated sedge forms a thick monocultural stand with scattered forbs and graminoids throughout. Forbs include northern and threepetal bedstraw, plantainleaf buttercup, and narrowleaf bur-reed. Grasses include alpine bentgrass, shortawn foxtail, bluejoint reedgrass, tufted hairgrass, and tall mannagrass. Sedges may include widefruit sedge, Holm's Rocky Mountain Sedge, and meadow sedge.

CAVE6

N = 5

Landform environment (n = 5)	Mean	Range
Elevation (m) Plot slope (percent)		2228 3	1933–2348 0–9
Aspect	All	-	
Valley environment (n =	5)	Mode	Range
Valley gradient (percent) Valley width (m) Valley aspect	All	<1 100–300	<1, 4–5 30–300
Soil surface cover (n = 5		Mean	Range
Submerged (percent) Bare ground Gravel Rock Bedrock	,	30 3 0 0 0	0–75 0–10
Litter Moss		0 59	25–100
Soil profile characteristi	cs (n = 4)		
Parent material	Peat		
Great group(s)	Cryorthents, Cr	yosaprists, Epia	qualfs
		Mean	Range
Water table depth (cm)			0-33
Rock fragments (percent) Available water capacity o	f pit (cm/m)	0 22	14–46
pH (n = 2)	,	6.08	5.94-6.22
Depth to redoximorphic fe	atures (cm)		15–23
Occurrence of redoximorp (percentage of soils)	. ,	50	
Surface organic layer (cm))		0–10
Surface layers Thickness (cm)			3->15

Surface layers		
Thickness (cm)		3–>15
Texture(s) ^a	SCL, hemic, sapric	
Redoximorphic features	None	
Subsurface layers		
Thickness (cm)		10->28
Texture(s) ^a	C, S, SC, hemic, sapric	
Redoximorphic features	Iron oxide concentrations	

^aSee "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: Floodplains and meadows: SABO2/CASC12, EQAR, ALIN2/GLEL, SALIX/CAVE6. Lake edges: ELBE, CAAQ. Lakes: SPAN2.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Principal s	pecies		CON	COV	MIN	MAX
-				Per	cent	
Forbs:						
GABO2	Northern bedstraw	Galium boreale	20	25	25	25
GATR2	Threepetal bedstraw	Galium trifidum	20	5	5	5
RAAL	Plantainleaf buttercup	Ranunculus alismifolius	20	1	1	1
ROCU	Curvepod yellowcress	Rorippa curvisiliqua	20	1	1	1
SPAN2	Narrowleaf bur-reed	Sparganium angustifolium	20	10	10	10
Grasses:						
AGHU	Alpine bentgrass	Agrostis humilis	20	5	5	5
ALAE	Shortawn foxtail	Alopecurus aequalis	20	1	1	1
CACA4	Bluejoint reedgrass	Calamagrostis canadensis	20	1	1	1
DECE	Tufted hairgrass	Deschampsia cespitosa	20	1	1	1
GLEL	Tall mannagrass	Glyceria elata	20	1	1	1
Sedges and	other grasslikes:					
CAEU2	Widefruit sedge	Carex eurycarpa	40	4	3	5
CAPR7	Meadow sedge	Carex praticola	20	1	1	1
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	20	3	3	3
CAVE6	Inflated sedge	Carex vesicaria	100	81	65	100

Management considerations—

Total forage biomass ranged from 1344 to 1792 (avg. 1568) kg/ha. Elk and deer use is generally low. Livestock grazing and horse pasturing is prohibited within 30 m of subalpine lakes in wilderness areas; therefore, when this association occurs along lakeshores it should see no livestock use. The dense stems also provide habitat and forage for small mammals, amphibians, waterfowl, and shorebirds including common snipes and lesser yellowlegs.

USDI Fish and Wildlife Service wetlands classification— System: palustrine Class: emergent wetland

Subclass: persistent Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Inflated sedge types have been described for most of Oregon and eastern Washington (Crowe and Clausnitzer 1997, Kovalchik 1987, Kovalchik and Clausnitzer 2004). There are no floristically similar types.

Few-Flowered Spikerush Plant Association Eleocharis pauciflora MW4911

Physical environment—

The few-flowered spikerush plant association occurred in high-elevation (2067 to 2348 m) headwater basins on wet meadows and steep springs throughout the Eagle Cap Wilderness and Elkhorn Mountains, with one occurrence in the Strawberry Mountain Wilderness. Valleys were typically U-shaped glacial valleys with low (<3 percent) gradient. Two plots occurred in trough-shaped valleys of low (1 to 3 percent) to high (6 to 8 percent) gradient. Soils were very poorly drained, typically deep (50 to >100 cm) organic sedge peat over bedrock. Soils were often submerged throughout the growing season and had high available water capacity (avg. 32 cm/m).

Vegetation composition—

Few-flowered spikerush occurs in water paths (Kovalchik 1987), while Holm's Rocky Mountain sedge and sphagnum moss often occur on slightly drier hummocks (10 to 20 cm).

Other hummock species include alpine shootingstar, high mountain cinquefoil, tinker's penny, willowherb, alpine meadow butterweed, elephanthead lousewort, Idaho licorice-root, tufted hairgrass, and slender muhly. Aquatic sedge sometimes co-occurs with few-flowered spikerush in the wettest portions of the plot.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows: CASC12, CANI2,

ALVA-CASC12, SABO2/CASC12, PIEN/CASC12, DECE, PHEM MOUNDS, CALU7, CAJO, CAIL.

Adjacent upland vegetation types: Sideslopes and footslope: ABLA/VASC, and various ABLA and PIAL types.

ELPA6

N = 14

Landform environment	(n = 14)	Mean	Range
Elevation (m)		2237	2067-2348
Plot slope (percent)		2	<1-4
Aspect	All		
Valley environment (n =	14)	Mode	Range
Valley gradient (percent)		<1	<1–3, 6–8
Valley width (m)		30–100	30->300
Valley aspect	Mostly northerly		
Soil surface cover (n = 1	3)	Mean	Range
Submerged (percent)		27	0-90
Bare ground		11	0-40
Gravel		0	
Rock		0	
Bedrock		0	
Litter		21	0-63
Moss		35	0-92

Parent material	Maz
Great group(s)	Crya

zama ash, granite, quartz diorite, peat aquands, Cryofibrists, Cryohemists, Haplocryands, Cryaqualfs

		•	
		Mean	Range
Water table depth (cm)			0-70
Rock fragments (percent)		0	
Available water capacity of	pit (cm/m)	32	13–46
pH (n = 9)		5.63	5.20-6.05
Depth to redoximorphic fea	tures (cm)		10–25
Occurrence of redoximorph (percentage of soils)	nic features	21	
Surface organic layer (cm)			5->100
Surface layers			
Thickness (cm)			5->100
Texture(s) ^a	SIL, SL, fibric, hemic,	sapric	
Redoximorphic features	Iron oxide concentrati	ons	
Subsurface layers			
Thickness (cm)			3->45
Texture(s) ^a	SIL, SICL, hemic, sap	ric	
Redoximorphic features	Depletions, iron oxide	concentr	ations

^aSee "Soil Texture Codes" section.

Principal	species		CON	COV	MIN	MAX
				Per	cent	
Forbs: DOAL	Alpine shootingstar	Dodecatheon alpinum	71	8	1	60
	nd other grasslikes: Few-flowered spikerush	Eleocharis pauciflora	100	70	40	95

Management considerations—

Total forage biomass ranged between 251 and 1991 (avg. 869) kg/ha, although Kovalchik (1987) pointed out that the palatability of few-flowered spikerush is low. Elk and deer use is moderate to high in these meadows, but is generally concentrated in adjacent drier associations such as Holm's Rocky Mountain sedge and black alpine sedge. Horse pasturing opportunities are low owing to the wet nature of this association. Wranglers should look to adjacent drier associations for good pasture. The wet nature of this association also makes it prime amphibian habitat. Fewflowered spikerush is self-perpetuating by creating a thick, acidic, organic soil (Kovalchik 1987). Given a continuous source of water, the ELPA6 plant association may represent climax ecological status in headwater basins of northeastern Oregon. The potential exists for this type to eventually dry out enough for other species to move in and initiate the formation of more complex soils. Possible successional trajectories include CANI2, DECE, and CASC12.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) intermittently exposed to seasonally flooded.

Adjacent riparian/wetland classifications—

Few-flowered spikerush types have been described throughout the Western United States including midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), Nevada and eastern California (Manning and Padgett 1995), and Utah and southeastern Idaho (Padgett et al. 1989).

Floristically similar types include woodrush sedge (p. 142) and star sedge (p. 149 and Crowe and Clausnitzer 1997).

Small-Fruit Bulrush Plant Association Scirpus microcarpus MM2924

Physical environment—

The small-fruit bulrush plant association occurred on floodplains, swales, and seasonal channels located between 756 and 915 m elevation in the canyon country of the Umatilla National Forest, to as high as 1921 m in a southfacing meadow of the Strawberry Mountain Wilderness. These sites were typified by annual floods and perennial soil moisture. Valleys were low (1 to 3 percent) to moderate (4 to 5 percent) gradient, trough-shaped and flat. Some soils had an organic layer overlying mineral soil, were shallow (to alluvium) to deep, poorly to somewhat poorly drained, loams to silt loams over clay loam to silty clay loam. Available water capacity averaged 29 cm/m, and depth to water table ranged from the surface to >97 cm.

Vegetation composition—

Small-fruit bulrush coverage ranged between 40 and 95 percent. Scattered forbs and graminoids occurred throughout including willowherb, largeleaf avens, muskflower, leafy white orchis, water speedwell, water whorlgrass, bluejoint reedgrass (>1900 m), weak alkaligrass, saw-beak sedge, bladder sedge, swordleaf rush, and common horsetail. Aquatic sedge occurred at the swale and seasonal channel sites, which were characterized by standing water throughout the growing season.

SCMI2

N = 4

Landform environment (n = 4)	Mean	Range
Elevation (m)	1096	756–1921
Plot slope (percent)	10	2–18
Aspect All		
Valley environment (n = 4)	Mode	Range
Valley gradient (percent)	1–3	1–5
Valley width (m)	10-30	10-300
Valley aspect All		
Soil surface cover (n = 4)	Mean	Range
Submerged (percent)	19	15–25
Bare ground	4	0–10
Gravel	5	3–5
Rock	10	5–15
Bedrock	0	
Litter	40	15–55
	23	10-40

Soil profile characteristics (n = 4)

Parent material	
Great group(s)	

Basalt, alluvium, colluvium Endoaqualfs, Fluvaquents

		Mean	Range
Water table depth (cm)			0->97
Rock fragments (percent)		2	0-7
Available water capacity of	pit (cm/m)	29	12–46
pH (n = 3)		6.19	6.10-6.30
Depth to redoximorphic fea	atures (cm)		6-37
Occurrence of redoximorpl (percentage of soils)	nic features	75	
Surface organic layer (cm)			0–14
Surface layers			
Thickness (cm)			13–15
Texture(s) ^a	CL, L, S, SIL, SL		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			16->51
Texture(s) ^a	L, LS, SL		
Redoximorphic features	Depletions, iron oxide	e concentr	ations

^aSee "Soil Texture Codes" section.

Principal sp	pecies		CON	COV	MIN	MAX	
			Percent				
Forbs: EPGL4 MIMO3	Fringed willowherb Muskflower	Epilobium glandulosum Mimulus moschatus	75 50	2 3	1 1	5 5	
Grasses: PUPA3	Weak alkaligrass	Puccinellia pauciflora	50	15	5	25	
Sedges and CAAM10 CAAQ CALA13 CAST5 CAUT ELEOC ELPA3 JUBA JUEN SCMI2	other grasslikes: Big-leaved sedge Aquatic sedge Smooth-stemmed sedge Saw-beak sedge Bladder sedge Spikerush Creeping spikerush Baltic rush Swordleaf rush Small-fruit bulrush	Carex amplifolia Carex aquatilis Carex laeviculmis Carex stipata Carex utriculata Eleocharis Eleocharis palustris Juncus balticus Juncus misroarrup	25 50 25 25 25 25 25 50 100	1 14 1 15 1 5 5 2 66	1 3 1 15 1 5 5 1 40	1 25 1 15 1 5 3 95	
Ferns and he EQAR		Scirpus microcarpus Equisetum arvense	75	20	40 5	95 40	

Adjacent riparian/wetland vegetation types:

Low-elevation floodplains and terraces: ABGR/ACGL-FLOODPLAIN, ALIN2/CADE9, PSME/ACGL-PHMA5-FLOODPLAIN,

ALIN2/SCCY.

High-elevation floodplains and meadows: CACA4, ALIN2/GLEL.

Adjacent upland vegetation types: Sideslopes: PSME/mixed shrub, PIPO-LAOC/mixed shrub.

Management considerations—

Small-fruit bulrush is not a preferred food item of ungulates, and very little evidence of ungulate activity was observed in this association. However, the meadows adjacent to this association may be very important to ungulates. The swales and seasonal channels often associated with this type provide important breeding grounds for amphibians and habitat for salmonid fry.

The dense, aggressive rhizomes and rapidly spreading seeds of small-fruit bulrush lend to its ability to quickly establish on freshly deposited sediments and begin the initial stages of soil stabilization. Furthermore, the thick stands of mature small-fruit bulrush slow floodwaters and filter sediments providing an important ecological service by keeping gravel beds silt free for salmonid runs. Smallfruit bulrush is moderately fire tolerant and will resprout vigorously following low- to moderate-intensity fires but may be killed by high-intensity fires. Possible successional trajectories: ALIN2/SCCY (observed, but not described in this classification effort).

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent

Water regime: (nontidal) permanently flooded to saturated

Adjacent riparian/wetland classifications—

Small-fruit bulrush types have been described for midmontane northeastern (Crowe and Clausnitzer 1997) and central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), Utah and southeastern Idaho (Padgett et al. 1989), and Alaska (Viereck et al. 1992).

Floristically similar types include bluejoint reedgrass and woolly sedge (Crowe and Clausnitzer 1997).

Miscellaneous Wet Graminoid Types

Widefruit Sedge Plant Association Carex eurycarpa MM2913

The widefruit sedge plant association occurred on a lake edge in the Seven Devils Mountains at 2317 meters elevation. Soils were Cryopsamments. Soils were very poorly drained, and a thin organic layer was overlying loamy fine sand and fine sand. Depth to water table was 37 cm, and available water capacity was 15 cm/m. The site was inundated by lake water in spring and the soil profile remained saturated throughout the summer. Widefruit sedge occurred on hummocks at 45 percent coverage throughout the site. Other species present were sheep sedge, few-flowered spikerush, weak alkaligrass, high

CAEU2

N = 1

N = 1

mountain cinquefoil, threepetal bedstraw, and violets. Total forage biomass was 1008 kg/ha. Deer and elk use of this community appeared to be low. The palatability of widefruit sedge to wild and domestic ungulates is unknown.

Adjacent riparian/wetland vegetation types:

Lake edges and lakes: CAVE6, SPAN2, ABLA/VAME.

Adjacent upland vegetation types: Sideslopes: ABLA/SPIRA, EPAN2.

Kovalchik (1987) described a widefruit sedge type for central Oregon.

Mud Sedge Plant Association Carex limosa MM2928

The mud sedge plant association was found on the edge of Lily Pad Lake at 2265 m in the Seven Devils Mountains. Soil great groups were Cryohemists. The soil was very poorly drained, organic sedge peat over fine sandy loam. The soil surface was inundated in spring and remained saturated throughout the year. Mud sedge (60 percent) forms a monocultural stand among patches of bare soil and standing water. Total forage biomass was 645 kg/ha. Elk and deer use appeared to be low with most browsing on adjacent willows. The wet nature of this site makes it ideal amphibian habitat.

CALI7

Clausnitzer (2004).

Adjacent riparian/wetland vegetation types: Lakes: NUPO2. Lake edges: CAUT. Forested basins: PIEN/CASC12.

Mud sedge types have been described by Padgett et al. (1989), Hansen et al. (1995), and Kovalchik and

DEEP CANYON AND SUBALPINE RIPARIAN AND WETLAND PLANT ASSOCIATIONS OF THE MALHEUR, UMATILLA, AND WALLOWA-WHITMAN NATIONAL FORESTS 135

Sierra Hare Sedge Plant Association Carex leporinella MM2927

The Sierra hare sedge plant association occurred in highelevation (2204 to 2546 m) wet meadows, a swale, and along a lake edge in the Eagle Cap Wilderness. All sites occurred in U-shaped, low-gradient valleys. Soils were Cryaquepts. Soils were poorly drained, silt loams to sandy clays. Depth to water table ranged from the surface early in the season to 41 cm in late summer. Redoximorphic features were present in all soils sampled. Available water-holding capacity ranged from 9 to 17 (avg. 13) cm/m.

CALE9

N = 4

Sierra hare sedge (avg. 86 percent) forms a near monoculture often co-occurring with Holm's Rocky Mountain Sedge (avg. 5 percent). Other species include: darkthroat shootingstar, aquatic sedge, and spikerush.

Adjacent riparian/wetland vegetation types: Floodplains and meadows: CASC12, CANI2, KAMI/CANI2, SABO2/CASC12, and ABLA-PIEN/LEGL-FLOODPLAIN.

The Sierra hare sedge plant association has not previously been described.

Lakeshore Sedge Plant Association Carex lenticularis MM2919

This association occurred on a steep (10 percent) spring above a high-gradient (>8 percent) headwater stream in the Strawberry Mountain Wilderness at 2104 m. The soil was poorly drained, very fine sandy loam over very gravelly loam. The water table was perched in the upper 32 cm of soil, and the available water capacity was 9 cm/m.

Lakeshore sedge (40 percent) and tall mannagrass (40 percent) abound. The graminoid-rich herbaceous layer includes woodrush, Jones', and smallwing sedge, few-flowered spikerush, swordleaf rush, and woodrush. Forbs include tinker's penny, monkeyflower, arrowleaf groundsel,

CALE8

and brook saxifrage. Total forage biomass was 1904 kg/ha. Wildlife use is high at these springs especially late in the season when water is difficult to find.

Adjacent riparian/wetland vegetation types:

Floodplains: SETR-MILE2, ALIN2/GLEL, RUOC2.

Adjacent upland type: ABLA/CAGE2.

Lakeshore sedge types have been described by Crowe and Clausnitzer (1997) and Diaz and Mellon (1996) for midmontane riparian/wetlands of northeastern Oregon and northwestern Oregon, respectively.

Big-Leaved Sedge Plant Association Carex amplifolia MM2921

The big-leaved sedge plant association occurred in lowgradient (<2 percent) springs of the Strawberry Mountain Wilderness (2024 m) and the Umatilla National Forest (805 m). Sample sites occurred in low-gradient (<3 percent), trough-shaped valleys. Soils were Endoaqualfs and Haplosaprists. Soils were poorly drained, organic-rich loams to silt loams over clays.

Big-leaved sedge (avg. 30 percent) and tall mannagrass (avg. 50 percent) occur in approximately equal abundance forming a dense graminoid cover over an array of forbs and graminoids including willowherb, American speedwell, threepetal bedstraw, leafy white orchis, muskflower, seep monkeyflower, ladyfern, Pacific onion, arrowleaf groundsel, swordleaf rush, and brown sedge. This type is floristically similar to water birch/wet sedge association with the exception of water birch.

The big-leaved sedge plant association is selfperpetuating with dense rhizomes excluding the

CAAM10

N = 2

establishment of trees and shrubs. Water birch could potentially occur at these sites given a disturbance resulting in patches of bare mineral soil.

Adjacent riparian/wetland vegetation types: Floodplains and terraces: ABGR/TABR2/LIBO3-FLOODPLAIN.

Meadows:

RUOC2, ALIN2/GLEL.

Adjacent upland vegetation type: Sideslopes: ABLA/CAGE2.

Crowe and Clausnitzer (1997) described a big-leaved sedge plant association for the midmontane riparian/ wetlands of northeastern Oregon that is similar to the type described above.

Floristically similar types include tall mannagrass (Crowe and Clausnitzer 1997).

Holm's Rocky Mountain Sedge Plant Association Carex scopulorum MS3111 CASC12

Physical environment—

The Holm's Rocky Mountain sedge plant association is a common association throughout the upper reaches (1900 to 2600 m) of the Blue Mountains Province occurring in moist/wet meadows, springs, floodplains, and swales. Sample sites occurred in low-gradient (typically <3 percent), U-, V-, and trough-shaped valleys. Landform slope was mostly less than or equal to 2 percent; when slope was greater than 2 percent a perennial source of water, such as a spring or lateral seepage, was present supplying a continual flow of water to the site.

Soils were poorly drained with an often thick (30 to 65 cm) organic layer overlying deeper loams to silty clay loams. Coarse-textured soils, sands and loamy sands, are typical of fluvially active sites such as floodplains and springs. Available water capacity of the soils ranged from 7 to 49 cm/m. Sites with available water capacity below 20 cm/m typically had a perennial source of water available from a spring, lateral seepage, or shallow water table. Depth to water table ranged from 0 to 102 cm and often was perched above an impervious soil horizon. Redoximorphic features were common throughout.

Vegetation composition—

Holm's Rocky Mountain sedge forms a thick, robust herbaceous layer, its dense rhizomes aggressively monopolizing resources. High mountain cinquefoil, alpine meadow butterweed, and alpine shootingstar commonly co-occur with Holm's sedge. Few-flowered spikerush commonly occurs in the wettest portions of these sites, sometimes at high abundance. N = 38

Landform environment (r	ı = 38)	Mean	Range
Elevation (m) Plot slope (percent) Aspect	All	2212 3	1945–2579 0–15
		Mada	Damma
Valley environment (n = 3	52)	Mode	Range
Valley gradient (percent) Valley width (m)		<1 30–100	<1–>8 <10–>300
Valley aspect	All		
Soil surface cover (n = 33	3)	Mean	Range
Submerged (percent)		6	0-45
Bare ground		8	0-35
Gravel		1	0-5
Rock		1	0-4
Bedrock		0	0 00
Litter Moss		46 31	0-90 0-95
		JI	0-95
Soil profile characteristic	cs (n = 35)		
Parent material	Mazama ash, sedge	peat. gran	ite.
	quartz diorite, allu		
Great group(s)		ivium vents, Cry luvents, C cryands, C	aquands, ryofibrists,
	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo	ivium vents, Cry luvents, C cryands, C	aquands, ryofibrists,
Great group(s)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo	ivium vents, Cry luvents, C cryands, C uents	aquands, ryofibrists, ryosaprists,
Great group(s) Water table depth (cm)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo	ivium vents, Cry luvents, C cryands, C uents	aquands, ryofibrists, Cryosaprists, Range 0->102
Great group(s)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq	vents, Cry iluvents, C cryands, C uents Mean	aquands, ryofibrists, Cryosaprists, Range
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq	vents, Cry luvents, C cryands, C uents <u>Mean</u> 4	aquands, ryofibrists, Cryosaprists, Range 0–>102 0–35
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq	vents, Cry luvents, C cryands, C uents <u>Mean</u> 4 19	aquands, ryofibrists, cryosaprists, Range 0->102 0-35 7-49
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m)	vents, Cry luvents, C cryands, C uents <u>Mean</u> 4 19	aquands, ryofibrists, Cryosaprists, Range 0->102 0-35 7-49 4.76-6.32
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m)	vents, Cry iluvents, Cc cryands, C uents <u>Mean</u> 4 19 5.64	aquands, ryofibrists, Cryosaprists, Range 0->102 0-35 7-49 4.76-6.32
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m)	vents, Cry iluvents, Cc cryands, C uents <u>Mean</u> 4 19 5.64	aquands, ryofibrists, ryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm) Surface layers	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m)	vents, Cry iluvents, Cc cryands, C uents <u>Mean</u> 4 19 5.64	aquands, ryofibrists, cryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52 0-65
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m) hic features	vents, Cry luvents, Cry cryands, C uents <u>Mean</u> 4 19 5.64 37	aquands, ryofibrists, ryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm) Surface layers Thickness (cm)	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m) hitures (cm) hic features	vents, Cry iluvents, Cry iluvents, C cryands, C uents <u>Mean</u> 4 19 5.64 37 5, orric	aquands, ryofibrists, ryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52 0-65 5->104
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm) Surface layers Thickness (cm) Texture(s) ^a Redoximorphic features	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m) htures (cm) hic features CL, SICL, SIL, SL, LS S, fibric, hemic, sag	vents, Cry iluvents, Cry iluvents, C cryands, C uents <u>Mean</u> 4 19 5.64 37 5, orric	aquands, ryofibrists, ryosaprists, 0–>102 0–35 7–49 4.76–6.32 13–52 0–65 5–>104
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm) Surface layers Thickness (cm) Texture(s) ^a Redoximorphic features Subsurface layers	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m) htures (cm) hic features CL, SICL, SIL, SL, LS S, fibric, hemic, sag	vents, Cry iluvents, Cry iluvents, C cryands, C uents <u>Mean</u> 4 19 5.64 37 5, orric	aquands, ryofibrists, ryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52 0-65 5->104
Great group(s) Water table depth (cm) Rock fragments (percent) Available water capacity of pH (n = 25) Depth to redoximorphic fea Occurrence of redoximorph (percentage of soils) Surface organic layer (cm) Surface layers Thickness (cm) Texture(s) ^a Redoximorphic features	quartz diorite, allu Endoaqualfs, Cryoflu Cryohemists, Cryof Cryorthents, Haplo Cryaquepts, Cryaq pit (cm/m) htures (cm) hic features CL, SICL, SIL, SL, LS S, fibric, hemic, sag	vents, Cry iluvents, Cry iluvents, C uents <u>Mean</u> 4 19 5.64 37 5, oric e concentr	aquands, ryofibrists, Cryosaprists, 0->102 0-35 7-49 4.76-6.32 13-52 0-65 5->104 ations

^aSee "Soil Texture Codes" section.

ecies		CON	COV	MIN	MAX
			Per	cent	
Alpine shootingstar	Dodecatheon alpinum	47	16	1	75
High mountain cinquefoil	Potentilla flabellifolia	60	10	1	35
Alpine meadow butterweed	Senecio cymbalarioides	63	10	1	60
other grasslikes:					
	Carex scopulorum	100	65	25	95
Fewi-flowered spikerush	Eleocharis pauciflora	50	25	2	75
	High mountain cinquefoil Alpine meadow butterweed other grasslikes: Holm's Rocky Mountain sedge	High mountain cinquefoilPotentilla flabellifoliaAlpine meadow butterweedSenecio cymbalarioidesother grasslikes:Carex scopulorum	High mountain cinquefoilPotentilla flabellifolia60Alpine meadow butterweedSenecio cymbalarioides63other grasslikes:Holm's Rocky Mountain sedgeCarex scopulorum100	Alpine shootingstarDodecatheon alpinum4716High mountain cinquefoilPotentilla flabellifolia6010Alpine meadow butterweedSenecio cymbalarioides6310other grasslikes:Holm's Rocky Mountain sedgeCarex scopulorum10065	High mountain cinquefoilPotentilla flabellifolia60101Alpine meadow butterweedSenecio cymbalarioides63101other grasslikes:Holm's Rocky Mountain sedgeCarex scopulorum1006525

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Other species occur scattered throughout and may include Pacific onion, licorice-root, Sierra shootingstar, tufted hairgrass, explorer's gentian, elephanthead lousewort, American bistort, and sheep sedge.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows: ALIN2/GLEL, SCMI2, CAMU7, ALVA-CASC12, ELPA6, PIEN/CASC12, SABO2/CASC12, VERAT, CALU7, DECE, CAPR5, ABLA-PIEN/LEGL–FLOODPLAIN, PHEM MOUNDS, CAAQ, CANI2, CAUT.

Lakes: SPAN2.

Adjacent upland vegetation types: Sideslopes and footslopes: ABLA/VASC, ABLA/VAUL, and various ABLA-PIAL types.

Management considerations—

Elk and deer can often be seen grazing in the large, open meadows characteristic of this association. The total forage biomass ranged from 504 to 2724 (avg. 1447) kg/ha. Holm's Rocky Mountain sedge is moderately palatable to domestic and wild ungulates. As grazing pressure increases, the competitive advantage shifts toward forbs, with a consequent increase in forb cover. Holm's Rocky Mountain sedge is highly fire tolerant (USDA NRCS 2002b) and will resprout from underground rhizomes following all but the most intense fire, although fire is rare in this moist community. Dense rhizomes hold soil tenaciously often leading to undercut streambanks, a favorite hiding place for trout. Possible successional trajectories: PIEN/CASC12, PIEN-ABLA/LEGL, CACA4, SABO2/CASC12, SACO2/ CASC12, ELPA6, CAAQ.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The Holm's Rocky Mountain sedge plant association has been described for riparian/wetland sites in midmontane northeastern Oregon (Crowe and Clausnitzer 1997), central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004); Montana (Hansen et al. 1995), and Nevada and eastern California (Manning and Padgett 1995). Kovalchik and Clausnitzer (2004) also described a sawtoothed sedge (*Carex scopulorum* var. *prionophylla*) type, a variety of Holm's Rocky Mountain sedge. Floristically similar types include Pacific onion–Holm's Rocky Mountain sedge (p. 152).

Northern Singlespike Sedge–Brook Saxifrage–Spring Plant Association Carex scirpoidea–Saxifraga arguta MS2113 CASC10–SAAR13–SPRING

N = 4

Physical environment—

The northern singlespike sedge-brook saxifrage–spring plant association was found along small, steep (2 to 18, avg. 9.5 percent), headwater springs in the Strawberry Mountain Wilderness. Sample sites were located between 1909 to 2262 m in low (1 to 3 percent)- to high (>8 percent)gradient, V- and trough-shaped valleys. Soils ranged from cobbly/bouldery streambanks to somewhat poorly drained, moderately deep, silt loam to clay loam over very gravelly loamy sand to sandy loam. Depth to water table ranged from surface flow to greater than 68 cm, with water being continually supplied to the soil by perennial springs. Redoximorphic features were common.

Vegetation composition—

Northern singlespike sedge occurs throughout with brook saxifrage growing directly along the spring channel(s). Various conifer seedlings can be found throughout the understory, and overstory trees may be hanging over the spring from adjacent uplands. Alpine laurel, whortleberry, and western moss heather are sometimes found scattered throughout the community.

A diverse understory of forbs and graminoids characterized by Pacific onion, elephanthead lousewort, explorer's gentian, alpine meadow butterweed, and few-flowered spikerush is typical of lower gradient (\leq 4 percent) sites. Fringed grass of Parnassus, Canadian burnet, arrowleaf groundsel, western featherbells, and leafy white orchis are more prominent at higher gradient sites (>4 percent). The presence of woodrush sedge is indicative of disturbance, including grazing by wild and domestic ungulates. Other species include felwort, alpine and Sierra shootingstar.

Landform environment (n = 4)	Mean	Range
Elevation (m) Plot slope (percent)	2088 10	1909–2262 2–18
Aspect All		
Valley environment (n = 4)	Mode	Range
Valley gradient (percent) Valley width (m)	>8 10–30	1–5, >8 10–300
Valley aspect All		
Soil surface cover (n = 4)	Mean	Range
Submerged (percent)	19	15–25
Bare ground	4	0–10
Gravel	5	3–5
Rock	10	5–15
Bedrock	0	
Litter	40	15–55
Moss	23	10-40

Soil profile characteristics (n = 4)

Parent material

Great group(s)

Basalt, alluvium, colluvium Cryaguents, Cryofluvents, Cryagualfs

Grout group(c)	or juquonito, or jonar		quano
		Mean	Range
Water table depth (cm)			0->68
Rock fragments (percent)		51	30–75
Available water capacity of	pit (cm/m)	8	3–14
pH (n = 3)		6.01	5.72–6.17
Depth to redoximorphic fea	tures (cm)		6–37
Occurrence of redoximorph (percentage of soils)	nic features	75	
Surface organic layer (cm)			0–14
Surface layers			
Thickness (cm)			13–15
Texture(s) ^a	CL, L, S, SIL, SL		
Redoximorphic features	None		
Subsurface layers			
Thickness (cm)			16->51
Texture(s) ^a	L, LS, SL		
Redoximorphic features	Depletions, iron oxide	concentr	ations
2			

^a See "Soil Texture Codes" section.

Adjacent riparian/wetland vegetation types: owing to the narrow nature of these springs, there were no adjacent riparian types.

Adjacent upland vegetation types:

Sideslopes and ridges: ABLA/ARCO9, ABLA/VASC, ABLA-JUOC, PSME-ABGR/duff.

Principal sp	pecies		CON	COV	MIN	MAX
				Per	cent	
Shrubs:						
KAMI	Alpine laurel	Kalmia microphylla	50	3	3	3
VAMY2	Whortleberry	Vaccinium myrtillus	50	2	1	3
Forbs:						
ALVA	Pacific onion	Allium validum	100	11	5	20
DOAL	Alpine shootingstar	Dodecatheon alpinum	50	4	3	5
ERPE3	Subalpine fleabane	Erigeron peregrinus	100	10	3	20
GECA	Explorer's gentian	Gentiana calycosa	75	5	5	5
HADI7	Leafy white orchis	Habenaria dilatata	100	4	3	5
LICA2	Canby's licorice-root	Ligusticum canbyi	75	3	1	5
MIGU	Seep monkeyflower	Mimulus guttatus	50	6	3	10
PAFI3	Fringed grass of Parnassus	Parnassia fimbriata	100	8	5	10
PEGR2	Elephanthead lousewort	Pedicularis groenlandica	100	5	3	10
SAAR13	Brook saxifrage	Saxifraga arguta	100	4	1	10
SASI10	Canadian burnet	Sanguisorba sitchensis	100	8	3	15
SECY	Alpine meadow butterweed	Senecio cymbalarioides	50	10	5	15
SETR	Arrowleaf groundsel	Senecio triangularis	100	4	1	10
STOC	Western featherbells	Stenanthium occidentale	100	3	1	5
SWPE	Felwort	Swertia perennis	75	4	3	5
Grasses:						
AGTH2	Thurbers' bentgrass	Agrostis thurberiana	50	3	1	5
DECE	Tufted hairgrass	Deschampsia cespitosa	75	8	5	15
GLEL	Tall mannagrass	Glyceria elata	50	3	1	5
Sedges and	other grasslikes:					
CALU7	Woodrush sedge	Carex luzulina	75	8	5	15
CASC10	Northern singlespike sedge	Carex scirpoidea	100	40	20	50
ELPA6	Few-flowered spikerush	Eleocharis pauciflora	50	15	10	20
JUME3	Mertens' rush	Juncus mertensianus	50	2	1	3
		: 1.00V				

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Management considerations—

Total forage biomass ranged from 896 to 1400 (avg. 1148) kg/ha. These sites are important foraging and watering holes for wildlife ranging from ruffed grouse to elk and deer. In some instances, these sites represent the only perennial water available for miles around.

Northern singlespike sedge is highly fire tolerant (USDA NRCS 2002b) and will resprout vigorously following fire, which can be quite common in the dry southwestern portion of the Blue Mountains. The strong roots of northern singlespike sedge and brook saxifrage are important for soil stability along these steep springs. As long as the springs continue to flow, this association represents climax vegetation at these sites. USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The northern singlespike sedge-brook saxifrage–spring plant association has not previously been described. A floristically similar type is Pacific onion–Holm's Rocky Mountain sedge (p. 152).

Woodrush Sedge Plant Association Carex luzulina MM2916

Physical environment—

The woodrush sedge plant association occurred on high-elevation (1945 to 2229 m) floodplains and moist/ wet meadows. One site was located at 1640 m along the Minam River in the Eagle Cap Wilderness. Sample sites were located in mostly low-gradient (<3 percent), U- and trough-shaped valleys. One exception was Lake Creek in the Elkhorn Mountains, which had a very high (>8 percent) gradient. Meadow soils were typically poorly drained, deep (>50 cm), organic sedge peats. Available water capacity of meadow sites averaged 33 cm/m. The soils of the floodplain type were organic-rich silt loams over sand. Floodplain soil available water capacity was 14 cm/m. Depth to water table ranged from the surface to 114 cm, and redoximorphic features were common.

Vegetation composition—

Woodrush sedge is prominent in the herbaceous layer and is joined by few-flowered spikerush and aquatic sedge in wetter portions of the site. A careful look at the understory will reveal a diversity of forbs and graminoids, including Holm's Rocky Mountain sedge, Pacific onion, alpine and Sierra shootingstar, explorer's gentian, elephanthead lousewort, Canadian burnet, hooded ladies'-tresses, alpine meadow butterweed, tufted hairgrass, slender muhly, and alpine timothy.

CALU7

N = 10

Landform environment (n = 10)	Mean	Range
Elevation (m) Plot slope (percent)		2099 3	1640–2229 <1–9
Aspect	Mostly southerly		
Valley environment (n =	8)	Mode	Range
Valley gradient (percent)		<1	<1–3, >8
Valley width (m)		30 – 100	30–300
Valley aspect	All		
Soil surface cover (n = 1	0)	Mean	Range
Submerged (percent)		3	0–20
Bare ground		7	0-50
Gravel		0	
Rock		0	
Bedrock		0	
Litter		30	0–75
Moss		60	20-98

Soil profile characteristics (n = 10)

Parent material
Great group(s)

Mazama ash, peat, alluvium Cryaquands, Cryaquents, Cryaquepts, Cryofibrists, Cryohemists

		Mean	Range
Water table depth (cm)			0–114
Rock fragments (percent)		1	0-6
Available water capacity of	pit (cm/m)	29	11–46
pH (n = 6)		6.00	5.66-6.20
Depth to redoximorphic fea	tures (cm)		10-45
Occurrence of redoximorph (percentage of soils)	nic features	40	
Surface organic layer (cm)			0->106
Surface layers Thickness (cm)			15–106
Texture(s) ^a	LS, SIL, fibric		
Redoximorphic features	Iron oxide concentrati	ons	
Subsurface layers			
Thickness (cm)			13–60
Texture(s) ^a	SI, SIL, SL, sapric		
Redoximorphic features	Depletions, iron oxide	concentr	ations

^aSee "Soil Texture Codes" section.

Principal sp	pecies		CON	COV	MIN	MAX
				Per	cent	
Forbs:						
ALVA	Pacific onion	Allium validum	50	4	1	13
DOAL	Alpine shootingstar	Dodecatheon alpinum	60	10	1	40
DOJE	Sierra shootingstar	Dodecatheon jeffreyi	40	1	1	1
GECA	Explorer's gentian	Gentiana calycosa	40	1	1	1
HADI7	Leafy white orchis	Habenaria dilatata	40	1	1	1
LITE2	Idaho licorice-root	Ligusticum tenuifolium	40	10	1	35
PEGR2	Elephanthead lousewort	Pedicularis groenlandica	50	2	1	
POBI6	American bistort	Polygonum bistortoides	40	2	1	3 3
POFL3	High mountain cinquefoil	Potentilla flabellifolia	40	4	1	10
SASI10	Canadian burnet	Sanguisorba sitchensis	50	5	1	20
SECY	Alpine meadow butterweed	Senecio cymbalarioides	70	4	1	15
SPRO	Hooded ladies'-tresses	Spiranthes romanzoffiana	40	1	1	1
Grasses:						
DECE	Tufted hairgrass	Deschampsia cespitosa	70	17	1	70
MUFI2	Slender muhly	Muhlenbergia filiformis	90	18	1	80
PHAL2	Alpine timothy	Phleum alpinum	40	1	1	1
Sedges and	other grasslikes:					
CĂAQ	Aquatic sedge	Carex aquatilis	40	25	10	50
CAJO	Jones' sedge	Carex jonesii	40	2	1	3
CALU7	Woodrush sedge	Carex luzulina	100	61	20	95
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	90	7	1	20
ELPA6	Few-flowered spikerush	Eleocharis pauciflora	90	18	1	60
LUCA2	Field woodrush	Luzula campestris	50	2	1	5

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows:

CAUT, PIEN-ABLA/CASC12, CASC12, ELPA6, ALVA-CASC12, CACA4, DECE, CAPR5, ABLA/VAME, CAJO, SACO2/CASC12, and VERAT.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Management considerations—

Total forage biomass ranged from 747 to 2987 (avg. 1734) kg/ha. Elk and deer use ranges from low early on to high later in the season after the soils have dried out a bit. The wet nature of these sites make them especially important habitat for amphibians. Woodrush sedge is considered an increaser, and this association may represent disturbed versions of the Holm's Rocky Mountian sedge, few-flowered spikerush, or aquatic sedge plant associations (Kovalchik

2004). The potential exists for a shift back to the above plant associations with a decrease in disturbance frequency or intensity.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Crowe and Clausnitzer (1997) described a woodrush sedge plant association for the midmontane riparian/wetlands of northeastern Oregon. The association described above extends the range and extent of this type in the Blue Mountains.

Floristically similar types include aquatic sedge (p. 125), few-flowered spikerush (p. 131), tufted hairgrass (p. 148), and Holm's Rocky Mountain sedge (Crowe and Clausnitzer 1997).

Black Alpine Sedge Plant Association Carex nigricans MS2111

N = 11

Physical environment—

The black alpine sedge plant association occurred in moist, headwater meadows above 2134 m elevation in the northern and central Blue Mountains. Valley types ranged from low-gradient (<3 percent), U- and trough-shaped, and flat to one high-gradient (6 to 8 percent) trough-shaped valley. Soils were moderately well drained, moist throughout the growing season, and lack the thick organic cap common to the Holm's Rocky Mountain sedge plant association. Soils may be briefly inundated just following snowmelt but dry out early in summer. Available water capacity ranged between 11 and 17 (avg. 14) cm/m corresponding to medium-textured, fine sandy loam to clay loam soils. The water table ranged from 13 to 69 cm, and redoximorphic features were common.

Vegetation composition—

Black alpine sedge forms a thick sod with Holm's Rocky Mountain sedge often growing along the slightly moister edges of the association. Scattered forbs and graminoids include Idaho licorice-root, explorer's gentian, alpine meadow butterweed, high mountain cinquefoil, yellow Wallowa Indian paintbrush, tufted hairgrass, sheep sedge, and Drummond's rush. Few-flowered spikerush is sometimes found growing in wet depressions scattered throughout the association. The black alpine sedge plant association often occurrs on the slightly higher, drier margins of Holm's Rocky Mountain sedge and few-flowered spike rush meadows.

Landform environment ((n = 11)	Mean	Range
Elevation (m) Plot slope (percent)		2282 2	2177–2409 <1–7
Aspect	Mostly northerly		
Valley environment (n =	11)	Mode	Range
Valley gradient (percent)		<1	<1–3, 6–8
Valley width (m)		30–100	10–300
Valley aspect	Mostly northerly		
Soil surface cover (n = 1	0)	Mean	Range
Submerged (percent)		0	
Bare ground		3	0–10
Gravel		0	
Rock		4	0-40
Bedrock		0	
Litter		62	5-90
Moss		17	1–50

Soil profile characteristics (n = 11)

Parent material	Mazama ash, quartz diorite, sedge peat			
Great group(s)	Cryaquands, Cryaquents, Cryaquepts, Cryofluvents, Cryohemists, Haplocryalfs			
		Mean	Range	
Water table depth (cm)			13–69	
Rock fragments (percent)		1	0-8	
Available water capacity of	pit (cm/m)	14	11–17	
pH (n = 9)		5.52	4.92-6.21	
Depth to redoximorphic fea	tures (cm)		13–30	
Occurrence of redoximorph (percentage of soils)	ic features	64		
Surface organic layer (cm)			0-8	
Surface layers				
Thickness (cm)			5–57	
Texture(s) ^a	L, LS, SIL, SL			
Redoximorphic features	Iron oxide concentration	ons		
Subsurface layers				
Thickness (cm)			10->80	
Texture(s) ^a	L, LS, SIL, SCL, SI, SI	C, SICL,	SIL, SL	
Redoximorphic features	Depletions, iron oxide	concentr	ations	

^aSee "Soil Texture Codes" section.

Principal sp	ecies		CON	COV	MIN	MAX
				Pe	rcent	
Forbs:						
ALVA	Pacific onion	Allium validum	27	9	1	25
ANAL4	Alpine pussytoes	Antennaria alpina	36	6	1	20
ASOC	Western mountain aster	Aster occidentalis	36	5	2	15
CACH16	Yellow Wallowa Indian paintbrush	Castilleja chrysantha	54	1	1	1
ERPE3	Subalpine fleabane	Erigeron peregrinus	27	9	1	15
GECA	Explorer's gentian	Gentiana calycosa	72	4	1	10
LITE2	Idaho licorice-root	Ligusticum tenuifolium	72	12	1	40
POFL3	High mountain cinquefoil	Potentilla flabellifolia	81	22	1	70
SECY	Alpine meadow butterweed	Senecio cymbalarioides	72	9	1	25
SPRO	Hooded ladies'-tresses	Spiranthes romanzoffiana	27	1	1	1
Grasses:						
DAIN	Timber oatgrass	Danthonia intermedia	36	3	1	10
DECE	Tufted hairgrass	Deschampsia cespitosa	45	4	1	6
MUFI2	Slender muhly	Muhlenbergia filiformis	27	8	2	20
PHAL2	Alpine timothy	Phleum alpinum	27	1	1	1
Sedges and	other grasslikes:					
CĂĬL	Sheep sedge	Carex illota	54	7	1	30
CAJO	Jones' sedge	Carex jonesii	27	11	1	30
CANI2	Black alpine sedge	Carex nigricans	100	48	20	70
CASC12	Holm's Rocky Mountain sedge	Carex scopulorum	90	12	1	25
ELPA6	Few-flowered spikerush	Eleocharis pauciflora	27	20	5	30
JUDR	Drummond's rush	Juncus drummondii	63	2	1	5
LUCA2	Field woodrush	Luzula campestris	27	1	1	1
		1.001/		1	1 1 1 4	

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows:

ELPA6, ALVA-CASC12, PHEM MOUNDS, CALU7, CACA4, ABLA-PIEN/LEGL– FLOODPLAIN, CASC12, SABO2/CASC12, KAMI/ CANI2, SALIX/CACA4. Springs and seeps: ELPA6, CASC12. Lake edges: CAAQ.

Adjacent upland vegetation type: Sideslopes and footslope: ABLA/VASC.

Management considerations—

Forage values ranged from 215 to 1680 (avg. 1007) kg/ha. Elk and deer use is fairly high in these meadows, although Kovalchik (1987) commented that the palatability and forage value of black alpine sedge is unknown but assumed to be moderately low. Black alpine sedge forms a fairly resilient sod layer that can withstand moderate trampling by wild and domestic ungulates and backpackers. Overuse can result in increased prevalence of forbs and an increase in bare ground; therefore, concentrated use should be avoided. Rather, managers should encourage diffuse recreational use throughout this association. The dense rhizomes of black alpine sedge provide soil stability to the banks of the many small, meandering rivulets characteristic to these headwater basins. Possible successional trajectories include PHEM MOUNDS, KAMI/CANI2, and ABLA/VASC.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) saturated to temporarily flooded.

Adjacent riparian/wetland classifications—

Black alpine sedge types have been described for central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), and Alaska (Viereck et al. 1992). Kovalchik (1987) further described a Holm's Rocky Mountain sedge-black alpine sedge-tufted hairgrass type that may also be present in northeastern Oregon but was not encountered in this classification effort.

Floristically similar types include tufted hairgrass (p. 148) and sheep sedge (Kovalchik and Clausnitzer 2004).

Bluejoint Reedgrass Plant Association *Calamagrostis canadensis* GM4111

Physical environment—

The bluejoint reedgrass plant association occurred in high-elevation (1921 to 2287 m) moist meadows and stream terraces throughout the Blue Mountains. Sample sites occurred in U- and trough-shaped and flat valleys of very low (<1 percent) to moderate (4 to 5 percent) gradient. Soils were moderately well-drained, gravelly loams to silt loams often over a slowly permeable layer of sandy clay loam to clay loam. A thick, dry, sod often overlies the mineral soil. Available water capacity ranged from 9 to 23 (avg. 14) cm/m. Depth to water table was typically deep (>50 cm), and redoximorphic features were uncommon.

Vegetation composition—

Bluejoint reedgrass forms a dense stand often joined by Holm's Rocky Mountain sedge along slightly moister edges of the association. The thick sod layer of accumulated rhizomes atop mineral soil excludes a diverse forb understory.

Scattered forbs and graminoids may include high mountain cinquefoil, Columbian monkshood, willowherb, hairy arnica, largeleaf avens, muskflower, alpine meadow butterweed, violets, and smallwing sedge.

Adjacent riparian/wetland vegetation types: Floodplains and meadows: SCMI2, ALIN2/GLEL, CANI2, ABLA-PIEN/LEGL-FLOODPLAIN, CAUT, SALIX/CAUT, SABO2/CASC12, CAVE6.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

CACA4

N = 8

Landform environment (n = 8)		Mean	Range
Elevation (m) Plot slope (percent)		2132 2	1921–2287 <1–5
Aspect	Mostly northerly		
Valley environment (n = 8	8)	Mode	Range
Valley gradient (percent) Valley width (m)		1–3 100–300	1–5 <10, 30–>300
Valley aspect	Mostly northerly		
Soil surface cover (n = 8)		Mean	Range
Submerged (percent)		2	0–10
Bare ground		8	0–25
Gravel		0	
Rock		0	
Bedrock		0	
Litter		73	50-100
Moss		15	0-50

Soil profile characteristics (n = 8)

Parent material	
Great group(s)	

Mazama ash, quartz diorite, peat Cryaquepts, Cryofluvents, Cryorthents, Haplocryalfs

		Mean	Range
Water table depth (cm)			10->97
Rock fragments (percent)		7	0-26
Available water capacity of	pit (cm/m)	14	9–23
pH (n = 7)		5.34	4.64-6.13
Depth to redoximorphic feat	tures (cm)		10–19
Occurrence of redoximorph (percentage of soils)	ic features	38	
Surface organic layer (cm)			0-20
Surface layers			
Thickness (cm)			9-48
Texture(s) ^a	CL, L, LS, SIL, SL, her	mic	
Redoximorphic features	Depletions		
Subsurface layers			
Thickness (cm)			39–65
Texture(s) ^a	CL, L, LS, SCL, SICL,	SIL, SL	
Redoximorphic features	Depletions, iron oxide	concentr	ations

^aSee "Soil Texture Codes" section.

ecies		CON	COV	MIN	MAX
			Per	cent	
Columbian monkshood	Aconitum columbianum	37	15	3	40
Fringed willowherb	Epilobium glandulosum	37	4	3	5
High mountain cinquefoil	Potentilla flabellifolia	75	12	3	30
Violet	Viola	50	6	1	10
Bluejoint reedgrass	Calamagrostis canadensis	100	72	20	90
other grasslikes					
	Carex	37	9	1	20
Holm's Rocky Mountain sedge	Carex scopulorum	62	18	10	30
	Columbian monkshood Fringed willowherb High mountain cinquefoil Violet Bluejoint reedgrass other grasslikes Sedge	Columbian monkshoodAconitum columbianumFringed willowherbEpilobium glandulosumHigh mountain cinquefoilPotentilla flabellifoliaVioletViolaBluejoint reedgrassCalamagrostis canadensisother grasslikesSedgeCarex	Columbian monkshoodAconitum columbianum37Fringed willowherbEpilobium glandulosum37High mountain cinquefoilPotentilla flabellifolia75VioletViola50Bluejoint reedgrassCalamagrostis canadensis100other grasslikesSedgeCarex37	PerformColumbian monkshoodAconitum columbianum3715Fringed willowherbEpilobium glandulosum374High mountain cinquefoilPotentilla flabellifolia7512VioletViola506Bluejoint reedgrassCalamagrostis canadensis10072other grasslikesSedgeCarex379	PercentColumbian monkshoodAconitum columbianum37153Fringed willowherbEpilobium glandulosum3743High mountain cinquefoilPotentilla flabellifolia75123VioletViola5061Bluejoint reedgrassCalamagrostis canadensis1007220other grasslikesSedgeCarex3791

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Management considerations—

Forage biomass values ranged from 821 to 2576 (avg. 2068) kg/ha. Bluejoint reedgrass is a preferred food item of wild ungulates, but palatability varies from moderate to high depending on the season (Hansen et al. 1995). These sites are relatively resilient to grazing pressure given the strong rhizomes, thick sod, and the fact that soil surface layers are wet for only short periods after melt-off. Sustained high levels of grazing can result in breakup of the sod layer and a shift to forbs and other graminoids. These sites provide habitat for small mammals including voles, deer mice, weasels, and snowshoe hares. Bluejoint reedgrass has low fire tolerance and may be completely destroyed by moderate- to high-intensity fires capable of burning the dry sod layer. This association is self-perpetuating and may represent climax ecological status in moist subalpine meadows unless a disturbance event(s) shifts the balance to other species.

USDI Fish and Wildlife Service wetlands classification—

System: palustrine Class: emergent wetland Subclass: persistent Water regime: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

Bluejoint reedgrass types have been described for midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), eastern Washington (Kovalchik and Clausnitzer 2004), Utah and southeastern Idaho (Padgett et al. 1989), and Alaska (Viereck et al. 1992). There are no floristically similar types.

Miscellaneous Moist Graminoid Types

Tufted Hairgrass Plant Association Deschampsia cespitosa MM1912

DECE

N = 3

The tufted hairgrass plant association occurred in moist meadows between 2079 and 2216 m elevation in the Eagle Cap Wilderness. Sample sites were located in low-gradient (1 to 3 percent), U- and trough-shaped valleys. Soils were Cryaquepts. Soils were somewhat poorly drained loam to silt loam surface layers over clay loam to silty clay loam subsurface layers.

Tufted hairgrass (avg. 63 percent) occurs in bunches throughout the community. Other species include high mountain cinquefoil, willowherb, alpine meadow butterweed, Holm's Rocky Mountain sedge, and bladder sedge. It is best to graze the tufted hairgrass association from mid to late summer. It is relatively tolerant of grazing, but a high level of grazing can result in a shift in species composition to the detriment of tufted hairgrass. Tufted hairgrass types have been described throughout the Western United States including midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), central Oregon (Kovalchik 1987), eastern Washington (Kovalchik and Clausnitzer 2004), Nevada and eastern California (Manning and Padgett 1995), Utah and southeastern Idaho (Padgett et al. 1989), and eastern Idaho-western Wyoming (Youngblood et al. 1985).

Floristically similar types include black alpine sedge (p. 144), woodrush sedge (p. 142) and Holm's Rocky Mountain sedge-black alpine sedge-tufted hairgrass association (Kovalchik 1987).

Basin Wildrye Plant Community Type *Elymus cinereus* GB7111

The basin wildrye community type was found on a terrace of Murderers' Creek in the Malheur National Forest at 994 m elevation. Soils were Haplustalfs. The soil was shallow to alluvium, well-drained silt loam over silty clay loam. Available water capacity was 19 cm/m. Grasses are the primary life form consisting of clumps of basin wildrye (40 percent) with annual brome grasses (20 percent) and Kentucky bluegrass (10 percent) interspersed between clumps. Creeping bentgrass, western needlegrass, and timothy were found at low abundance (\leq 5 percent). Trace amounts of Wood's rose, common snowberry, thistle, teasel, western coneflower, common yarrow, prickly lettuce, and red clover were found throughout. Total forage biomass was 1398 kg/ha. Basin

ELCI2

N = 1

wildrye is a high-protein forage species for wild and domestic ungulates. Ideally, grazing of this community is delayed until fall when the protein content is highest and damage to the elevated growing point is minimized (USDA NRCS 2002b). Basin wildrye is also an important erosion control species and helps maintain soil integrity. The presence of weedy species suggests past or present grazing influences at this site. In fact, cow trails were found throughout the terrace.

Crawford (2003) described three basin wildrye types for the Columbia River basin: basin wildrye/clustered field sedge, basin wildrye-saltgrass (*Distichlis spicata*), basin wildrye/cheatgrass.

Star Sedge Plant Community Type *Carex muricata* MS3112

The star sedge plant community type occurred in moist/wet headwater basins of the Elkhorn and Strawberry Mountains. Soil great groups were Cryofibrists and Cryohemists. Soils were typically poorly drained sedge peats, with an average available water capacity of 41 cm/m.

Star sedge (avg. 68 percent) forms a thick stand with fewflowered spikerush (avg. 23 percent) occurring in the wetter portions of the community. Alpine and Sierra shootingstar, alpine meadow butterweed, leafy white orchis, tufted hairgrass, aquatic sedge, and Holm's Rocky Mountain sedge are often found scattered throughout the community.

Total forage biomass ranged from 523 to 1897 (avg. 1195) kg/ha. Deer and elk use is moderate to high in

CAMU7

CAJO

N = 3

N = 1

these meadows, especially in the Strawberry Mountain Wilderness where, late in the season, water and highquality forage are scarce.

Adjacent riparian/wetland vegetation types: Meadows: CALU7, ALVA-CASC12, SCM12, CAUT, PIEN/CASC12, DECE, CAAQ.

Adjacent upland vegetation type: Sideslopes: ABLA/VASC.

Crowe and Clausnitzer (1997) described a similar community type for the midmontane riparian/wetlands of the Blue Mountains. Floristically similar types include few-flowered spikerush (p. 131).

Jones' Sedge Plant Community Carex jonesii MM2933

The Jones' sedge plant community was located along a seep in the high-gradient (6 to 8 percent) headwaters of the North Fork John Day River in the Elkhorn Mountains at 2287 m. Soil great groups were Cryaquands. Soils were somewhat poorly drained silt loams over granite parent material with iron oxide concentrations throughout the subsurface layers (24 to 50 cm). Jones' sedge (60 percent), Holm's Rocky Mountain sedge (25 percent), and few-flowered spikerush (5 percent) make up the thick graminoid layer. Trace amounts of woodrush sedge, alpine leafybract aster, high mountain cinquefoil, and tinker's penny occurred throughout.

Adjacent riparian/wetland vegetation types: Seeps: ELPA6, CANI2.

This community has not previously been described.

Nebraska Sedge Plant Community Type *Carex nebrascensis* MM2912

The Nebraska sedge plant community type was found on a seepy floodplain along the east fork of Pine Creek in the Wallowa-Whitman National Forest at 1985 m elevation. Soil great groups were Cryofluvents. The soil was shallow to alluvium, poorly drained loam to silt loam over gravelly fine sandy loam.

Nebraska sedge (75 percent), Holm's Rocky Mountain sedge (15 percent), and tufted hairgrass (15 percent) form a thick graminoid cover. Other species including weak alkaligrass, alpine timothy, Columbian monkshood, northern bedstraw, Pacific onion, largeleaf avens, high mountain cinquefoil, and alpine meadow butterweed occurred at low abundance throughout the site. Total forage biomass was 1624 kg/ha. Nebraska sedge provides high-quality forage

CANE2

CASU6

N = 1

N = 1

for wild and domestic ungulates and is resistant to moderately high levels of grazing (Crowe and Clausnitzer 1997).

Nebraska sedge types have been described throughout the Western United States including the Columbia River basin (Crawford 2003), midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), southwestern Idaho (Jankovsky-Jones, 2001), central Oregon (Kovalchik 1987), Nevada and eastern California (Manning and Padgett 1995), Utah and southeastern Idaho (Padgett et al. 1989), and eastern Idaho-western Wyoming (Youngblood et al. 1985). The occurrence described above may represent the upper elevational range of this type in the Blue Mountains.

Brown Sedge Plant Community Carex subfusca MM2930

The brown sedge plant community was found on a steep (12 percent) seepy slope in the upper reaches of the East Fork of Canyon Creek in the Strawberry Mountain Wilderness at 2104 m. Soil great groups were Cryofluvents. Soils were moderately deep, somewhat poorly drained, very gravelly/cobbly loams over boulders. Available water capacity of the soil was 9 cm/m. Redoximorphic features occurred within the upper 20 cm of the soil profile.

Brown sedge (60 percent), the principal herbaceous species, is joined by tall mannagrass (20 percent), widefruit sedge (30 percent), woodrush sedge, spikerush, Baltic rush, and alpine bentgrass. Forbs included fringed willowherb, threepetal bedstraw, monkeyflowers, American speedwell, and arrowleaf groundsel. Total forage biomass was 3808 kg/ha. Wildlife use is high at these springs, especially late in the season when water is difficult to find.

Adjacent riparian/wetland vegetation types: Spring: RUOC2, ALIN2/GLEL.

Adjacent upland vegetation types: Sideslopes: ABLA/VASC, ABLA/ANMA, FEVI/LUPIN.

The brown sedge plant community has not previously been described.

Smallwing Sedge Plant Community Type *Carex microptera* MM2929

The smallwing sedge plant community type was found on a seepy terrace of the North Fork Imnaha River in the Eagle Cap Wilderness at 1966 m. Soil great groups were Cryorthents. The soil was deep, well-drained loam over sandy loam. The water table was deeper than 1 m and the available water capacity of the soil was 12 cm/m.

Smallwing sedge (65 percent) forms a thick herbaceous cover intermingled with a diversity of forbs and grasses, including slender cinquefoil, glaucus willowherb, Virginia strawberry, American speedwell, falsegold groundsel, western needlegrass, and California brome. Species

CAMI7

N = 1

indicative of grazing pressure include Kentucky bluegrass (15 percent), bearded wheatgrass (5 percent), common yarrow (15 percent), and Canada thistle (5 percent). The terrace was located near a popular camping spot, and evidence of horse pasturing was found throughout.

Adjacent riparian/wetland vegetation types:

Seeps: CAUT,

Floodplains and terraces: JUBA.

Smallwing sedge types have been described by Youngblood et al. (1985) and Padgett et al. (1989).

Baltic Rush Plant Community Type Juncus balticus MW3912

The Baltic rush plant community type was found on a seepy terrace of the North Fork Imnaha River in the Eagle Cap Wilderness at 1966 m. Soil great groups were Cryorthents. The soil was deep, well-drained, sandy loams to loams over very gravelly/cobbly loamy sand. Available water capacity of the soil was 6 cm/m. Baltic rush (90 percent) forms a thick sward of wiry stems through which grows an array of forbs and graminoids including slender cinquefoil, falsegold groundsel, tall bluebells, monkeyflowers, common horsetail, smallwing sedge, western needlegrass, and California brome. Species indicative of grazing pressure include Kentucky bluegrass (5 percent), common yarrow (3 percent), and Canada thistle (15 percent). The terrace was near a popular camping spot and evidence of horse pasturing was found throughout.

Baltic rush is resilient to grazing pressure owing to its low palatability to ungulates, strong rhizomatous roots, and rapid growth rate (USDA NRCS 2002b). Baltic rush

JUBA

N = 1

has nitrogen-fixing capabilities, stabilizes streambanks, and acts as a filter for sediment and nutrients.

Adjacent riparian/wetland vegetation types: Seeps: CAUT. Floodplains and terraces: CAMI7.

Baltic rush types have been described throughout the Western States including the Columbia River basin (Crawford 2003), midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), southwestern Idaho (Jankovsky-Jones et al. 2001), Nevada and eastern California (Manning and Padgett 1995), Malheur National Forest, Oregon (Padgett 1981), Utah and southeastern Idaho (Padgett et al. 1989), and eastern Idaho-western Wyoming (Youngblood et al. 1985). The occurrence described above may represent the upper elevational range of this type in the Blue Mountains.

Pacific Onion-Holm's Rocky Mountain Sedge Plant Association Allium validum-Carex scopulorum

FW7111

ALVA-CASC12

N = 20

Physical environment—

The Pacific onion-Holm's Rocky Mountain Sedge plant association occurred at high-elevation (2000 to 2400 m) moist/wet meadows, springs, and floodplains of the Eagle Cap Wilderness, Strawberry Mountain Wilderness, and Elkhorn Mountains. Sample sites were located in very low (<1 percent)- to very high (>8 percent)- gradient, U-, V-, and trough-shaped valleys. Landform slope ranged from <1 to 30 (avg. 7 percent). When slope was greater than 2 percent, a perennial source of water, such as a spring or lateral seepage, was present supplying a continual flow of water to the site.

The surface was often covered by a thick (10 to 35 cm) organic horizon. Soil texture was almost exclusively silt loam in the surface and subsurface layers with a few occurrences of coarse sands to loams. Soils were poorly drained with a shallow (surface) to moderately deep (>60 cm) water table. Redoximorphic features were very common.

Vegetation composition—

Pacific onion forms a dense herbaceous layer with Holm's Rocky Mountain sedge scattered throughout. Arrowleaf groundsel tends to fill in for Holm's sedge at sites with slopes greater than 6 percent.

Other species include alpine shootingstar, explorer's gentian, elephanthead lousewort, high mountain cinquefoil, alpine meadow butterweed, licorice-root, brook saxifrage, tufted hairgrass, woodrush sedge, black alpine sedge, and common horsetail.

Landform environmen	t (n = 20)	Mean	Range
Elevation (m)		2233 7	2034-2424
Plot slope (percent) Aspect	All	1	0.5–30
•			
Valley environment (n	= 18)	Mode	Range
Valley gradient (percent)	1–3	<1–>8
Valley width (m)		30–100	<10->300
Valley aspect	All		
Soil surface cover (n =	• 16)	Mean	Range
Submerged (percent)		4	0–20
Bare ground		6	0–20
Gravel		3	0–15
Rock		3	0–15
Bedrock		0	
Litter		28	3–75
Moss		52	10-90

Soil profile characteristics (n = 20)

•	, , , , , , , , , , , , , , , , , , ,	
Parent material	Mazama ash, granite, quartz d peat, alluvium, colluvium	iorite,
Great group(s)	• • •	
	Mean	Range
Water table depth (cm)		15->60

Water table depth (cm)			15–>60
Rock fragments (percent)		6	0-66
Available water capacity of	pit (cm/m)	20	5–48
pH (n = 15)		5.90	5.16-6.96
Depth to redoximorphic fea	tures (cm)		10-60
Occurrence of redoximorph (percentage of soils)	ic features	40	
Surface organic layer (cm)			0->50
Surface layers			
Thickness (cm)			7–53
Texture(s) ^a	SIL, L, SL, LS, fibri	c, hemic	
Redoximorphic features	Iron oxide concentr	ations	
Subsurface layers			
Thickness (cm)			7–>74
Texture(s) ^a	CL, SIL, L, SL, fibri	с	
Redoximorphic features	Iron oxide concentr	ations	

^aSee "Soil Texture Codes" section.

Principal sp	pecies		CON	COV	MIN	MAX
				Per	cent	
Forbs:						
ALVA	Pacific onion	Allium validum	100	69	30	100
DOAL	Alpine shootingstar	Dodecatheon alpinum	55	5	1	20
ERPE3	Subalpine fleabane	Erigeron peregrinus	45	12	1	50
GECA	Explorer's gentian	Gentiana calycosa	50	12	1	30
LITE2	Idaho licorice-root	Ligusticum tenuifolium	45	1	1	2
PEGR2	Elephanthead lousewort	Pedicularis groenlandica	65	4	1	20
POFL3	High mountain cinquefoil	Potentilla flabellifolia	55	12	1	40
SECY	Alpine meadow butterweed	Senecio cymbalarioides	45	10	1	50
Grasses:						
DECE	Tufted hairgrass	Deschampsia cespitosa	45	18	1	60
Sedges and	other grasslikes:					
CANI2	Black alpine sedge	Carex nigricans	40	7	1	25
CASC12	Holm's Rocky Mountain Sedge	Carex scopulorum	75	7	1	20
Ferns and he	orsetails:					
EQAR	Common horsetail	Equisetum arvense	40	8	1	25

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Adjacent riparian/wetland vegetation types:

Floodplains and meadows: CASC12, CAMU7, SCMI2, CAUT, ABLA-PIEN/LEGL–FLOODPLAIN, ELPA6, CANI2, PHEM MOUNDS, CALU7, SABO2/CASC12, SALIX/MESIC FORB, ALSI3/MESIC FORB.

Adjacent upland vegetation types:

Sideslopes and footslope: ABLA/VASC, ABLA/VAUL, various ABLA/PIAL types.

Management considerations—

Pacific onion is not adapted to coarse-textured soils, such as sands and loamy sands, as evidenced by the strong affinity to silt-loam and organic soils. The ALVA-CASC12 plant association may shift to the CASC12 plant association given an influx of coarse sediments into a site. Forage values ranged from 502 to 3871 (avg. 1542) kg/ ha. Deer and elk use is typically high in these meadows, but not necessarily in this association. These sites are particularly important for wildlife in the Strawberry Mountain Wilderness where watering holes are few and far between late in the season. Many of these sites are unsuitable for camping and horse pasturing owing to the wet organic soils. Wranglers should look to slightly drier, more resilient meadows, such as bluejoint reedgrass, Holm's Rocky Mountain sedge, and willow/mesic forb adjacent to the ALVA-CASC12 association for pasturing opportunities. The dense stems of Pacific onion trap silt very effectively, making this association an important nutrient filter for steep headwater streams.

USDI Fish and Wildlife Service wetlands classification—

 System: palustrine

 Class: emergent wetland

 Subclass: persistent

 Water regime: (nontidal) permanently flooded [springs and seeps] to saturated [meadows].

Adjacent riparian/wetland classifications—

The Pacific onion-Holm's Rocky Mountain sedge plant association has not previously been described. Crowe and Clausnitzer (1997) described a Pacific [swamp] onion community type in their midmontane wetland guide to northeastern Oregon that, based on the community description, fits into the Pacific onion-Holm's Rocky Mountain sedge plant association.

Floristically similar types include Holm's Rocky Mountain sedge (p. 138), northern singlespike sedgebrook saxifrage (p. 140), and Holm's Rocky Mountain sedge (Crowe and Clausnitzer 1997).

Arrowleaf Groundsel-Purple Monkeyflower Plant Association Senecio triangularis-Mimulus lewisii FW4214

SETR-MILE2

N = 11

Physical environment—

The arrowleaf groundsel-purple monkeyflower plant association occurred on steep (3 to 25, avg. 11 percent) floodplains, rocky bars, and streambanks along highelevation (2049 to 2424 m) cascading streams throughout the Eagle Cap Wilderness, Strawberry Mountain Wilderness, and Seven Devils Mountains. Valleys were mostly high-gradient (>6 percent), narrow (<30 m), V-, U-, and trough-shaped. Soils ranged from exposed cobble/ boulder bars, to moss-covered boulders, to very gravelly/ cobbly sandy loams to sandy clay loams overlying rocky alluvium. A continuous flow of cold, well-aerated water is supplied to the plant roots throughout the year.

Vegetation composition—

The stream provides the canvas upon which an impressionist's palette of colors explodes across a boulder-strewn channel. Arrowleaf groundsel and purple monkeyflower are typically rooted on rocky streambanks and midstream boulders. Brook saxifrage is often found growing below arrowleaf groundsel and purple monkeyflower along the stream edge.

Other species include Columbian monkshood, fringed grass of Parnassus, common cowparsnip, fivestamen miterwort, muskflower, seep monkeyflower, drooping woodreed, and tall mannagrass.

Adjacent upland vegetation types: Sideslopes: ABLA/VASC, ABLA/CAGE2, and ABGR/VASC.

Landform environment	. (n = 11)	Mean	Range
Elevation (m)		2163	2049–2424
Plot slope (percent)		11	3–25
Aspect	All		
Valley environment (n =	= 11)	Mode	Range
Valley gradient (percent)		>8	1–>8
Valley width (m)		<10	<10–100
Valley aspect	All		
Soil surface cover (n =	11)	Mean	Range
Submerged (percent)		23	0-50
Bare ground		7	0-32
Gravel		6	0-22
Rock		20	0-40
Bedrock		0	
Litter		13	0-30
Moss		25	0-85

Soil profile characteristics (n = 10)

Parent material Great group(s)

Alluvium Cryaquents, Cryorthents

		Mean	Range
Water table depth (cm)			0-65
Rock fragments (percent)		70	18–100
Available water capacity of	pit (cm/m)	5	1–18
pH (n = 4)		6.07	5.76-6.60
Depth to redoximorphic fea	tures (cm)	30	
Occurrence of redoximorph (percentage of soils)	ic features	10	
Surface organic layer (cm)		0	
Surface layers			
Thickness (cm)			8->30
Texture(s) ^a	L, SICL, SIL, SL, cobb	le, bould	ers
Redoximorphic features	Iron oxide concentration	ons	
Subsurface layers			
Thickness (cm)			0-41
Texture(s) ^a	L, SICL, SL, cobble, be	oulders	
Redoximorphic features	None		

^aSee "Soil Texture Codes" section.

Principal sp	pecies		CON	COV	MIN	MAX
				Per	cent	
Forbs:						
MILE2	Purple monkeyflower	Mimulus lewisii	90	18	2	60
SAAR13	Brook saxifrage	Saxifraga arguta	72	24	3	50
SETR	Arrowleaf groundsel	Senecio triangularis	100	41	10	85
Grasses:						
CILA2	Drooping woodreed	Cinna latifolia	54	5	1	10
Sedges and	other grasslikes:					
JUME3	Mertens' rush	Juncus mertensianus	27	1	1	1

Note: CON = percentage of plots in which the species occurred; COV = average canopy cover in plots in which the species occurred.

Management considerations—

The arrowleaf groundsel-purple monkey flower plant association provides soil stability and shade to steep, headwater streams. In lower gradient streams, fish take refuge under overhanging vegetation provided by this association. Forage biomass ranges from 485 to 2203 (avg. 1170) kg/ha. These sites receive low to moderate impact from browse animals for most of the year, but can provide very important feeding and watering habitat later in the season, especially in the Strawberry Mountain Wilderness. Fires are infrequent at these wet sites. In the event of a fire, the community structure of this association would not be significantly altered (Kovalchik 1987). Possible successional trajectories include: PIEN-ABLA/SETR.

USDI Fish and Wildlife Service wetlands classification— System: palustrine

Class: emergent wetland

Subclass: persistent **Water regime**: (nontidal) seasonally flooded to saturated.

Adjacent riparian/wetland classifications—

The arrowleaf groundsel-purple monkeyflower plant association has not previously been described. Arrowleaf groundsel types have been described for riparian/wetland sites in midmontane northeastern Oregon (Crowe and Clausnitzer 1997), Montana (Hansen et al. 1995), and central Oregon (Kovalchik 1987), but purple monkeyflower is noticeably absent from each of these types. Kovalchik and Clausnitzer (2004) described a Lewis monkeyflower (Mimulus lewisii) type that is similar to the arrowleaf groundsel-purple monkeyflower association but features purple monkeyflower as the indicator species and arrowleaf groundsel only occasionally occurring at low abundance.

Other floristically similar types: brook saxifrage, drooping woodreed (Crowe and Clausnitzer 1997).

Miscellaneous Forb Types

Narrowleaf Bur-Reed Plant Association

Sparganium angustifolium WL0108

The narrowleaf bur-reed plant association was found growing in subalpine lakes of the Strawberry Mountain Wilderness and Seven Devils Mountains. Sites were located in 0.5 to 3 m of water, and the community was growing out of organic lake sediments.

Narrowleaf bur-reed (avg. 72 percent) can be readily seen at the water surface, a thin leaf lying flat on top of the water with a stem standing straight up supporting a burlike flower. Bolander's quillwort (avg. 33 percent) is often present and is completely submerged, growing at the lake bottom. In shallow sections of this association, bladder or

SPAN2

N = 2

inflated sedge may be found growing alongside narrowleaf bur-reed.

The narrowleaf bur-reed plant association provides cover for trout and habitat for tadpoles and other amphibians. The narrowleaf bur-reed plant association has not previously been described.

Kovalchik and Clausnitzer (2004) described a burreed association for eastern Washington that featured simplestem bur-reed (*Sparganium erectum* L.), small bur-reed (*S. natans* L.), or other bur-reed species, but Bolander's quillwort was absent from this type.

Rocky Mountain Pond-Lily Plant Association Nuphar polysepala MT10

NUPO2

The Rocky Mountain pond-lily plant association was found growing in subalpine lakes (2226 and 2265 m) of the Seven Devils Mountains. Rocky Mountain pond-lily (avg. 45 percent) is rooted in organic substrates at the lake bottom with broad leaves and yellow flowers floating at the surface. Occasionally, pondweed, and in shallow sections of this association, few-flowered spikerush occur with Rocky Mountain pond-lily. The Rocky Mountain pondlily plant community type provides cover for trout and habitat for tadpoles and other amphibians. Kovalchik and Clausnitzer (2004) described an Indian pond-lily (*Nuphar polysepala*) association for eastern Washington, and Viereck et al. (1992) described a *Nuphar polysepala-Potamogeton* type for Alaska. A floristically similar type is pondweed (Kovalchik and Clausnitzer 2004).

Common Cattail Plant Community *Typha latifolia* MT8121

The common cattail plant community was found in a swale associated with Lightning Creek in Hells Canyon National Recreation Area at 707 m elevation. Soil great groups were Endoaqualfs. Soils were very poorly drained sandy loams to silt loams over sandy clays to silty clays. Depth to water table was 65 cm, and available water capacity of the soil was 15 cm/m. Common cattail (25 percent) was scattered thoughout the plot with a continuous cover of low-growing common horsetail. The rich herbaceous layer included heartleaf bittercress, enchanter's nightshade, giant goldenrod, rough bluegrass, watercress, big-leaved sedge, smallwing sedge, and saw-beak sedge.

TYLA

N = 1

Teasel and common St. Johnswort were also present at low abundance and are indicative of the cattle activity in the area. Common cattail and common horsetail slow floodwaters, thus reducing erosion, and act as a nutrient and sediment filter. Muskrats and Canada geese feed on the stems and roots of common cattail (USDA NRCS 2002b). In the spring, red-winged blackbirds are often heard cackling, red and black fluttering against green and brown. Common cattail types have been described by Crowe and Clausnitzer (1997), Hansen et al. (1995), Jankovsky-Jones et al. (2001), and Kovalchik and Clausnitzer (2004).

Common Cowparsnip-Blue Wildrye Plant Community Heracleum lanatum-Elymus glaucus SW3124 HELA4-ELGL

This community occurred on a steep (8 percent), seepy floodplain of a high-gradient (>8 percent) tributary to the West Fork Wallowa River in the Eagle Cap Wilderness at 1683 m elevation. The soil was shallow loam over granite bedrock. Common cowparsnip (60 percent) and blue wildrye (60 percent) occurred in equal proportions throughout the floodplain. Engelmann spruce (5 percent) occurred scattered across the landform with the occasional N = 1

twinberry honeysuckle. Herbaceous species include tall fringed bluebells, heartleaf bittercress, stinging nettle, fragrant bedstraw, western mountain aster, bluejoint reedgrass, drooping woodreed, and smallwing sedge. Total forage biomass was 896 kg/ha. This community has not previously been described. A floristically similar type is sand ryegrass (*Elymus arenarius*)-cow parsnip (*Heracleum lanatum*) (Viereck et al. 1992).

False Hellebore Plant Community Type *Veratrum* spp. FW51

Crowe and Clausnitzer (1997) described a similar type for the midmontane Blue Mountain wetlands. The same naming convention has been adapted here owing to the difficulty in differentiating *Veratrum californicum* (California false hellebore) from *V. viride* (green false hellebore), both of which occur in the Blue Mountains. Sites were located in dry/moist basins and on a stream terrace between 1662 and 2253 m. Soil great groups were Cryaquents and Cryorthents, respectively. Soils were well-drained, mediumtextured loams to clay loams over sands. Depth to water table ranged from 42 cm to greater than 1 m.

False hellebore (avg. 30 percent) stands out against the more diminutive species one might expect to occur in these meadows. A closer inspection will reveal a rich herbaceous

VERAT

N = 3

layer that may include alpine leafybract aster, common cowparsnip, heartleaf minerslettuce, arrowleaf groundsel, tall bluebells, smallwing sedge, burdocks, duncecap larkspur, and mountain tansymustard, among others.

These sites are often indicative of areas that have experienced present or past overgrazing (Crowe and Clausnitzer 1997). Vegetation potential at these sites, given suitable soil moisture, may be common cowparsnip-blue wildrye, tufted hairgrass, or Holm's Rocky Mountain sedge.

Manning and Padgett (1995) and Padget et al. (1989) described *Veratrum californicum* (California false hellebore) types for Nevada/eastern California and Utah/southeastern Idaho, respectively. A floristically similar type is bluejoint reedgrass (p. 146).

Western Coneflower Plant Community Type *Rudbeckia occidentalis* FS8101

The western coneflower plant community type occurred in high-elevation (2104 and 2159 m) moist meadows and floodplains of the Eagle Cap and Strawberry Mountain Wilderness. Soils were Cryorthents. Soils were shallow, moderately well-drained, cobbly silt loams. Western coneflower (avg. 25 percent) co-occurs with a variety of forb and graminoid species. The western coneflower plant community commonly occurs throughout the Blue Mountains in areas of present or past overgrazing. Often, this type occurs in areas where down-cutting of the stream has lowered the water table and soils have dried out and compacted. Vegetation potential at these sites, given

RUOC2

N = 2

suitable soil moisture, is most likely ALSI3/MESIC FORB, ALIN2/GLEL, ALVA-CASC12, or CASC12.

Adjacent riparian/wetland vegetation types: Floodplains: SETR/MILE2, ALIN2/GLEL. Springs: CALE8.

Adjacent upland vegetation type: ABLA/CAGE2.

Johnson (2004a) described a western coneflower-cluster tarweed community for alpine uplands of northeastern Oregon similar to the western coneflower plant community type described here. A floristically similar type is *Mertensia ciliata* (tall fringed bluebells) (Padgett et al. 1989).

White Sagebrush Plant Community Type Artemisia Iudoviciana SD01

This community type occurred on a steep (25 percent) cobble bar associated with a high-gradient (>8 percent) tributary to East Eagle Creek in the Eagle Cap Wilderness at 1695 meters. White sagebrush was growing in loamy coarse sand between cobbles and boulders. Scattered forbs and grasses include western coneflower, Rocky Mountain goldenrod, nettleleaf horsemint, boreal sweetvetch, tall fringed bluebells, snowbed draba, tasselflower brickellbush, and western needlegrass. Total forage biomass was 1120 kg/ ha. White sagebrush provides food and cover for deer, elk, sage grouse, rabbits, chipmunks, and other small mammals

ARLU

N = 1

(USDA NRCS 2002b). Cattle will also browse on white sagebrush. This community is resilient to grazing owing to the rocky soils and rapid growth of white sagebrush.

Adjacent upland vegetation types:

Meadows and sideslopes: CAHO5, ABGR/VASC.

Potential successional trajectories: SAEX.

White sagebrush types have been described for the Columbia River basin and southwestern Idaho by Crawford (2001) and Jankovsky-Jones et al. (2001), respectively.

Acknowledgments

I thank the Wallowa-Whitman National Forest for the financial support provided to complete this classification. Elizabeth Crowe and Rodrick Clausnitzer supplied a classification of the midmontane wetland plant associations of the Blue Mountains. The midmontane classification provided the impetus for this extension into the deep canyon and subalpine riparian zones and wetlands of the Blue Mountains. I thank Elizabeth Crowe for collecting the first half of the data used in the classification. After 4 years, without her efforts, I would only be halfway through the data collection process rather than preparing for the completion of this work. I thank Charles Johnson, Region 6 plant ecologist for more than 20 years and mentor to many a "budding" ecologist, for providing logistical support for the field sampling effort and his participation on my advisory committee. I thank Dave Swanson (USFS Region

6 Ecologist) for his helpful comments, and for sticking with this publication through to completion. I thank my major professor Dr. Dave Roberts, and Dr. Janis Boettinger at Utah State University for their advice and open-door policy throughout the preparation of this document. I thank two outside reviewers: Tom Demeo (USFS Region 6 Regional Ecologist), and Bernard Kovalchik for their review and helpful comments. I thank my field technicians, Brittany Steele and Rich Mator, for their hard work and high spirits throughout many long days in the field. I thank the many people who aided our travels into the wilderness whether by truck, jetboat, or horseback including Roy Lombardo, John Hollenbeck, Ricky Thompson, and Daarla Seymour. I thank Rob Johnson and the Utah State University RS-GIS Laboratory for creating a map of the study area. Lastly, I thank my family and friends for their support and laughter that makes it all worthwhile.

English Equivalents

When you know:	Multiply by:	To find:
Millimeters	0.0394	Inches
Centimeters (cm)	0.394	Inches
Meters (m)	3.28	Feet
Meters	1.094	Yards
Kilometers (km)	0.6215	Miles
Hectares (ha)	2.47	Acres
Square meters (m ²)	10.76	Square feet
Square kilometers (km ²)	0.386	Square miles
Kilograms per hectare (kg/ha)	0.893	Pounds per acre
Square meters per hectare (m^2/ha)	4.37	Square feet per acre
Centimeters per meter	0.12	Inches per foot
Bar	14.5	Pounds per square inch

Soil Texture Codes

Texture code:	Texture explained:	
C	Clay	
CL	Clay loam	
CS	Clayey sand	
ECS	Extremely cobbly sand	
FSCL	Fine sandy clay loam	
FSL	Fine sandy loam	
L	Loam	
LCS	Loamy coarse sand	
LS	Loamy sand	
S	Sand	
SC	Sandy clay	
SCL	Sandy clay loam	
SI	Silt	
SICL	Silty clay loam	
SIL	Silt loam	
SL	Sandy loam	
VFSL	Very fine sandy loam	

References

Avery, T.E.; Burkhart, H.E. 2002. Forest measurements. New York: McGraw-Hill. 456 p.

Behmer, D.J.; Hawkins, C.P. 1986. Effects of overhead canopy on macroinvertebrate production in a Utah stream. Freshwater Biology. 16: 287–300.

Boelter, D.H. 1969. Physical properties of peats as related to degree of decomposition. Soil Science Society of America Proceedings. 33: 606–609.

Boettinger, J. 2003. Personal communication. Associate professor, Department of Plants, Soils, and Biometeorology, Utah State University, Logan, UT 84322.

Carrey, J.; Conley, C.; Barton, A. 1979. Snake River in Hells Canyon. Cambridge, ID: Backeddy Books. 399 p.

 Clausnitzer, R.R. 1993. The grand fir series of northeastern Oregon and southeastern Washington: successional stages and management guide. R6-ECO-TP-050-93. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 193 p.

Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service; Jamestown, ND: Northern Prairie Wildlife Research Center. http:// www.npwrc.usgs.gov/resource/1998/classwet/classwet. htm. (March 4, 2006).

Crane, M.F. 1989. Cornus sericea. In: Fischer, W.C., comp. The fire effects information system [database]. Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Intermountain Fire Science Laboratory. [Magnetic tape reels; 9 tracks; 1600 bpi, ASCII with Common LISP present.]

Crawford, R.C. 2003. A riparian vegetation classification of the Columbia Basin, Washington. Olympia, WA: Washington Natural Heritage Program, Washington Department of Natural Resources. 119 p.

Crowe, E.A.; Clausnitzer, R.R. 1997. Mid-montane wetland plant associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests. Tech. Pap. R6 NR-ECOL-TP-22-97. Baker City, OR: U.S. Department of Agriculture, Forest Service, Wallowa-Whitman National Forest. 299 p.

Delong, D.D.; Brusven, M.A. 1998. Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management. 22: 445–457.

Diaz, N.M.; Mellon, T.K. 1996. Riparian ecological types—Gifford Pinchot and Mt. Hood National Forests, Columbia River Gorge National Scenic Area. R6-NR-TP-10-96. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 203 p.

Fail, J.L., Jr.; Haines, B.L.; Todd, R.L. 1988. Riparian forest communities and their role in nutrient conservation in an agricultural watershed. American Journal of Alternative Agriculture. 2: 114–121.

Fleischner, T.L. 1994. Ecological costs of livestock grazing in western North America. Conservation Biology. 8: 629–644.

Galiano, E.F.; Sterling, A.; Viejo, J.L. 1985. The role of riparian forests in the conservation of butterflies in a Mediterranean area. Environmental Conservation. 12: 361–362.

Gomi, T.; Sidle, R.C.; Richardson, J.S. 2002. Understanding processes and downstream linkages of headwater systems. BioScience. 52: 905–916.

Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. 1991. An ecosystem perspective of riparian zones. BioScience. 41: 540–551.

Gurnell, A.M.; Piegay, H.; Swanson, F.J.; Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology. 47: 601–619.

Habeck, R.J. 1991. Crataegus douglasii. In: Fischer, W.C., comp. The fire effects information system [database].
Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Intermountain Fire Science Laboratory. [Magnetic tape reels; 9 tracks; 1600 bpi, ASCII with Common LISP present.]

Habeck, R.J. 1992. Physocarpus malvaceous. In: Fischer, W.C., comp. The fire effects information system [database]. Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Intermountain Fire Science Laboratory.
[Magnetic tape reels; 9 tracks; 1600 bpi, ASCII with Common LISP present.]

Hansen, P.L.; Boggs, K.; Cook, B.J.; Joy, J.; Hinckley,
D.K.; Pfister, R.D. 1995. Classification and management of Montana's riparian and wetland sites. Misc. Publ. 54. Missoula, MT: Montana Riparian Association. 646 p.

Hawkins, C.P. 1986. Variation in individual growth rates and population densities on Ephemerellid mayflies. Ecology. 67: 1384–1395. Hawkins, C.P.; Murphy, M.L.; Anderson, N.H.;
Wilzbach, M.A. 1983. Density of fish and salamanders in relation to riparian canopy and physical habitat in streams of the Northwestern United States. Canadian Journal of Fisheries and Aquatic Sciences. 40: 1173–1184.

Hitchcock, C.L.; Cronquist, A. 1973. Flora of the Pacific Northwest. Seattle, WA: University of Washington Press. 730 p.

Jankovsky-Jones, M.; Murphy, C.; Coulter, C. 2001. Riparian and wetland plant associations of southwestern Idaho with a focus on the Bureau of Land Management's lower Snake River district. BLM/ID/ST-01/019+1730. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 183 p.

Johnson, C.G., Jr. 2004a. Alpine and subalpine vegetation of the Wallowa, Seven Devils, and Blue Mountains. R6-NR-ECOL-TP-03-04. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 612 p.

Johnson, C.G., Jr. 2004b. Personal communication. Ecologist, retired, Wallowa-Whitman National Forest, P.O. Box 907, 1550 Dewey Avenue, Baker City, OR 97814.

Johnson, C.G., Jr.; Clausnitzer, R.R. 1992. Plant associations of the Blue and Ochoco Mountains. R6-ERW-TP-036-92. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 164 p.

Johnson, C.G., Jr.; Simon, S.A. 1987. Plant associations of the Wallowa-Snake Province. R6-ECOL-TP-255A-86. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 400 p.

Karrenberg, S; Edwards, P.J.; Kollmann, J. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology. 47: 733–748.

Kaufman, L.; Rousseeuw, P.J. 1990. Finding groups in data: an introduction to cluster analysis. New York, NY: John Wiley & Sons Inc. 342 p.

Klimas, C.V.; Martin, C.O.; Teaford, J.W. 1981. Impacts of flooding regime modification on wildlife habitats of bottomland hardwood forests in the lower Mississippi Valley. Tech. Rep. EL-81-13. Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station. 63 p.

Kovalchik, B.L. 1987. Riparian zone associations of the Deschutes, Ochoco, Fremont, and Winema National Forests. R6-ECOL-TP-279-87. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 171 p.

Kovalchik, B.L. 2004. Personal communication. Area ecologist, retired. Colville National Forest, 755 South Main Street, Colville, WA 99114.

Kovalchik, B.L.; Clausnitzer, R.R. 2004. Classification and management of aquatic, riparian, and wetland sites on the national forests of eastern Washington: series descripton. Gen. Tech. Rep. PNW-GTR-593. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 354 p.

Kozlowski, T.T. 1984. Plant responses to flooding of soils. BioScience. 34: 162–167.

Li, H.W.; Lamberti, G.A.; Pearson, T.R.; Tait, C.K.; Li, J.L.; Buckhouse, J.C. 1994. Cumulative effects of riparian disturbance along high desert trout streams of the John Day Basin, Oregon. Transactions of the American Fisheries Society. 123: 627–640.

Loft, E.R.; Menke, J.W.; Kie, J.G. 1991. Habitat shifts by mule deer: the influence of cattle grazing. Journal of Wildlife Management. 55: 16–26.

Malanson, G.P. 1993. Riparian landscapes. New York: Cambridge University Press. 296 p.

 Manning, M.E.; Padgett, W.G. 1995. Riparian community type classification for Humboldt and Toiyabe National Forests, Nevada and eastern California. R4-ECOL-95-01. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 306 p.

Miller, T.B. 1976. Ecology of riparian communities dominated by white alder in western Idaho. Moscow, ID: University of Idaho. 154 p. M.S. thesis.

Naiman, R.J.; Decamps, H. 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics. 28: 621–658.

Naiman, R.J.; Decamps, H.; Pollock, M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications. 3: 209–212.

Nicholls, K.H.; Tudorancea, C. 2001. Application of fuzzy cluster analysis to Lake Simcoe crustacean zooplankton community structure. Canadian Journal of Fisheries and Aquatic Sciences. 58: 231–240.

Orr, E.L.; Orr, W.N. 1999. Geology of Oregon, 5th ed. Dubuque, IA: Kendall/Hunt Publishing Company. 254 p.

Padgett, W.G. 1981. Ecology of riparian plant communities in southern Malheur National Forest. Corvallis, OR: Oregon State University. 143 p. M.S. thesis. Padgett, W.G.; Youngblood, A.P.; Winward, A.H.
1989. Riparian community type classification of Utah and southeastern Idaho. R4-ECOL-89-01. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 191 p.

Pinay, G.; Clement, J.C.; Naiman, R.J. 2002. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environmental Management. 30: 481–491.

Pohs, K. 2000. The Wallowa Mountains: a natural history guide. Portland, OR: Northwest Mountain Works. 207 p.

Ripley, B. 2005. Library—tree: classification and regression trees. Function: tree(). http://cran.us.r-project. org. (April 3, 2006).

Snyder, S.A. 1991. Symphoricarpos albus. In: Fischer, W.C., comp. The fire effects information system [database]. Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Intermountain Fire Science Laboratory. [Magnetic tape reels; 9 tracks; 1600 bpi, ASCII with Common LISP present.]

Spatial Climate Analysis Service [SCAS]. 2000. United States average annual precipitation, 1971–1990. Oregon State University. http://www.ocs.oregonstate.edu/prism/. (April 3, 2006).

Steele, R; Pfister, R.D.; Ryker, R.A.; Kittams, J.S. 1981. Forest habitat types of central Idaho. Gen. Tech. Rep. INT-114. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 138 p.

Tabacchi, E.; Correll, D.L.; Hauer, R.; Pinay, G.; Planty-Tabacchi, A-M; Wissmar, R.C. 1998. Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology. 40: 497–516.

Tait, C.K.; Li, J.L.; Lamberti, G.A.; Pearsons, T.N.; Li, H.W. 1994. Relationship between riparian cover and the community structure of high desert streams. Journal of the North American Benthological Society. 13: 45–56.

Taylor, D.M. 1986. Effects of cattle grazing on passerine birds nesting in riparian habitat. Journal of Rangeland Management. 39: 254–258.

Thomas, J.W. 1979. Wildlife habitats in managed forest, the Blue Mountains of Oregon and Washington. Agric. Handb. 553. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 512 p. U.S. Department of Agriculture, Natural Resources Conservation Service [USDA NRCS]. 1998. Keys to soil taxonomy, 8th ed. Blacksburg, VA: Pocahontas Press. 600 p.

U.S. Department of Agriculture, Natural Resources Conservation Service [USDA NRCS] 2002a. National soil survey handbook, title 430-VI. http://soils.usda.gov/ technical/handbook/. (April 3, 2006).

U.S. Department of Agriculture, Natural Resources Conservation Service [USDA NRCS] 2002b. The PLANTS database, Version 3.5. Baton Rouge, LA: National Plants Data Center. http://plants.usda.gov. (April 3, 2006).

U.S. Department of Agriculture, Natural Resources Conservation Service [USDA NRCS] 2002c. Soil survey of Calhoun County Florida. Washington, DC: U.S. Department of Agriculture, Natural Resource Conservation Service. http://soils.usda.gov/survey/ online_surveys/florida/. (April 3, 2006).

Vallier, T. 1998. Islands and rapids: a geologic story of Hells Canyon. Lewiston, ID: Confluence Press. 151 p.

Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Gushing, E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences. 37: 130–137.

Viereck, L.A.; Dyrness, C.T.; Batten, A.R.; Wenzlick, K.J. 1992. The Alaska vegetation classification.
Gen. Tech. Rep. PNW-GTR-286. Portland, OR: U.S.
Department of Agriculture, Forest Service, Pacific Northwest Research Station. 278 p.

Walkup, C.J. 1991. Athyrium filix-femina. In: Fischer, W.C., comp. The fire effects information system [database]. Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Intermountain Fire Science Laboratory. [Magnetic tape reels; 9 tracks; 1600 bpi, ASCII with Common LISP present.]

Whitson, T. D.; Burrill, L.C.; Dewey, S.A.; Cudney, D.W.; Nelson, B.E.; Lee, R.D.; Parker, R. 1996.
Weeds of the West. Newark, CA: Western Society of Weed Science. 630 p.

Youngblood, A.P.; Padgett, W.G.; Winward, A.H. 1985. Riparian community type classification of eastern Idaho-western Wyoming. R4-ECOL-85-01. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 89 p.

Glossary

alluvium—Sediments deposited on land by streams and rivers.

alluvial fan—A low, outspread mass of loose materials or rock material, commonly with gentle slopes, shaped like an open fan or a segment of a cone, deposited by a stream (best expressed in semiarid regions) at the place where it issues from a narrow mountain or upland valley; or where a tributary stream is near or at its junction with the main stream (USDA NRCS 2002a).

alpine—The area above the upper limits of (erect) tree growth.

anaerobic—A condition characterized by the absence of free oxygen.

aquatic ecosystem—The stream channel or lake bed, the water, and the vegetative communities associated with them, forming an interacting system.

aquic (soil moisture regime)—A reducing regime in a soil that is virtually free of dissolved oxygen because it is saturated by water (USDA NRCS 1998).

available water capacity (AWC)—An estimate of the water available to plants between permanent wilting point and field capacity **after** hydric soils have been drained by gravity.

average cover—The average percentage of canopy cover of a species for the sample stands where it was recorded. For example, a vegetation type may be composed of 12 sample stands, but a particular species may be present in only 5 of those stands. The average cover for that species is calculated as the average canopy cover in those five stands.

bank or streambank—The sloping land bordering a channel. The bank has a steeper slope than the bottom of the channel and is usually steeper than the land surrounding the channel.

bar, cobble bar, gravel bar, or rocky bar—A general term for a ridgelike accumulation of sand, gravel, or other alluvial material formed in the channel, along the banks, or at the mouth of a stream where a decrease in velocity induces deposition: e.g. a channel bar or a meander bar (USDA NRCS 2002a).

basal area—The area of the cross section of a tree trunk 4.5 ft above the ground, usually expressed as the sum of tree basal areas in square feet per acre.

basin—A depression or hollow in the land surface surrounded by higher ground.

bog—A soil/vegetation complex in which the upper part is living plant tissue gradually changing to partially decomposed plant tissue (peat) in the lower part. Usually saturated, relatively acid, and dominated at ground level by mosses. Bogs may be either forested or open. They are distinguished from swamps and fens by the dominance of mosses and the presence of peat deposits.

boulder—Rock fragments greater than 600 mm (24 in) in diameter.

browse—Shrubby or woody forage used especially by big game.

canyon—A long, deep, narrow, very steep-sided valley with high and precipitous walls in an area of high local relief.

channel—An open conduit either naturally or artificially created that periodically or continuously contains moving water, or that forms a connecting link between two bodies of standing water.

cirque—A steep-walled, half bowl-like recess or hollow, crescent-shaped or semicircular in plan, commonly situated at the head of a glaciated mountain valley or high on the side of a mountain, and produced by the erosive activity of a mountain glacier (USDA NRCS 2002a).

classification—The orderly arrangement of objects according to their differences and similarities.

clay—Soil particles less than 0.002 mm in diameter.

climax—Climax has been defined as the kind of plant community that will come to occupy a site under existing hydrology (flooding regime and mean annual water table depth ranges), soils (parent material, particle size, chemistry), microclimate and fluvial surface. It is the "stable state" where change in the vegetation is minimal over time and competition is so great from prevailing species that "invaders" are excluded and "increasers" are held to low levels. The plant association is the climax plant community on a site.

climax species—A species that is self-regenerating, in the absence of change in the hydrology, soils, and microclimate (see above definition) with no evidence of replacement by other species.

cobble—Rock fragments greater than 75 mm (3 in) and less than 250 mm (10 in) in diameter.

colluvial—Pertaining to material transported and deposited by gravitational action and local unconcentrated runoff on and at the base of steep slopes.

colluvium—Unconsolidated earth material deposited on and at the base of steep slopes by direct gravitational action and local unconcentrated runoff. **common**—When relating to plant coverage any species having a canopy coverage of 5 percent or more in a stand.

constancy—The percentage of sample stands in which each species occurs.

cover, canopy cover—When relating to plant species, cover is the area covered by the generalized outline of an individual plant's foliage, or collectively covered by all individuals of a species within a stand or sample area. Canopy coverage is expressed as a percentage of the total area of the plot.

cryic (soil temperature regime)—Soils in this temperature regime have a mean annual temperature lower than 8 °C but do not have permafrost (USDA NRCS 1998).

depauperate—An unusually sparse coverage of undergrowth vegetation. This condition usually develops beneath an especially dense forest canopy, often on sites having a deep layer of duff.

disturbed—Directly or indirectly altered, by humans, from a natural condition, yet retaining some natural characteristics.

diversity—The number of species in a community, and their relative abundances, per unit area or volume.

ecological status—The degree of departure of the current vegetation from climax. Cause of departure is not considered; therefore, ecological status may include, but is not limited to, the concept of range condition. The only consideration is the difference in species density and composition between existing and climax vegetation. Three classes are used: climax/late seral, mid seral, and early seral.

ecosystem—A complete interacting system of organisms and their environment.

ecotone—A boundary between adjacent plant communities.

edaphic—Owing to soil or topography rather than general climate.

emergent vegetation—Dominated by erect, rooted, herbaceous angiosperms that may be temporarily to permanently flooded at the base but that do not tolerate prolonged inundation of the entire plant.

entisol—Those soils that normally have little or no evidence of pedogenic processes, and are subsequently very little developed.

ephemeral stream or spring—A stream, reach of a stream, or spring that flows for only part of the year, generally coinciding with contributions from melting snow or seasonal subsurface sources.

erosion—The wearing away of the land surface by running water, waves, moving ice and wind, or by such processes as mass wasting and corrosion.

flood storage—The process by which peak flows (from precipitation, runoff, groundwater discharge, etc.) enter a wetland and are delayed in their downslope journey.

fluvial—Pertaining to or produced by the action of a stream or river.

fluvial surface(s)—The various land surfaces associated with the riparian zone such as active and inactive flood-plains, active channel shelves, streambanks, and overflow channels.

floodplain—The nearly level plain that borders a stream and is subject to inundation under flood-stage conditions. It is usually a constructional landform built of sediment deposited during overflow and lateral migration of the streams (USDA NRCS 2002a).

forage—The aboveground biomass (air-dried kilograms per hectare) of all grasses, sedges, and forbs; no allowance is made for proper use factors.

foraging/feeding—Collection or consumption of food, gravel, or necessities for nutrition.

forb—Any herbaceous plant, usually broad leaved, that is not a graminoid.

forbs (vegetation key)—Adiantum pedatum, Allium validum, Artemisia ludoviciana, Equisetum arvense, Heracleum lanatum, Menyanthes trifoliata, Mimulus lewisii, Nuphar polysepala, Rudbeckia occidentalis, Saxifraga arguta, Senecio triangularis, Sparganium angustifolium, Typha latifolia, Veratrum spp., Veronica americana.

forest or forested—An area of the Earth's surface, greater than or equal to 1/10 acre, with at least 10 percent cover of primary or subordinate overstory tree species. Forest or forested does not include areas with overhanging tree limbs.

geomorphology—The science that treats the general configuration of the Earth's surface; specifically the study of the classification, description, nature, origin, and development of landforms and their relationships to underlying structures and of the history of geologic changes as recorded by these surface features.

glacial till—Unsorted and unstratified glacial drift, generally unconsolidated, deposited directly by a glacier without subsequent reworking by water from the glacier. **gradient (valley gradient)**—The slope of the valley floor in percent:

very low	Less than 1 percent
low	1–3 percent
moderate	4-5 percent.
high	6-8 percent
very high	Greater than 8 percent

graminoid—Grass or grasslike plant, such as bluegrass (*Poa*), sedge (*Carex*), and rush (*Juncus*) species.

gravel—Rock fragments greater than 2 mm (0.1 in) and less than 75 mm (3 in) in diameter.

groundwater—Subsurface water in porous strata within the zone of saturation.

habitat type—All the land capable of producing similar plant communities at climax.

herbaceous—Nonwoody vegetation, such as grasses and forbs.

hydric soils—Soils that form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (USDA NRCS 2002a).

indicator species—Indicator species are plants that designate thresholds of environmental change along gradients (Johnson 2004a).

krummholz—Trees dwarfed and twisted because of severe climate (wind, low temperature, etc.) at the high-elevation limits of forest development.

lacustrine—Permanently flooded lakes and reservoirs, whose total area exceeds 8 ha (19.8 acres) or whose maximum depth exceeds 2 meters at low water.

lakeshore—Land on or near a lake between the ordinary high-water mark and low-water mark.

landform—Any element of the landscape characterized by a distinctive surface expression, internal structure, or both, and sufficiently conspicuous to be included in a physiographic description.

low elevation—The elevation range between sea level and the midmontane zone. Note: The upper limit of this region varies with microclimatic conditions and may extend above the base of adjacent foothills.

low shrub—A woody plant, which at maturity is usually less than 1 m (~3 ft) tall, and generally exhibits several erect, spreading, or prostrate stems and has a bushy appearance; e.g., pink mountainheath (*Phyllodoce empetriformis*) or shrubby cinquefoil (*Potentilla fruiticosa*). low shrubs (vegetation key)—Artemisia cana, Artemisia tridentata var. vaseyana, Kalmia microphylla, Ledum gladulosum, Phyllodoce empetriformis, Potentilla fruiticosa

meander—A meander is one of a series of sinuous loops, with sine wave form, in the course of a stream channel. Meandering stream channels commonly have cross sections with low width-to-depth ratios, fine-grained bank materials, and low gradient.

moderate elevation (midmontane)—A zone identified by characteristic vegetation, which does not extend below the upper elevation of adjacent foothills or into the subalpine. The boundary between the midmontane and subalpine zones varies considerably from one geographical region to another and with microclimatic conditions.

microsites—Relatively small, scattered areas on a landform having environmental conditions uncharacteristic of the landform at large.

mineral soil—Soil composed of predominantly mineral rather than organic materials.

moist graminoids (vegetation key)—Agrostis diegoensis, Agrostis stolonifera, Alopechurus pratensis, Calamagrostis canadensis, Carex jonesii, Carex laeviculmis, Carex luzulina, Carex microptera, Carex muricata, Carex nebrascensis, Carex nigricans, Carex praegracilis, Carex scirpoidea, Carex scopulorum, Carex sheldonii, Carex subfusca, Cinna latifolia, Deschampsia cespitosa, Elymus glauca, Juncus balticus, Poa pratensis, Puccinellia pauciflora

moist meadow—A meadow, or part of a meadow, in which the soils are not completely saturated for any part of the year; or if so, saturated for only a short period early in the growing season.

moraine—A rounded ridge, hill, or mound of rubble left behind by a retreating glacier.

natural—primarily composed of native biota, and occurring within a physical system that has developed through natural processes without human intervention.

organic loam—A generalized name for soils having more than 12 percent organic particles in addition to clay, silt, and sand.

organic soil—Soil composed of at least 12 percent or more organic carbon if the mineral fraction contains 60 percent or less clay; or at least 18 percent organic carbon if the mineral fraction contains more than 60 percent. Equivalent to Histosol in soil taxonomy. other tall shrubs (vegetation key)—Acer glabrum, Amelanchier alnifolia, Betula occidentalis, Celtis reticulata, Cornus stolonifera, Lonicera involucrata, Philadelphus lewisii, Physocarpus spp., Ribes spp., Rubus bartonianus, Rubus discolor, Rubus parviflorus, Symphoricarpos albus.

palustrine—Tidal and nontidal wetlands dominated by trees, shrubs, persistent emergents, and emergent mosses or lichens where salinity owing to ocean derived salts is below 0.5 parts per thousand (ppt); also included are wetlands without such vegetation, but with all of the following characteristics: (1) area less than 8 hectares; (2) active wave formed or bedrock shoreline features lacking; maximum water depth less than 2 m at low water; (3) ocean-derived salinity less than 0.5 ppt.

peat—Unconsolidated soil material consisting largely of decomposed or only slightly decomposed organic mater accumulated under conditions of excessive soil moisture.

moss peat—Peat soil composed of partially decomposed sphagnum or other mosses.

sedge peat—Peat soil composed of partially decomposed sedges, bulrushes, rushes, etc.

woody peat—Peat soil composed of partially decomposed wood.

perched water table—Zone of saturated soil that lies above a zone of unsaturated soil within 200 cm of the soil surface. Also called episaturation.

perennial stream—A stream that runs aboveground throughout its length and throughout the year.

permanently flooded—Water covers the land surface throughout the year in all years.

pioneer plants—Herbaceous annual and seedling perennial plants that colonize bare areas as a first stage in secondary succession.

plant association—As defined by Kovalchik (1987): "an assemblage of native vegetation in equilibrium with the environment on a specific fluvial surface." The implication is that as the environment (water regime, soils, etc.) changes through time, the vegetative potential shifts.

plant community—An assemblage of plants living together and interacting among themselves in a specific location.

plant community type—A set of plant communities with similar structure and floristic composition that are seral in nature and often follow directly from a disturbance event (fire, flooding, etc.). Assuming a constant environment over a given time, a plant community type will undergo a natural shift in floristic composition through plant succession.

point bar—One of a series of low, arcuate ridges of sand and gravel developed on the inside of a growing meander by the slow addition of individual accretions accompanying migration of the channel toward the outer bank (USDA NRCS 2002a).

primary overstory tree—A tree whose crown is positioned in the uppermost canopy layer in a forest.

redoximorphic concentrations—Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation (USDA NRCS 2002c).

redoximorphic depletions—Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation (USDA NRCS 2002c).

redoximorphic features—Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha, alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation (USDA NRCS 2002c).

reduced matrix—A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III) (USDA NRCS 2002c).

rhizome—A creeping underground stem from which aerial stems arise.

rhizomatous-Bearing rhizomes.

riparian zone (ecosystem)—Riparian zones are defined more specifically as the strip of land along streams or rivers that is affected by stream processes (flooding, sedimentation, etc.) and that, in turn, affects stream structure and function.

rock fragments—Any pieces of rock larger that 2 mm located in a soil profile including gravels (2 to 75 mm), cobbles (75 to 250 mm), stones (250 to 600 mm), and boulders (>600 mm).

root crown—The persistent base of an herbaceous perennial. Also used in this book as the top of the root system of a shrub from which multiple aerial stems arise.

rootstock—A thickened root that can branch and from which aboveground stems arise.

saturated—The substrate is inundated with water to the surface for extended periods during the growing season, but surface water is seldom present.

scarce—When relating to plant coverage in the vegetation key, any species that is absent or has a canopy coverage of less than 1 percent.

seasonal channel—A stream channel that contains running water only in spring during the annual flood event. Often, standing water remains in the lowest sections until the next flood event.

seasonally flooded—Surface water is present for extended periods especially early in the growing season, but is absent by the end of the season in most years. When surface water is absent, the water table is often near the land surface. (See also *semipermanently flooded*.)

sediment—Solid material, both mineral and organic, that is in suspension, is being transported, or has been moved from its site of origin by water and has come to rest on the Earth's surface.

sedimentary (rock)—A consolidated deposit of clastic particles, chemical precipitates, or organic remains accumulated at or near the surface of the Earth under "normal" low temperature and pressure conditions. Sedimentary rocks include consolidated equivalents of alluvium, colluvium, drift, and eolian, lacustrine, marine deposits; e.g., sandstone, siltstone, mudstone, clay-stone, shale, conglomerate, limestone, dolomite, coal, etc. (USDA NRCS 2002a).

seep—An area, generally small, where water percolates slowly to the ground surface. For water, it may be considered as a seepage spring, but it is used in some cases for flows too small to be considered as springs (USDA NRCS 2002a).

seral—Refers to species or communities that are eventually replaced by other species or communities within a successional sere.

shrub—A woody plant that at maturity is usually less than 6 m (20 ft) tall and generally exhibits several erect, spreading, or prostrate stems and has a bushy appearance; e.g., mountain alder (*Alnus incana*) or Booth's willow (*Salix boothii*).

silt—Soil particles between 0.02 mm and 0.002 mm in diameter; as a textural class, a mixture of 20 to 50 percent sand, 30 to 80 percent silt, and 10 to 30 percent clay-sized particles.

spring or groundwater spring—An area where ground-water flows onto the Earth's surface.

stand—An existing plant community that is relatively uniform in composition, structural, and site conditions; thus, it may serve as a local example of a community type or association.

stolon—An elongate, creeping stem on the surface of the ground.

stoloniferous-Bearing stolons.

stone—Rock fragments greater than 250 mm (10 in) and less than 600 mm (24 in) in diameter.

stream channel—The hollow bed where a natural body of surface water flows or may flow (USDA NRCS 2002a).

subalpine—The elevational region, identifiable by characteristic vegetation, between the midmontane and alpine zones. The boundaries between these zones vary considerably from one geographical region to another and with microclimatic conditions.

subordinate overstory tree—A tree whose crown is positioned slightly below the uppermost canopy layer of a forest.

succession—The progressive changes in plant communities toward a steady state. Primary succession begins on a bare surface not previously occupied by plants, such as a recently deposited gravel bar. Secondary succession occurs following disturbances on sites that previously supported vegetation.

swale—A microtopographical depression (typically less than 50 cm deep) on a floodplain that retains water longer than surrounding, slightly higher soil surfaces.

sward (turf)—A covering of grass or grasslike plants, with its matted roots, forming the surface of a grassland, meadow, etc.

tall shrub—A woody plant, that at maturity is usually greater than or equal to 1 m (~3 ft) and less than 6 m (20 ft) tall, and generally exhibits several erect, spreading, or prostrate stems and has a bushy appearance; e.g., water birch (*Betula occidentalis*) or netleaf hackberry (*Celtis reticulata*).

terrace or stream terrace—One or a series of platforms in a stream valley, flanking and more or less parallel to the stream channel, originally formed near the level of the stream, and representing the remnants of an abandoned floodplain, streambed, or valley floor produced during a former state of fluvial erosion or deposition (i.e., currently very rarely or never floods, inactive cut and fill or scour and fill processes) (USDA NRCS 2002a). **topography**—The relative positions and elevations of the natural or manmade features of an area that describe the configuration of its surface.

tree—A woody plant that at maturity is usually 6 m (20 ft) or more in height and generally has a single trunk unbranched to about 1 m (3 ft) above the ground and a more or less definite crown.

understory tree—A tree with a diameter at breast height (4.5 ft) less than 5 in.

upland—Land at a higher elevation, in general, than the alluvial plain or low stream terrace.

ustic (soil moisture regime)—A soil in which moisture is limited but is present at a time when conditions are suitable for plant growth (USDA NRCS 1998).

valley—An elongate, relatively large, externally drained depression of the Earth's surface.

vegetation type—A general term referring to plant associations, plant community types, and plant communities.

volcanic—Pertaining to the structures, rocks, and land-forms produced by volcanic action.

water path—Used in the description of bogs such as the few-flowered spikerush association to describe shallow, wide depressions in which water collects and flows during periods of high water. These are not streambeds (Kovalchik 1987).

water table—The depth below which the ground is saturated with water. The depth to standing water.

weathering—All physical and chemical changes produced in rocks or other deposits at or near the Earth's surface by atmospheric agents with essentially no transport of the altered material. These changes result in disintegration and decomposition of the material.

wet graminoids (vegetation key)—*Carex amplifolia, Carex aquatilis, Carex canascens, Carex cusickii, Carex eurycarpa, Carex lanuginosa, Carex lasiocarpa, Carex lenticularis, Carex leporinella, Carex limosa, Carex nudata, Carex simulata, Carex stipata, Carex utriculata, Carex vesicaria, Eleocharis bella, Eleocharis palustris, Eleocharis pauciflora, Glyceria elata, Scirpus microcarpus.*

wet meadow—A meadow, or part of a meadow, in which the soil is completely saturated for most to all of the year.

wetland—Lands within or adjacent to, and hydrologically influenced by, streams, rivers, lakes, meadows, and seeps (Cowardin et al. 1979)

wetland/riparian species (hydrophytes)—Plant species occurring within the wetland/riparian zone. Obligate species require the environmental conditions within the wetland zone. Facultative species tolerate the environmental conditions but may also occur away from the wetland zone.

xeric (soil moisture regime)—In areas of a xeric moisture regime, the soil moisture, in normal years, is dry in all parts for 45 or more consecutive days in the 4 months following the summer solstice and moist in all parts for 45 or more consecutive days in the 4 months following the winter solstice (USDA NRCS 1998).

Appendix A: Total Species List

A listing of all plant species encountered during the field sampling effort including Code—the USDA Plants code (USDA NRCS 2002b); Scientific Name—Latin name, including author epithet, of each species following Hitchcock and Cronquist (1973); Common Name—a common name for each species.

Code	Scientific name	Common name
Trees:		
ABGR	Abies grandis (Dougl. ex D. Don) Lindl.	grand fir
ABLA	Abies lasiocarpa (Hook.) Nutt.	subalpine fir
ACNE2	Acer negundo L.	boxelder
ALRH2	Alnus rhombifolia Nutt.	white alder
ALRU2	Alnus rubra Bong.	red alder
BEPAS	Betula papyrifera Marsh. var. subcordata (Rydb.) Sarg.	heartleaved paper birch
JUNI	Juglans nigra L.	black walnut
JUOC	Juniperus occidentalis Hook.	western juniper
LAOC	Larix occidentalis Nutt.	western larch
PIAL	Pinus albicaulis Engelm.	whitebark pine
PICO	Pinus contorta Dougl. ex Loud.	lodgepole pine
PIEN	Picea engelmannii Parry ex Engelm.	Engelmann spruce
PIPO	Pinus ponderosa P.& C. Lawson	ponderosa pine
POTR15	Populus trichocarpa Torr. & Gray ex Hook.	black cottonwood
PRAM	Prunus americana Marsh.	American plum
PRAV	Prunus avium (L.) L.	sweet cherry
PSME	Prunus avium (L.) L. Pseudotsuga menziesii (Mirbel) Franco	Douglas-fir
ROPS	Robinia pseudoacacia L.	black locust
TSME		
-	Tsuga mertensiana (Bong.) Carr.	mountain hemlock
Shrubs: ACER	Acer L.	maple
ACGL	Acer glabrum Torr.	Rocky Mountain maple
ACGLD4	Acer glabrum Torr. var. douglasii (Hook.) Dipple	Douglas Rocky Mountain maple
ALIN2	Alnus incana (L.) Moench	mountain alder
ALSI3	Alnus sinuata (Regel) Rydb.	Sitka alder
AMAL2	Amelanchier alnifolia (Nutt.) Nutt. ex M. Roemer	western serviceberry
ARCA13	Artemisia cana Pursh	silver sagebrush
ARTRV	Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle	mountain big sagebrush
ARUV	Arctostaphylos uva-ursi (L.) Spreng.	kinnikinnick
BEAQ	Berberis aquifolium Pursh	hollyleaved barberry
BEGL	Betula glandulosa Michx.	bog birch
BEOC2	Betula occidentalis Hook.	water birch
BERE		-
	Berberis repens Lindl.	Oregon grape
BETUL	Betula L.	birch
CAME7	Cassiope mertensiana (Bong.) D. Don	western moss heather
CASSI3	Cassiope D. Don	moss heather
CELE3	Cercocarpus ledifolius Nutt.	curl-leaf mountain mahogany
CERE2	Celtis reticulata Torr.	netleaf hackberry
CESA	Ceanothus sanguineus Pursh	redstem ceanothus
CHME	Chimaphila menziesii (R. Br. ex D. Don) Spreng.	little prince's pine
CHUM	Chimaphila umbellata (L.) W. Bart.	pipsissewa
CLCO2	Clematis columbiana (Nutt.) Torr. & Gray	rock clematis
CLEMA	Clematis L.	clematis
CLLI2	Clematis ligusticifolia Nutt.	western white clematis
COST4	Cornus stolonifera Michx.	red-oiser dogwood
CRDO2	Crataegus douglasii Lindl.	black hawthorn
EMNI	Empetrum nigrum L.	black crowberry
GAHU	<i>Gaultheria humifusa</i> (Graham) Rydb.	alpine spicywintergreen
GLNE	Glossopetalon nevadense Gray	spiny greasebush
HODI	Holodiscus discolor (Pursh) Maxim.	oceanspray
HODU	Holodiscus dumosus (Nutt. ex Hook.) Heller	rock spirea
KAMI	Kalmia microphylla (Hook.) Heller	alpine laurel
KAOC	Kalmia occidentalis Small	western laurel
	Lodym dogymborg (Ait) Lodd gy Stoud	march Labradar taa
LEDE5	Ledum decumbens (Ait.) Lodd. ex Steud.	marsh Labrador tea

Appendix A-1—Total species sorted in alphabetical order by USDA Plants Code

Appendix A-1—Total species sorted in alphabetical order by USDA Plants Code (continued)

Code	Scientific name	Common name
LIBO3	Linnaea borealis L.	twinflower
LOCI3	Lonicera ciliosa (Pursh) Poir. ex DC.	orange honeysuckle
LOIN5	Lonicera involucrata Banks ex Spreng.	twinberry honeysuckle
LOUT2	Lonicera utahensis S. Wats.	Utah honeysuckle
MEFE	Menziesia ferruginea Sm.	rusty menziesia
MYGA	Myrica gale L.	sweetgale
OPHO	Oplopanax horridus Miq.	devilsclub
PAMY	Paxistima myrsinites (Pursh) Raf.	Oregon boxleaf
PHCA11	Physocarpus capitatus (Pursh) Kuntze	Pacific ninebark
PHEM	Phyllodoce empetriformis (Sm.) D. Don	pink mountainheath
PHLE4	Philadelphus lewisii Pursh	Lewis' mock orange
PHMA5	Physocarpus malvaceus (Greene) Kuntze	mallow ninebark
POBA2	Populus balsamifera L.	balsam poplar
POFR4	Potentilla fruticosa auct. non L.	shrubby cinquefoil
PRAR3	Prunus armeniaca L.	apricot
PRCE	Prunus cerasus L.	sour cherry
PRDO	Prunus domestica L.	European plum
PREM	Prunus emarginata (Dougl. ex Hook.) D. Dietr.	bitter cherry
PRUNU	Prunus L.	plum
PRVI	Prunus virginiana L.	chokecherry
QUGA4	Quercus garryana Dougl. ex Hook.	Oregon white oak
RHAL2	Rhododendron albiflorum Hook.	Cascade azalea
RHGL	Rhus glabra L.	smooth sumac
RHPU	Rhamnus purshiana DC.	alder-leaved buckthorn
RHRA6	Rhus radicans L.	poison ivy
RIBES	Ribes L.	currant
RICE	Ribes cereum Dougl.	wax currant
RICO	Ribes cognatum Greene	stream currant
RIHU	Ribes hudsonianum Richards.	stinking currant
RIIN2	Ribes inerme Rydb.	whitestem gooseberry
RIIR	Ribes irriguum Dougl.	Idaho gooseberry
RILA	Ribes lacustre (Pers.) Poir.	prickly currant
RIMO2	Ribes montigenum McClatchie	gooseberry currant
RINI2	Ribes niveum Lindl.	snow currant
RIWO	Ribes wolfii Rothrock	Wolf's currant
ROGY	Rosa gymnocarpa Nutt.	dwarf rose
RONU	Rosa nutkana K. Presl	Nootka rose
ROSA5	Rosa L.	rose
ROWO	Rosa woodsii Lindl.	Woods' rose
RUBA	Rubus bartonianus M.E. Peck	Barton's raspberry
RUBUS	Rubus L.	blackberry
RUDI2	Rubus discolor Weihe & Nees	Himalayan blackberry
RUID	Rubus idaeus L.	red raspberry
RULA	Rubus Iaciniatus Willd.	cutleaf blackberry
RULE	Rubus leucodermis Dougl. ex Torr. & Gray	whitebark raspberry
RUPA	Rubus parviflorus Nutt.	thimbleberry
SAAR27	Salix arctica Pallas	arctic willow
SABA3	Salix barclayi Anderss.	Barclay's willow
SABE2	Salix bebbiana Sarg.	Bebb's willow
SABO2	Salix boothii Dorn	Booth's willow
SACE3	Sambucus cerulea Raf.	blue elderberry
SACO2	Salix commutata Bebb	undergreen willow
SADR	Salix drummondiana Barratt ex Hook.	Drummond's willow
SAEA	Salix eastwoodiae Cockerell ex Heller	Eastwood willow
SAEX	Salix exigua Nutt.	coyote willow
SAFA	Salix farriae Ball	Farr's willow
SAGE2	Salix geyeriana Anderss.	Geyer willow
SALA5	Salix lasiandra Benth.	Pacific willow
SALA6	Salix lasiolepis Benth.	arroyo willow
SALE	Salix lemmonii Bebb	Lemmon's willow
SALL	Salix L.	willow
SAMBU	Sambucus L.	elderberry
5, 100	Cumododo E.	
SAMY	Salix myrtillifolia Anderss.	blueberry willow

Code	Scientific name	Common name
SARA2	Sambucus racemosa L.	red elderberry
SARI2	Salix rigida Muhl.	rigid willow
SASC	Salix scouleriana Barratt ex Hook.	Scouler's willow
SASI2	Salix sitchensis Sanson ex Bong.	Sitka willow
SATW	Salix tweedyi (Bebb ex Rose) Ball	Tweedy's willow
SAWO	Salix wolfii Bebb	Wolf's willow
SHCA	Shepherdia canadensis (L.) Nutt.	russet buffaloberry
SOAU	Sorbus aucuparia L.	European mountain ash
SOSC2	Sorbus scopulina Greene	Greene's mountain ash
SPBE2	Spiraea betulifolia Pallas	white spirea
SPDE	Spiraea densiflora Nutt. ex Greenm.	rose meadowsweet
SPDO	Spiraea douglasii Hook.	Douglas spiraea
SPIRA	Spiraea L.	spirea
SYAL	Symphoricarpos albus (L.) Blake	common snowberry
SYOR2	Symphoricarpos oreophilus Gray	mountain snowberry
TABR2	Taxus brevifolia Nutt.	Pacific yew
VACA13	Vaccinium caespitosum Michx.	dwarf bilberry
VACCI	Vaccinium L.	blueberry
VAME	Vaccinium membranaceum Dougl. ex Torr.	big huckleberry
VAMY2	Vaccinium myrtillus L.	whortleberry
VASC	Vaccinium scoparium Leib. ex Coville	grouse huckleberry
VAUL	Vaccinium uliginosum L.	bog blueberry
orbs: ABCA	Abronia carletonii Coult. & Fisher	Carleton's sand verbena
ACCO4	Aconitum columbianum Nutt.	Columbian monkshood
ACC04 ACMI2	Achillea millefolium L.	
ACIVITZ ACRU2	Actaea rubra (Ait.) Willd.	common yarrow red baneberry
ADBI	Adenocaulon bicolor Hook.	American trailplant
AGAST		
AGAU2	Agastache Clayton ex Gronov. Agoseris aurantiaca (Hook.) Greene	giant hyssop orange agoseris
AGOSE	Agoseris Raf.	agoseris
AGUR	Agastache urticifolia (Benth.) Kuntze	nettleleaf horsemint
ALAC4	Allium acuminatum Hook.	tapertip onion
ALVA	Allium validum S. Wats.	Pacific onion
AMLY	Amsinckia lycopsoides Lehm.	tarweed fiddleneck
AMRE2	Amsinckia retrorsa Suksdorf	Menzies' fiddleneck
ANAL4	Antennaria alpina (L.) Gaertn.	alpine pussytoes
ANAR3	Angelica arguta Nutt.	Lyall's angelica
ANEMO	Anemone L.	anemone
ANMA	Anaphalis margaritacea (L.) Benth.	western pearly everlasting
ANMI3	Antennaria microphylla Rydb.	littleleaf pussytoes
ANPI	Anemone piperi Britt. ex Rydb.	Piper's anemone
ANRA	Antennaria racemosa Hook.	raceme pussytoes
ANSC8	Anthriscus scandicina (Weber ex Wiggers) Mansf.	chervil
ANTEN	Antennaria Gaertn.	pussytoes
ANUM	Antennaria umbrinella Rydb.	umber pussytoes
APAN2	Apocynum androsaemifolium L.	spreading dogbane
APIACE	Apiaceae	carrot family
AQFL	Aquilegia flavescens S. Wats.	yellow columbine
AQFO	Aquilegia formosa Fisch. ex DC.	western columbine
AQUIL	Aquilegia L.	columbine
ARAM2	Arnica amplexicaulis Nutt.	clasping arnica
ARCH3	Arnica chamissonis Less.	Chamisso arnica
ARCO9	Arnica cordifolia Hook.	heartleaf arnica
ARCTI	Arctium L.	burdock
ARDI2	Arabis ×divaricarpa A. Nels. (pro sp.)	spreadingpod rockcress
ARFU3	Arnica fulgens Pursh	foothill arnica
ARGL	Arabis glabra (L.) Bernh.	tower rockcress
ARLA8	Arnica latifolia Bong.	broadleaf arnica
ARLO6	Arnica longifolia D.C. Eat.	spearleaf arnica
ARLU	Artemisia Iudoviciana Nutt.	white sagebrush
ARMA18	Arenaria macrophylla Hook.	largeleaf sandwort
ARMI2	Arctium minus Bernh.	lesser burdock

Appendix A-1—Total species sorted in alphabetical order by USDA Plants Code (continued)

Code	Scientific name	Common name
ARNIC	Arnica L.	arnica
ARPA13	Arnica parryi Gray	Parry's arnica
ARSE2	Arenaria serpyllifolia L.	thymeleaf sandwort
ASAL2	Aster alpigenus (Torr. & Gray) Gray	tundra aster
ASAL7	Astragalus alpinus L.	alpine milkvetch
ASCA11	Astragalus canadensis L.	Canadian milkvetch
ASCA2	Asarum caudatum Lindl.	British Columbia wildginger
ASCH2	Aster chilensis Nees	Pacific aster
ASCO3	Aster conspicuus Lindl.	eastern showy aster
ASCU5	Astragalus cusickii Gray	Cusick's milkvetch
ASEA	Aster eatonii (Gray) T.J. Howell	Eaton's aster
ASFO	Aster foliaceus Lindl. ex DC.	alpine leafybract aster
ASMO3	Aster modestus Lindl.	giant mountain aster
ASOC	Aster occidentalis (Nutt.) Torr. & Gray	western mountain aster
ASPR	Asperugo procumbens L.	German-madwort
ASRO	Astragalus robbinsii (Oakes) Gray	Robbins' milkvetch
ASTER	Aster L.	aster
ASTERF	Asteraceae	aster family
ASTRA	Astragalus L.	milkvetch
BASA3	Balsamorhiza sagittata (Pursh) Nutt.	arrowleaf balsamroot
BICE	Bidens cernua L.	nodding beggartick
BRDO	Brodiaea douglasii S. Wats.	largeflower triteleia
BRGR	Brickellia grandiflora (Hook.) Nutt.	tasselflower brickellbush
BRHO	Brodiaea howellii S. Wats.	Howell's triteleia
BRHY2	Brodiaea hyacinthina (Lindl.) Baker	white brodiaea
BRODI	Brodiaea Sm.	brodiaea
CABI2	Caltha biflora DC.	Howell's marshmarigold
CABU2	Capsella bursa-pastoris (L.) Medik.	shepherd's purse
CACH16	Castilleja chrysantha Greenm.	yellow Wallowa Indian paintbrush
CACO6	Cardamine cordifolia Gray	heartleaf bittercress
CACU7	Castilleja cusickii Greenm.	Cusick's Indian paintbrush
CALE4	Caltha leptosepala DC.	white marsh marigold
CALLI6	Callitriche L.	water-starwort
CALOC	Calochortus Pursh	mariposa lily
CALTH	Caltha L. Costillais ministe Deurl, ex black	marsh marigold
CAMI12 CAMPA	Castilleja miniata Dougl. ex Hook. Campanula L.	giant red Indian paintbrush bellflower
CAMPA		little western bittercress
CARDA	Cardamine oligosperma Nutt. Cardamine L.	bittercress
CARDU	Carduus L.	plumeless thistle
CARH4	Castilleja rhexiifolia Rydb.	splitleaf Indian paintbrush
CARO2	Campanula rotundifolia L.	bluebell bellflower
CARYOF	Caryophyllaceae	pink family
CASTI2	Castilleja Mutis ex L. f.	Indian paintbrush
CEAR4	Cerastium arvense L.	field chickweed
CENU2	Cerastium nutans Raf.	nodding chickweed
CERAS	Cerastium L.	mouse-ear chickweed
CEVI3	Cerastium viscosum auct. non L.	sticky chickweed
CEVU	Cerastium vulgatum L. 1762, non 1755	big chickweed
CHHY	Chenopodium hybridum auct. non L.	mapleleaf goosefoot
CHLE80	Chrysanthemum leucanthemum L.	oxeye daisy
CHTE2	Chorispora tenella (Pallas) DC.	crossflower
CIAL	Circaea alpina L.	enchanter's nightshade
CIAR4	Cirsium arvense (L.) Scop.	Canada thistle
CICA6	Cirsium canovirens (Rydb.) Petrak	graygreen thistle
CIDO	Cicuta douglasii (DC.) Coult. & Rose	western water hemlock
CIRSI	Cirsium P. Mill.	thistle
CIUN	Cirsium undulatum (Nutt.) Spreng.	wavyleaf thistle
CIVU	Cirsium vulgare (Savi) Ten.	bull thistle
CLME	Claytonia megarhiza (Gray) Parry ex S. Wats.	alpine springbeauty
CLUN2	<i>Clintonia uniflora</i> (Menzies ex J.A. & J.H. Schultes) Kunth	queen's cup beadlily
COAR4	Convolvulus arvensis L.	field bindweed
	of alloo all official El	
COCA13	Cornus canadensis L.	bunchberry dogwood

ode	Scientific name	Common name
COGR4	Collomia grandiflora Dougl. ex Lindl.	grand collomia
COLI2	Collomia linearis Nutt.	tiny trumpet
COMA4	Corallorrhiza maculata (Raf.) Raf.	summer coralroot
COOR	Conringia orientalis (L.) Dumort.	hare's ear mustard
COPA3	Collinsia parviflora Lindl.	maiden blue eyed Mary
RFR2	Cryptantha fragilis M.E. Peck	clearwater cryptantha
RUCIF	Cruciferae	mustard family
YOF	Cynoglossum officinale L.	gypsyflower
EDE2	Delphinium depauperatum Nutt.	slim larkspur
)ELPH	Delphinium L.	larkspur
DEOC	Delphinium × occidentale (S. Wats.) S. Wats. (pro sp.) [barbeyi × glaucum]	duncecap larkspur
DERI2	Descurainia richardsonii O.E. Schulz	mountain tansymustard
ICU	Dicentra cucullaria (L.) Bernh.	dutchman's breeches
IHO3	Disporum hookeri (Torr.) Nichols.	drops of gold
ISM2	Disporum smithii (Hook.) Piper	largeflower fairybells
ISPO	Disporum Salisb. ex D. Don	fairybells
ISY	Dipsacus sylvestris Huds.	teasel
ITR2	Disporum trachycarpum (S. Wats.) Benth. & Hook. f.	roughfruit fairybells
OAL	Dodecatheon alpinum (Gray) Greene	alpine shootingstar
ODEC	Dodecatheon L.	shootingstar
OJE	Dodecatheon jeffreyi Van Houtte	Sierrra shootingstar
OPU	Dodecatheon pulchellum (Raf.) Merr.	darkthroat shootingstar
RCR2	Draba crassifolia Graham	snowbed draba
RST2	Draba stenoloba Ledeb.	Alaska draba
PAL	Epilobium alpinum L. p.p.	pimpernel willowherb
PAN2	Épilobium angustifolium L.	fireweed
PGI	Epipactis gigantea Dougl. ex Hook.	stream orchid
PGL	Épilobium glaberrimum Barbey	glaucus willowherb
PGL4	Épilobium glandulosum Lehm.	fringed willowherb
PHA	Épilobium halleanum Hausskn.	glandular willowherb
PILO	Épilobium L.	willowherb
PLA	Épilobium latifolium L.	dwarf fireweed
PMI	Epilobium minutum Lindl. ex Lehm.	chaparral willowherb
PPA2	Epilobium paniculatum Nutt. ex Torr. & Gray	tall annual willowherb
PWA3	Epilobium watsonii Barbey	Watson's willowherb
RAS2	Erysimum asperum (Nutt.) DC.	sanddune wallflower
RCO6	Erigeron coulteri Porter	large mountain fleabane
RGR9	Erythronium grandiflorum Pursh	yellow avalanche-lily
RIGE2	Erigeron L.	fleabane
RPE3	Erigeron peregrinus (Banks ex Pursh) Greene	subalpine fleabane
RPH	Erigeron philadelphicus L.	Philadelphia fleabane
RSP4	Erigeron speciosus (Lindl.) DC.	aspen fleabane
RASE	Frasera Walt.	green gentian
RSP	Frasera speciosa Dougl. ex Griseb.	elkweed
RVE	Fragaria vesca L.	woodland strawberry
RVI	Fragaria virginiana Duchesne	Virginia strawberry
GAAP2	Galium aparine L.	cleavers
GAAS3	Galium asperrimum Gray	Mexican bedstraw
GABI	Galium bifolium S. Wats.	twinleaf bedstraw
GABO2	Galium boreale L.	northern bedstraw
GAHU2	Gayophytum humile Juss.	dwarf groundsmoke
GALIU	Galium L.	bedstraw
GAMU2	Galium multiflorum Kellogg	shrubby bedstraw
GATR2	Galium trifidum L.	threepetal bedstraw
GATR3	Galium triflorum Michx.	fragrant bedstraw
GEAL3	Geum aleppicum Jacq.	yellow avens
GEBI2	Geranium bicknellii Britt.	Bicknell's cranesbill
	Gentiana calycosa Griseb.	explorer's gentian
GECA	Geum macrophyllum Willd.	largeleaf avens
GECA GEMA4	Geum macrophyllum Willd. Gentiana L.	largeleaf avens gentian
GECA GEMA4 GENTI	Gentiana L.	gentian
GECA		

Code	Scientific name	Common name		
GEVI2	Geranium viscosissimum Fisch. & C.A. Mey. ex C.A. Mey.	sticky purple geranium		
GIAG	Gilia aggregata (Pursh) Spreng.	scarlet gilia		
GICO2	Gilia congesta Hook.	ballhead ipomopsis		
GILIA	<i>Gilia</i> Ruiz & Pav ó n	gilia		
GOOB2	Goodyera oblongifolia Raf.	western rattlesnake plantain		
HABEN	Habenaria Willd.	bog orchid		
HACKE	Hackelia Opiz	stickseed		
HADI7	Habenaria dilatata (Pursh) Hook.	leafy white orchis		
HAMI	Hackelia micrantha (Eastw.) J.L. Gentry	Jessica sticktight		
HASA	Habenaria saccata Greene	slender bog orchid		
HAUN	Habenaria unalascensis (Spreng.) S. Wats.	slender-spire orchid		
HEBO	Hedysarum boreale Nutt.	boreal sweetvetch		
HELA4	Heracleum Ianatum Michx.	common cowparsnip		
HEMI7	Heuchera micrantha Dougl. ex Lindl.	crevice alumroot		
HEUCH	Heuchera L.	alumroot		
HIAL2	Hieracium albiflorum Hook.	white hawkweed		
HIERA	Hieracium L.	hawkweed		
HIGR	Hieracium gracile Hook.	slender hawkweed		
HYAN2	Hypericum anagalloides Cham. & Schlecht.	tinker's penny		
HYCA4	Hydrophyllum capitatum Dougl. ex Benth.	ballhead waterleaf		
HYDRO4	Hydrophyllum L.	waterleaf		
HYFE	Hydrophyllum fendleri (Gray) Heller	Fendler's waterleaf		
HYFON	Hypericum formosum Kunth var. nortoniae (M.E. Jones) C.L. Hitchc.	Norton's St. Johnswort		
HYFOS	Hypericum formosum Kunth var. scouleri (Hook.) Coult.	Scouler's St. Johnswort		
HYOC	Hydrophyllum occidentale (S. Wats.) Gray	western waterleaf		
HYPE	Hypericum perforatum L.	common St. Johnswort		
HYPER	Hypericum L.	St. Johnswort		
ILRI	<i>Iliamna rivularis</i> (Dougl. ex Hook.) Greene	streambank wild hollyhock		
ISBO	Isoetes bolanderi Engelm.	Bolander's quillwort		
LAAM	Lamium amplexicaule L.	henbit deadnettle		
LABI	Lactuca biennis (Moench) Fern.	tall blue lettuce		
LABIAF	Labiatae	mint family		
LACO3	Lapsana communis L.	common nipplewort		
LACTU	Lactuca L.	lettuce		
LANE3	Lathyrus nevadensis S. Wats.	Sierra pea		
LAPA5	Lathyrus pauciflorus Fern.	fewflower pea		
LASE	Lactuca serriola L.	prickly lettuce		
LATHY	Lathyrus L.	pea		
LEGUMF	Legumaceae	pea family		
LEMI3	Lemna minor L.	common duckweed		
LEPY2	Lewisia pygmaea (Gray) B.L. Robins.	alpine lewisia		
LICA2	Ligusticum canbyi Coult. & Rose	Canby's licorice-root		
LICO6	Listera cordata (L.) R. Br. ex Ait. f.	heartleaf twayblade		
LIGR	Ligusticum grayi Coult. & Rose	Gray's licorice-root		
LIGUS	Ligusticum L.	licorice-root		
LILIAF	Liliaceae	lily family		
LIPA5	Lithophragma parviflorum (Hook.) Nutt. ex Torr. & Gray	smallflower woodland-star		
LISTE	Listera R. Br. ex Ait. f.	twayblade		
LITE2	Ligusticum tenuifolium S. Wats.	Idaho licorice-root		
LOCO6	Lotus corniculatus L.	birdfoot deervetch		
LODI	Lomatium dissectum (Nutt.) Mathias & Constance	fernleaf biscuitroot		
LOMAT	Lomatium Raf.	desertparsley		
LOPU3	Lotus purshianus F.E. & E.G. Clem.	American bird's-foot trefoil		
LULE3	Lupinus leucophyllus Dougl. ex Lindl.	velvet lupine		
LUPIN	Lupinus L.	lupine		
LUPO2	Lupinus polyphyllus Lindl.	bigleaf lupine		
LYAL	Lychnis alba P. Mill.	bladder campion		
LYAN2	Lycopodium annotinum L.	stiff clubmoss		
LYCO	Lychnis coronaria (L.) Desr.	rose campion		
LYUN	Lycopus uniflorus Michx.	northern bugleweed		
MAGR3	Madia gracilis (Sm.) Keck & J. Clausen ex Applegate	grassy tarweed		
MAVU	Marrubium vulgare L.	horehound		

ode	Scientific name	Common name
MEAR4	Mentha arvensis L.	wild mint
MECI3	Mertensia ciliata (James ex Torr.) G. Don	tall fringed bluebells
AELU	Medicago lupulina L.	black medick
MENTH	Medicago lapanna E. Mentha L.	mint
1EOF	Melilotus officinalis (L.) Lam.	yellow sweetclover
		tall bluebells
	Mertensia paniculata (Ait.) G. Don	
MEPI	Mentha ×piperita L. (pro sp.) [aquatica × spicata]	peppermint
MERTE	Mertensia Roth	bluebells
METR3	Menyanthes trifoliata L.	buckbean
MIGR	Microsteris gracilis (Hook.) Greene	slender phlox
MIGU	Mimulus guttatus DC.	seep monkeyflower
MILE2	Mimulus lewisii Pursh	purple monkeyflower
MIMO3	Mimulus moschatus Dougl. ex Lindl.	muskflower
AIMUL	Mimulus L.	monkeyflower
MINU	Microseris nutans (Hook.) Schultz-Bip.	nodding microceris
MIPE	Mitella pentandra Hook.	fivestamen miterwort
/IPR	Mimulus primuloides Benth.	primrose monkeyflower
MIST3	Mitella stauropetala Piper	smallflower miterwort
MITEL	Mitella L.	miterwort
MOCO4	Montia cordifolia (S. Wats.) Pax & K. Hoffmann	heartleaf minerslettuce
	Montia L.	minerslettuce
MONTI	Monua L. Monardella odoratissima Benth.	
MOOD		mountain monardella
MOPA2	Montia parvifolia (Moc. ex DC.) Greene	littleleaf minerslettuce
MOPE3	Montia perfoliata (Donn ex Willd.) T.J. Howell	perfoliated minerslettuce
MOSI2	Montia sibirica (L.) T.J. Howell	Siberian minerslettuce
MOUN3	Monotropa uniflora L.	Indianpipe
MYMI	Myosotis micrantha auct. non Pallas ex Lehm.	strict forget-me-not
MYOSO	Myosotis L.	forget-me-not
NEPA	Nemophila parviflora Dougl. ex Benth.	smallflower nemophila
NUPO2	Nuphar polysepala Engelm.	Rocky Mountain pond-lily
OSCH	Osmorhiza chilensis Hook. & Arn.	mountain sweetcicely
OSMOR	Osmorhiza Raf.	sweetcicely
OSOC	Osmorhiza occidentalis (Nutt. ex Torr. & Gray) Torr.	western sweetcicely
PAFI3		fringed grass of Parnassus
	Parnassia fimbriata Koenig	
PAPE5	Parietaria pensylvanica Muhl. ex Willd.	Pennsylvania pellitory
PEBR	Pedicularis bracteosa Benth.	bracted lousewort
PEFRP	Petasites frigidus (L.) Fries var. palmatus (Ait.) Cronq.	sweet coltsfoot
PEGL5	Penstemon globosus (Piper) Pennell & Keck	globe penstemon
PEGR2	Pedicularis groenlandica Retz.	elephanthead lousewort
PENST	Penstemon Schmidel	beardtongue
PEPA3	Pedicularis parryiGray	Parry's lousewort
PEPA29	Penstemon payettensis A. Nels. & J.F. Macbr.	Payette beardtongue
PERA	Pedicularis racemosa Dougl. ex Benth.	sickletop lousewort
PHCO10	Phlox colubrina Wherry & Constance	Snake River phlox
PHHA	Phacelia hastata Dougl. ex Lehm.	silverleaf phacelia
	Plantago lanceolata L.	narrowleaf plantain
PLMA2		common plantain
	Plantago major L.	
PLSC2	Plagiobothrys scouleri (Hook. & Arn.) I.M. Johnston	Scouler's popcornflower
POAR7	Potentilla arguta Pursh	tall cinquefoil
POBI6	Polygonum bistortoides Pursh	American bistort
POBI7	Potentilla biennis Greene	biennial cinquefoil
POCU6	Polygonum cuspidatum Sieb. & Zucc.	Japanese knotweed
PODI2	Potentilla diversifolia Lehm.	varileaf cinquefoil
POFL3	Potentilla flabellifolia Hook. ex Torr. & Gray	high mountain cinquefoil
POGL9	Potentilla glandulosa Lindl.	sticky cinquefoil
POGR9	Potentilla gracilis Dougl. ex Hook.	slender cinquefoil
POLA4	Polygonum lapathifolium L.	curlytop knotweed
POLEM	Polemonium L.	Jacob's-ladder
POLYG4	Polygonum L.	knotweed
	Polemonium occidentale Greene	western polemonium
POOV2	Potentilla ovina Macoun ex J.M. Macoun	sheep cinquefoil
POPH	Polygonum phytolaccifolium Meisn. ex Small	poke knotweed
	Polemonium pulcherrimum Hook.	Jacob's-ladder
POPU3 POTAM	Potamogeton L.	pondweed

Code	Scientific name	Common name
POTEN	Potentilla L.	cinquefoil
POVI3	Polygonum viviparum L.	alpine smartweed
PRVU	Prunella vulgaris L.	common selfheal
PTAN2	Pterospora andromedea Nutt.	woodland pinedrops
PYAS	Pyrola asarifolia Michx.	liverleaf wintergreen
PYMI	Pyrola minor L.	snowline wintergreen
PYROL	Pyrola L.	wintergreen
PYSE	Pyrola secunda L.	sidebells wintergreen
RAAC3	Ranunculus acris L.	tall buttercup
RAAL	Ranunculus alismifolius Geyer ex Benth.	plantainleaf buttercup
RAES	Ranunculus eschscholtzii Schlecht.	Eschscholtz's buttercup
RANUN	Ranunculus L.	buttercup
RAOC	Ranunculus occidentalis Nutt.	western buttercup
RAPO	Ranunculus populago Greene	popular buttercup
RARE3	Ranunculus repens L.	creeping buttercup
RAUN	Ranunculus uncinatus D. Don ex G. Don	woodland buttercup
ROCU	Rorippa curvisiliqua (Hook.) Bess. ex Britt.	curvepod yellowcress
RONA2	Rorippa nasturtium-àquaticum (L.) Hayek	watercress
RUAC2	Rumex acetosa L.	garden sorrel
RUCR	Rumex crispus L.	curly dock
RUMEX	Rumex L.	dock
RUOB	Rumex obtusifolius L.	bitter dock
RUOC2	Rudbeckia occidentalis Nutt.	western coneflower
RUOC3	Rumex occidentalis S. Wats.	western dock
RUPA5	Rumex patientia L.	patience dock
RUSA	Rumex salicifolius Weinm.	willow dock
SAAM3	Saussurea americana D.C. Eat.	American saw-wort
SAAR13	Saxifraga arguta auct. non D. Don	brook saxifrage
SAIN4	Saxifraga integrifolia Hook.	wholeleaf saxifrage
SAMI3	Sanguisorba minor Scop.	small burnet
SAOR2	Saxifraga oregana T.J. Howell	Oregon saxifrage
SASA	Sagina saginoides (L.) Karst.	arctic pearlwort
SASI10	Sanguisorba sitchensis C.A. Mey.	Canadian burnet
SAXIF	Saxifraga L.	saxifrage
SCAN2	Scleranthus annuus L.	German knotgrass
SCLA	Scrophularia lanceolata Pursh	lanceleaf figwort
SECY	Senecio cymbalarioides Buek	alpine meadow butterweed
SEDUM	Sedum L.	stonecrop
SEFO	Senecio foetidus J.T. Howell	tall groundsel
SEIN2	Senecio integerrimus Nutt.	lambstongue ragwort
SENEC	Senecio L.	ragwort
SEPS2	Senecio pseudaureus Rydb.	falsegold groundsel
SESE2	Senecio serra Hook.	tall ragwort
SEST2	Sedum stenopetalum Pursh	wormleaf stonecrop
SETR	Senecio triangularis Hook.	arrowleaf groundsel
SIAC	Silene acaulis (L.) Jacq.	moss campion
SIAL2	Sisymbrium altissimum L.	tall tumblemustard
SIME	Silene menziesii Hook.	Menzies' campion
SINO	Silene noctiflora L.	nightflowering silene
SIOR	Sidalcea oregana (Nutt. ex Torr. & Gray) Gray	Oregon checkerbloom
SIPR	Sibbaldia procumbens L.	creeping sibbaldia
SMILA	Smilacina Desf.	false Solomon's seal
SMRA	Smilacina racemosa (L.) Desf.	feathery false Solomon's seal
SMST	Smilacina stellata (L.) Desf.	starry false Solomon's seal
SOCA6	Solidago canadensis L.	Canada goldenrod
SODU	Solanum dulcamara L.	climbing nightshade
SOGI	Solidago gigantea Ait.	giant goldenrod
SOLID	Solidago L.	goldenrod
SOMU	Solidago multiradiata Ait.	Rocky Mountain goldenrod
SOSP	Solidago spathulata DC.	Mt. Albert goldenrod
SOSP SPAN2	Solidago spathulata DC. Sparganium angustifolium Michx.	narrowleaf bur-reed
SPCAE		
SPCA5 SPER	Sphenosciadium capitellatum Gray Sparganium erectum L.	woollyhead parsnip simplestem bur-reed

SPRO STAM2 STCA STCR2 STELL STLO STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Spiranthes romanzoffiana Cham. Streptopus amplexifolius (L.) DC. Stellaria calycantha (Ledeb.) Bong. Stellaria crispa Cham. & Schlecht. Stellaria L. Stellaria longifolia Muhl. ex Willd. Stellaria longipes Goldie Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum C. Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	hooded ladies'-tresses claspleaf twistedstalk northern starwort curled starwort longleaf starwort longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STCA STCR2 STELL STLO STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Streptopus amplexifolius (L.) DC.Stellaria calycantha (Ledeb.) Bong.Stellaria crispa Cham. & Schlecht.Stellaria L.Stellaria longifolia Muhl. ex Willd.Stellaria nedia (L.) Vill.Stellaria obtusa Engelm.Stenanthium occidentale GrayStreptopus Michx.Swertia perennis L.Synthyris missurica (Raf.) PennellTaraxacum officinale G.H. Weber ex WiggersThalictrum alpinum L.Thalictrum L.Thalictrum venulosum Trel.Tiarella trifoliata L.Tonella floribunda GrayTrautvetteria caroliniensis (Walt.) Vail	northern starwort curled starwort starwort longleaf starwort longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STCR2 STELL STLO STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Stellaria calycantha (Ledeb.) Bong. Stellaria crispa Cham. & Schlecht. Stellaria L. Stellaria longifolia Muhl. ex Willd. Stellaria longipes Goldie Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum cocidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	curled starwort starwort longleaf starwort longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STELL STLO STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Stellaria L. Stellaria longifolia Muhl. ex Willd. Stellaria longipes Goldie Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum ccidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	starwort longleaf starwort longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STLO STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Stellaria L. Stellaria longifolia Muhl. ex Willd. Stellaria longipes Goldie Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum ccidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	longleaf starwort longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STLO2 STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Stellaria longipes Goldie Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum alpinum L. Thalictrum ccidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	longstalk starwort common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STME2 STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Stellaria media (L.) Vill. Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	common chickweed Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STOB STOC STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Stellaria obtusa Engelm. Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	Rocky Mountain chickweed western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STOC STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Stenanthium occidentale Gray Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum alpinum L. Thalictrum ccidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	western featherbells twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
STREP3 SWPE SYMI TAOF TARAX THAL THAL12 THOC THVE TITR TOFL TRCA	Streptopus Michx. Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	twistedstalk felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
SWPE SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Swertia perennis L. Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	felwort tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
SYMI TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Synthyris missurica (Raf.) Pennell Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	tailed kittentails common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
TAOF TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Taraxacum officinale G.H. Weber ex Wiggers Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	common dandelion dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
TARAX THAL THALI2 THOC THVE TITR TOFL TRCA	Taraxacum G.H. Weber ex Wiggers Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	dandelion alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
THAL THALI2 THOC THVE TITR TOFL TRCA	Thalictrum alpinum L. Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	alpine meadow-rue meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
THALI2 THOC THVE TITR TOFL TRCA	Thalictrum L. Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	meadow-rue western meadow-rue veiny meadow-rue threeleaf foamflower
THOC THVE TITR TOFL TRCA	Thalictrum occidentale Gray Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	western meadow-rue veiny meadow-rue threeleaf foamflower
THVE TITR TOFL TRCA	Thalictrum venulosum Trel. Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	veiny meadow-rue threeleaf foamflower
TITR TOFL TRCA	Tiarella trifoliata L. Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	threeleaf foamflower
TOFL TRCA	Tonella floribunda Gray Trautvetteria caroliniensis (Walt.) Vail	
TRCA	Trautvetteria caroliniensis (Walt.) Vail	manuflawortaralla
		manyflower tonella
		false bugbane
TRDU	Tragopogon dubius Scop.	yellow salsify
TRIFO	Trifolium L.	clover
TRLA14	Trollius laxus Salisb.	American globeflower
TRLA6	Trientalis latifolia Hook.	broadleaf starflower
TRLA8	Trifolium latifolium (Hook.) Greene	twin clover
TRLO	Trifolium longipes Nutt.	longstalk clover
TROV2	Trillium ovatum Pursh	Pacific trillium
TRPE3	Trillium petiolatum Pursh	Idaho trillium
TRPR2	Trifolium pratense L.	red clover
TRRE3	Trifolium repens L.	white clover
TRWO	<i>Trifolium wormskioldii</i> Lehm.	cow clover
TYLA	Typha latifolia L.	common cattail
UMBELF	Umbelliferae	carrot family
URDI	Urtica dioica L.	stinging nettle
VALO	Valerianella locusta (L.) Lat.	Lewiston cornsalad
VASI	Valeriana sitchensis Bong.	Sitka valerian
VEAM2	Veronica americana Schwein. ex Benth.	American speedwell
VEAN2	Veronica anagallis-aquatica L.	water speedwell
VECA2	Veratrum californicum Dur.	California false hellebore
VECU	Veronica cusickii Gray	Cusick's speedwell
VEPE2	Veronica peregrina L.	neckweed
VERAT	Veratrum L.	false hellebore
VERON	Veronica L.	speedwell
VESE	Veronica serpyllifolia L.	thymeleaf speedwell
VETH	Verbascum thapsus L.	common mullein
VEVI	Veratrum viride Ait.	green false hellebore
VEWO2	Veronica wormskjoldii Roemer & J.A. Schultes	American alpine speedwell
VIAD	Viola adunca Sm.	hookedspur violet
VIAM	Vicia americana Muhl. ex Willd.	American vetch
VICA4	Viola canadensis L.	Canadian white violet
VICIA	Vicia L.	vetch
VIGL	Viola glabella Nutt.	pioneer violet
VIMA2	Viola macloskeyi Lloyd	small white violet
VIOLA	Viola L.	violet
VIOR	Viola orbiculata Geyer ex Holz.	darkwoods violet
VIPA4	Viola palustris L.	marsh violet
XETE	Xerophyllum tenax (Pursh) Nutt.	common beargrass
ZIEL2	Zigadenus elegans Pursh	mountain deathcamas
Grasses:		
AGAL3	Agrostis alba auct. non L.	redtop
AGCA2	Agropyron caninum (L.) Beauv.	bearded wheatgrass
AGDI	Agrostis diegoensis Vasey	thin bentgrass

Code	Scientific name	Common name
AGEX	Agrostis exarata Trin.	spike bentgrass
AGHU	Agrostis humilis Vasey	alpine bentgrass
AGIN5	Agropyron inerme (Scribn. & J.G. Sm.) Rydb.	beardless wheatgrass
AGRE2	Agropyron repens (L.) Beauv.	quackgrass
AGROP2	<i>Agropyron</i> Gaertn.	wheatgrass
AGROS2	Agrostis L.	bentgrass
AGSC5	Agrostis scabra Willd.	rough bentgrass
AGSP	Agropyron spicatum (Pursh) Scribn. & J.G. Sm.	bluebunch wheatgrass
AGST2	Agrostis stolonifera L.	creeping bentgrass
AGTE	Agrostis tenuis Sibthorp	colonial bentgrass
AGTH2	Agrostis thurberiana A.S. Hitchc.	Thurber's bentgrass
AGVA	Agrostis variabilis Rydb.	mountain bentgrass
ALAE ALPR3	Alopecurus aequalis Sobol.	shortawn foxtail meadow foxtail
ALERS	Alopecurus pratensis L. Anthoxanthum odoratum L.	
AREL3	Arthoxanthum odoratum L. Arrhenatherum elatius (L.) Beauv. ex J.& K. Presl	sweet vernalgrass tall oatgrass
BRAN	Bromus anomalus Rupr. ex Fourn.	nodding brome
BRBR5	Bromus briziformis Fisch. & C.A. Mey.	rattlesnake brome
BRCA5	Bromus carinatus Hook. & Arn.	California brome
BRCI2	Bromus ciliatus L.	fringed brome
BRJA	Bromus japonicus Thunb. ex Murr.	Japanese brome
BROMU	Bromus L.	brome
BROR2	Bromus orcuttianus Vasey	Orcutt's brome
BRPA3	Bromus pacificus Shear	Pacific brome
BRRI8	Bromus rigidus Roth	ripgut brome
BRSE	Bromus secalinus L.	rye brome
BRST2	Bromus sterilis L.	poverty brome
BRSU2	Bromus suksdorfii Vasey	Suksdorf's brome
BRTE	Bromus tectorum L.	cheatgrass
BRVU	Bromus vulgaris (Hook.) Shear	Columbia brome
CAAQ3	Catabrosa aquatica (L.) Beauv.	water whorlgrass
CACA4	Calamagrostis canadensis (Michx.) Beauv.	bluejoint reedgrass
CALAM	Calamagrostis Adans.	reedgrass
CAPU	Calamagrostis purpurascens R. Br.	purple reedgrass
CARU	Calamagrostis rubescens Buckl.	pinegrass draaping woodrood
CILA2 DAGL	Cinna latifolia (Trev. ex Goepp.) Griseb. Dactylis glomerata L.	drooping woodreed orchardgrass
DAGL	Danthonia intermedia Vasey	timber oatgrass
DECE	Deschampsia cespitosa (L.) Beauv. [orthographic variant]	tufted hairgrass
DEEL	Deschampsia elongata (Hook.) Munro	slender hairgrass
DISP	Distichlis spicata (L.) Greene	saltgrass
ELCI2	Elymus cinereus Scribn. & Merr.	basin wildrye
ELGL	<i>Elymus glaucus</i> Buckl.	blue wildrye
FEAR3	Festuca arundinacea Schreb.	tall fescue
FEID	Festuca idahoensis Elmer	Idaho fescue
FEOC	Festuca occidentalis Hook.	western fescue
FEPR	Festuca pratensis Huds.	meadow ryegrass
FESTU	Festuca L.	fescue
FESU	Festuca subulata Trin.	bearded fescue
FEVI	Festuca viridula Vasey	greenleaf fescue
GLEL	<i>Glyceria elata</i> (Nash ex Rydb.) M.E. Jones	tall mannagrass
GLGR	Glyceria grandis S. Wats.	American mannagrass
GLST	<i>Glyceria striata</i> (Lam.) A.S. Hitchc.	fowl mannagrass
GLYCE	Glyceria R. Br.	mannagrass
KOCR	Koeleria cristata auct. p.p. non Pers. Melica smithii (Porter ex Gray) Vasey	prairie Junegrass Smith's melicgrass
MESD		0
MESP MESU	Melica spectabilis Scribn. Melica subulata (Griseb.) Scribn.	purple oniongrass Alaska oniongrass
MUAN	Mullenbergia andina (Nutt.) A.S. Hitchc.	foxtail muhly
MUFI2	Muhlenbergia filiformis (Thurb. ex S. Wats.) Rydb.	slender muhly
PHAL2	Phleum alpinum L.	alpine timothy
PHAR3	Phalaris arundinacea L.	reed canarygrass
PHPR3	Phleum pratense L.	timothy
POA	Poa L.	bluegrass
		-

Code	Scientific name	Common name
POACF	Poaceae	grass family
POBU	Poa bulbosa L.	bulbous bluegrass
POCO	Poa compressa L.	Canada bluegrass
POCU3	Poa cusickii Vasey	Cusick's bluegrass
POLE2	Poa leptocoma Trin.	marsh bluegrass
PONE2	Poa nervosa (Hook.) Vasey	Wheeler bluegrass
POPA2	Poa palustris L.	fowl bluegrass
POPR	Poa pratensis L.	Kentucky bluegrass
POSA12	Poa sandbergii	Sandberg's bluegrass
POSC	<i>Poa scabrella</i> (Thurb.) Benth. ex Vasey	pine bluegrass
POTR2	Poa trivialis L.	rough bluegrass
PUPA3	Puccinellia pauciflora (J. Presl) Munz	weak alkaligrass
STIPA	Stipa L.	needlegrass
STOC2	Stipa occidentalis Thurb. ex S. Wats.	western needlegrass
TRCA21	Trisetum canescens Buckl.	tall trisetum
TRCE2	Trisetum cernuum Trin.	tall trisetum
TRSP2	Trisetum spicatum (L.) Richter	spike trisetum
TRWO3	Trisetum wolfii Vasey	Wolf's trisetum
Grasslikes:		
CAAB2	Carex abrupta Mackenzie	abruptbeak sedge
CAAM10	Carex amp ^l ifolia Boott	big-leaved sedge
CAAQ	Carex aquatilis Wahlenb.	aquatic sedge
CAAR2	Carex arcta Boott	northern cluster sedge
CAAT3	Carex athrostachya Olney	slenderbeak sedge
CAAU3	Carex aurea Nutt.	golden sedge
CABA3	Carex backii Boott	Back's sedge
CABI10	Carex bipartita All.	twotipped sedge
CACA11	Carex canescens L.	silvery sedge
CACA12	Carex capillaris L.	hairlike sedge
CACO11	Carex concinnoides Mackenzie	northwestern sedge
CACU5	Carex cusickii Mackenzie ex Piper & Beattie	Cusick's sedge
CADE9	Carex deweyana Schwein.	Dewey sedge
CADI6	Carex disperma Dewey	soft-leaved sedge
CAEU2	Carex eurycarpa Holm	widefruit sedge
CAGE2	<i>Carex geyeri</i> Boott	elk sedge
CAHE7	Carex hendersonii Bailey	Henderson's sedge
CAHO5	Carex hoodii Boott	Hood's sedge
CAIL	Carex illota Bailey	sheep sedge
CAJO	Carex jonesii Bailey	Jones' sedge
CALA11	Carex lasiocarpa Ehrh.	slender sedge
CALA13	Carex laeviculmis Meinsh.	smooth-stemmed sedge
CALA30	Carex lanuginosa auct. non Michx.	woolly sedge
CALE8	Carex lenticularis Michx.	lakeshore sedge
CALE9	Carex leporinella Mackenzie	Sierra hare sedge
CALEL	Carex lenticularis Michx. var. lenticularis	densely-tufted sedge
CALI7	Carex limosa L.	mud sedge
CALU7	Carex luzulina Olney	woodrush sedge
CAMI7	Carex microptera Mackenzie	smallwing sedge
CAMU7	Carex muricata L.	star sedge
CANE2	Carex nebrascensis Dewey	Nebraska sedge
CANI2	Carex nigricans C.A. Mey.	black alpine sedge
CANU5	Carex nudata W. Boott	torrent sedge
CAPA14	Carex pachystachya Cham. ex Steud.	chamisso sedge
CAPA18	Carex parryana Dewey	Parry's sedge
CAPR4	Carex praeceptorium Mackenzie	early sedge
CAPR5	Carex praegracilis W. Boott	clustered field sedge
CAPR7	Carex praticola Rydb.	meadow sedge
CARA6	Carex raynoldsii Dewey	Raynolds' sedge
CAREX	Carex L.	sedge
CARO5	Carex rossii Boott	Ross' sedge
CARO6	Carex rostrata Stokes	beaked sedge
CASA10	Carex saxatilis L.	rock sedge
O A O O 4 O		portporp oppologica opdag
CASC10 CASC12	Carex scirpoidea Michx. Carex scopulorum Holm	northern singlespike sedge Holm's Rocky Mountain sedge

Appendix A-1—Tota	I species sorted in	alphabetical order	r by USDA Plants	s Code (continued)

Code	Scientific name	Common name
CASCP	Carex scopulorum Holm var. prionophylla (Holm) L.A. Standley	saw-leaved sedge
CASH	Carex sheldonii Mackenzie	Sheldon's sedge
CASI2	Carex simulata Mackenzie	short-beaked sedge
CASP5	Carex spectabilis Dewey	showy sedge
CAST5	Carex stipata Muhl. ex Willd.	saw-beak sedge
CASU6	Carex subfusca W. Boott	brown sedge
CASU7	Carex subnigricans Stacey	nearlyblack sedge
CAUT	Carex utriculata Boott	bladder sedge
CAVE6	Carex vesicaria L.	inflated sedge
ELBE	Eleocharis bella (Piper) Svens.	delicate spikerush
ELEOC	Eleocharis R. Br.	spikerush
ELPA3	Eleocharis palustris (L.) Roemer & J.A. Schultes	creeping spikerush
ELPA6	Eleocharis pauciflora (Lightf.) Link	few-flowered spikerush
JUBA	Juncus balticus Willd.	Baltic rush
JUBR3	Juncus brachyphyllus Wieg.	tuftedstem rush
JUCO2	Juncus confusus Coville	Colorado rush
JUDR		Drummond's rush
	Juncus drummondii E. Mey.	
JUEF	Juncus effusus L.	common rush
JUEN	Juncus ensifolius Wikstr.	swordleaf rush
JUFI	Juncus filiformis L.	thread rush
JUME3	Juncus mertensianus Bong.	Mertens' rush
JUNCU	Juncus L.	rush
JUPA	Juncus parryi Engelm.	Parry's rush
KOSI2	Kobresia simpliciuscula (Wahlenb.) Mackenzie	simple bog sedge
LUCA2	Luzula campestris (L.) DC.	field woodrush
LUHI4	Luzula hitchcockii Hämet-Ahti	Hitchcock's smooth woodrus
LUPA4	Luzula parviflora (Ehrh.) Desv.	smallflowered woodrush
LUZUL	Luzula DC.	woodrush
SCCY	Scirpus cyperinus (L.) Kunth	woolgrass
SCIRP	Scirpus L.	bulrush
SCMI2	Scirpus microcarpus J.& K. Presl	small-fruit bulrush
erns and ho		
ADPE	Adiantum pedatum L.	maidenhair
ATFI	Athyrium filix-femina (L.) Roth	ladyfern
BOVI	Botrychium virginianum (L.) Sw.	rattlesnake fern
CYFR2	Cystopteris fragilis (L.) Bernh.	brittle bladderfern
DRAU8	Dryopteris austriaca (Jacq.) Woynar ex Schinz & Thellung	mountain woodfern
DRFI2	Dryopteris filix-mas (L.) Schott	male fern
EQAR	Equisetum arvense L.	common horsetail
EQHY	Equisetum hyemale L.	scouringrush horsetail
EQLA	Equisetum laevigatum A. Braun	smooth horsetail
EQPA	Equisetum palustre L.	marsh horsetail
EQUIS	Equisetum L.	horsetail
EQVA	Equisetum variegatum Schleich. ex F. Weber & D.M.H. Mohr	variegated scouringrush
GYDR	<i>Gymnocarpium dryopteris</i> (L.) Newman	oakfern
POMU	Polystichum munitum (Kaulfuss) K. Presl	western swordfern
PTAQ	Pteridium aquilinum (L.) Kuhn	western brackenfern
WOOR	Woodsia oregana D.C. Eat.	Oregon cliff fern
Aosses:		
SPHAG2	Sphagnum L.	spagnum moss

Appendix A-2—Iotal species s	orted in alpi	habetical order by common name
Common name	Code	Scientific name
Trees:		
American plum	PRAM	Prunus americana Marsh.
Black cottonwood	POTR15	Populus trichocarpa Torr. & Gray ex Hook.
Black locust	ROPS	Robinia pseudoacacia L.
Black walnut	JUNI	Juglans nigra L.
Boxelder	ACNE2	Acer negundo L.
Douglas-fir	PSME	Pseudotsuga menziesii (Mirbel) Franco
Engelmann spruce	PIEN	Picea engelmannii Parry ex Engelm.
Grand fir	ABGR	Abies grandis (Dougl. ex D. Don) Lindl.
Heartleaved paper birch	BEPAS	Betula papyrifera Marsh. var. subcordata (Rydb.) Sarg.
Lodgepole pine	PICO	Pinus contorta Dougl. ex Loud.
Mountain hemlock	TSME	Tsuga mertensiana (Bong.) Carr.
Ponderosa pine	PIPO	Pinus ponderosa P.& C. Lawson
Red alder	ALRU2	Alnus rubra Bong.
Subalpine fir	ABLA	Abies lasiocarpa (Hook.) Nutt.
Sweet cherry	PRAV	Prunus avium (L.) L.
Western juniper	JUOC	Juniperus occidentalis Hook.
Western larch	LAOC	Larix occidentalis Nutt.
White alder	ALRH2	Alnus rhombifolia Nutt.
Whitebark pine	PIAL	Pinus albicaulis Engelm.
Shrubs:		
Alder-leaved buckthorn	RHPU	Rhamnus purshiana DC.
Alpine laurel	KAMI	Kalmia microphylla (Hook.) Heller
Alpine spicywintergreen	GAHU	Gaultheria humifusa (Graham) Rydb.
Apricot	PRAR3	Prunus armeniaca L.
Arctic willow	SAAR27	Salix arctica Pallas
Arroyo willow	SALA6	Salix lasiolepis Benth.
Balsam poplar	POBA2	Populus balsamifera L.
Barclay's willow	SABA3	Salix barclayi Anderss.
Barton's raspberry	RUBA	Rubus bartonianus M.E. Peck
Bebb's willow	SABE2	Salix bebbiana Sarg.
Big huckleberry	VAME	Vaccinium membranaceum Dougl. ex Torr.
Birch	BETUL	Betula L.
Bitter cherry	PREM	Prunus emarginata (Dougl. ex Hook.) D. Dietr.
Black crowberry	EMNI	Empetrum nigrum L.
Black hawthorn	CRDO2	Crataegus douglasii Lindl.
Blackberry	RUBUS	Rubus L.
Blue elderberry	SACE3	Sambucus cerulea Raf.
Blueberry	VACCI	Vaccinium L.
Blueberry willow	SAMY	Salix myrtillifolia Anderss.
Bog birch	BEGL	Betula glandulosa Michx.
Bog blueberry	VAUL	Vaccinium uliginosum L.
Booth's willow	SABO2	Salix boothii Dorn
Cascade azalea	RHAL2	Rhododendron albiflorum Hook.
Chokecherry	PRVI	Prunus virginiana L.
Clematis	CLEMA	Clematis L.
Common snowberry	SYAL	Symphoricarpos albus (L.) Blake
Coyote willow	SAEX	Salix exigua Nutt.
Curl-leaf mountain mahogany	CELE3	Cercocarpus ledifolius Nutt.
Currant	RIBES	Ribes L. Rubus Isolinistus Willd
Cutleaf blackberry	RULA	Rubus laciniatus Willd.
Devilsclub Devilse Beeky Mountain mente		Oplopanax horridus Miq.
Douglas Rocky Mountain maple Douglas spiraea	ACGLD4 SPDO	Acer glabrum Torr. var. douglasii (Hook.) Dipple
Douglas spiraea Drummond's willow		Spiraea douglasii Hook. Salix drummondiana Barratt ex Hook.
	SADR VACA13	
Dwarf bilberry Dwarf rose	ROGY	Vaccinium caespitosum Michx. Rosa gymnocarpa Nutt.
Eastwood willow	SAEA	Salix eastwoodiae Cockerell ex Heller
Elderberry	SAEA SAMBU	Santa eastwoodae Cockeren ex Hener Sambucus L.
European mountain ash	SOAU	Sambucus L. Sorbus aucuparia L.
European plum	PRDO	Prunus domestica L.
Farr's willow	SAFA	Salix farriae Ball
Geyer willow	SAFA SAGE2	Salix farriae Ball Salix geyeriana Anderss.
Gooseberry currant	RIMO2	Ribes montigenum McClatchie
coood any our and	111102	

Appendix A-2—Total species sorted in alphabetical order by common name

Common name	Code	Scientific name
Greene's mountain ash	SOSC2	
Grouse huckleberry	VASC	Sorbus scopulina Greene Vaccinium scoparium Leib. ex Coville
Himalayan blackberry	RUDI2	Rubus discolor Weihe & Nees
Hollyleaved barberry	BEAQ	Berberis aquifolium Pursh
Idaho gooseberry	RIIR	Ribes irriguum Dougl.
Kinnikinnick	ARUV	Arctostaphylos uva-ursi (L.) Spreng.
Labrador tea	LEGL	Ledum glandulosum Nutt.
Lemmon's willow	SALE	Salix lemmonii Bebb
Lewis' mock orange	PHLE4	Philadelphus lewisii Pursh
Little prince's pine	CHME	Chimaphila menziesii (R. Br. ex D. Don) Spreng.
Mallow ninebark	PHMA5	Physocarpus malvaceus (Greene) Kuntze
Maple	ACER	Acer L.
Marsh Labrador tea	LEDE5	Ledum decumbens (Ait.) Lodd. ex Steud.
Moss heather	CASSI3	Cassiope D. Don
Mountain alder	ALIN2	Alnus incana (L.) Moench
Mountain big sagebrush	ARTRV	Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle
Mountain snowberry	SYOR2	Symphoricarpos oreophilus Gray
Netleaf hackberry	CERE2	Celtis reticulata Torr.
Nootka rose	RONU	Rosa nutkana K. Presl
Oceanspray	HODI	Holodiscus discolor (Pursh) Maxim.
Orange honeysuckle	LOCI3	Lonicera ciliosa (Pursh) Poir. ex DC.
Oregon boxleaf	PAMY BERE	Paxistima myrsinites (Pursh) Raf.
Oregon grape Oregon white oak		Berberis repens Lindl.
Pacific ninebark	QUGA4 PHCA11	Quercus garryana Dougl. ex Hook. Physocarpus capitatus (Pursh) Kuntze
Pacific willow	SALA5	Salix lasiandra Benth.
Pacific yew	TABR2	Taxus brevifolia Nutt.
Pink mountainheath	PHEM	Phyllodoce empetriformis (Sm.) D. Don
Pipsissewa	CHUM	Chimaphila umbellata (L.) W. Bart.
Planeleaf willow	SAPL2	Salix planifolia Pursh
Plum	PRUNU	Prunus L.
Poison ivy	RHRA6	Rhus radicans L.
Prickly currant	RILA	Ribes lacustre (Pers.) Poir.
Red elderberry	SARA2	Sambucus racemosa L.
Red raspberry	RUID	Rubus idaeus L.
Red-oiser dogwood	COST4	Cornus stolonifera Michx.
Redstem ceanothus	CESA	Ceanothus sanguineus Pursh
Rigid willow Rock clematis	SARI2 CLCO2	Salix rigida Muhl. Clematis columbiana (Nutt.) Torr. & Gray
Rock spirea	HODU	Holodiscus dumosus (Nutt. ex Hook.) Heller
Rocky Mountain maple	ACGL	Acer glabrum Torr.
Rose	ROSA5	Rosa L.
Rose meadowsweet	SPDE	Spiraea densiflora Nutt. ex Greenm.
Russet buffaloberry	SHCA	Shepherdia canadensis (L.) Nutt.
Rusty menziesia	MEFE	Menziesia ferruginea Sm.
Scouler's willow	SASC	Salix scouleriana Barratt ex Hook.
Shrubby cinquefoil	POFR4	Potentilla fruticosa auct. non L.
Silver sagebrush	ARCA13	Artemisia cana Pursh
Sitka alder	ALSI3	Alnus sinuata (Regel) Rydb.
Sitka willow	SASI2	Salix sitchensis Sanson ex Bong.
Smooth sumac	RHGL	Rhus glabra L.
Snow currant	RINI2 PRCE	Ribes niveum Lindl. Prunus cerasus L.
Sour cherry Spiny greasebush	GLNE	Glossopetalon nevadense Gray
Spirea	SPIRA	Spiraea L.
Stinking currant	RIHU	Ribes hudsonianum Richards.
Stream currant	RICO	Ribes cognatum Greene
Sweetgale	MYGA	Myrica gale L.
Thimbleberry	RUPA	Rubus parviflorus Nutt.
Tweedy's willow	SATW	Salix tweedyi (Bebb ex Rose) Ball
Twinberry honeysuckle	LOIN5	Lonicera involucrata Banks ex Spreng.
Twinflower	LIBO3	Linnaea borealis L.
Undergreen willow	SACO2	Salix commutata Bebb
Utah honeysuckle	LOUT2	Lonicera utahensis S. Wats.

Common name	Code	Scientific name
Water birch	BEOC2	Betula occidentalis Hook.
Wax currant	RICE	Ribes cereum Dougl.
Western laurel	KAOC	Kalmia occidentalis Small
Western moss heather	CAME7	Cassiope mertensiana (Bong.) D. Don
Western serviceberry	AMAL2	Amelanchier alnifolia (Nutt.) Nutt. ex M. Roemer
Western white clematis	CLLI2	Clematis ligusticifolia Nutt.
White spirea	SPBE2	Spiraea betulifolia Pallas
Whitebark raspberry	RULE	Rubus leucodermis Dougl. ex Torr. & Gray
Whitestem gooseberry	RIIN2	Ribes inerme Rydb.
Whortleberry	VAMY2	Vaccinium myrtillus L.
Willow	SALIX	Salix L.
Wolf's currant	RIWO	Ribes wolfii Rothrock
Wolf's willow	SAWO	Salix wolfii Bebb
Woods' rose	ROWO	Rosa woodsii Lindl.
orbs:		
Agoseris	AGOSE	Agoseris Raf.
Alaska draba	DRST2	Draba stenoloba Ledeb.
Alpine leafybract aster	ASFO	Aster foliaceus Lindl. ex DC.
Alpine lewisia	LEPY2	Lewisia pygmaea (Gray) B.L. Robins.
Alpine meadow butterweed	SECY	Senecio cymbalarioides Buek
Alpine meadow-rue	THAL	Thalictrum alpinum L.
Alpine milkvetch	ASAL7	Astragalus alpinus L.
Alpine pussytoes	ANAL4	Antennaria alpina (L.) Gaertn.
Alpine shootingstar	DOAL	Dodecatheon alpinum (Gray) Greene
Alpine smartweed	POVI3	Polygonum viviparum L.
Alpine springbeauty	CLME	Claytonia megarhiza (Gray) Parry ex S. Wats.
Alumroot	HEUCH	Heuchera L.
American alpine speedwell	VEWO2	Veronica wormskjoldii Roemer & J.A. Schultes
American bird's-foot trefoil	LOPU3	Lotus purshianus F.E. & E.G. Clem.
American bistort	POBI6	Polygonum bistortoides Pursh
American globeflower	TRLA14	Trollius laxus Salisb.
American saw-wort	SAAM3	Saussurea americana D.C. Eat.
American speedwell	VEAM2	Veronica americana Schwein. ex Benth.
American trailplant	ADBI	Adenocaulon bicolor Hook.
American vetch	VIAM	Vicia americana Muhl. ex Willd.
Anemone	ANEMO	Anemone L.
Arctic pearlwort	SASA	Sagina saginoides (L.) Karst.
Arnica	ARNIC	Arnica L.
Arrowleaf balsamroot	BASA3	Balsamorhiza sagittata (Pursh) Nutt.
Arrowleaf groundsel	SETR	Senecio triangularis Hook.
Aspen fleabane	ERSP4	Erigeron speciosus (Lindl.) DC.
Aster	ASTER	Aster L.
Aster family	ASTERF	Asteraceae
Avens	GEUM	Geum L.
Ballhead ipomopsis	GICO2	Gilia congesta Hook.
Ballhead waterleaf	HYCA4	Hydrophyllum capitatum Dougl. ex Benth.
Beardtongue	PENST	Penstemon Schmidel
Bedstraw	GALIU	Galium L.
Bellflower	CAMPA	Campanula L.
Bicknell's cranesbill	GEBI2	Geranium bicknellii Britt.
Biennial cinquefoil	POBI7	Potentilla biennis Greene
Big chickweed	CEVU	Cerastium vulgatum L. 1762, non 1755
Bigleaf lupine	LUPO2	Lupinus polyphyllus Lindl.
Birdfoot deervetch	LOCO6	Lotus corniculatus L.
Bitter dock	RUOB	Rumex obtusifolius L.
Bittercress	CARDA	Cardamine L.
Black medick	MELU	Medicago lupulina L.
Bladder campion	LYAL	Lychnis alba P. Mill.
Bluebell bellflower	CARO2	Campanula rotundifolia L.
Bluebells	MERTE	Mertensia Roth
Bog orchid	HABEN	Habenaria Willd.
Bolander's quillwort	ISBO	Isoetes bolanderi Engelm.
Boreal sweetvetch	HEBO	Hedysarum boreale Nutt.

Appendix A-2—Total species sorted in alphabetical order by common name (continued)

Common name	Code	Scientific name
British Columbia wildginger	ASCA2	Asarum caudatum Lindl.
Broadleaf arnica	ARLA8	Arnica latifolia Bong.
Broadleaf starflower	TRLA6	Trientalis latifolia Hook.
Brodiaea	BRODI	Brodiaea Sm.
Brook saxifrage	SAAR13	Saxifraga arguta auct. non D. Don
Buckbean	METR3	Menyanthes trifoliata L.
Bull thistle	CIVU	Cirsium vulgare (Savi) Ten.
Bunchberry dogwood	COCA13	Cornus canadensis L.
Burdock	ARCTI	Arctium L.
Buttercup	RANUN	Ranunculus L.
California false hellebore	VECA2 SOCA6	Veratrum californicum Dur.
Canada goldenrod Canada thistle	CIAR4	Solidago canadensis L.
Canadian burnet	SASI10	Cirsium arvense (L.) Scop. Sanguisorba sitchensis C.A. Mey.
Canadian horseweed	COCA5	Conyza canadensis (L.) Cronq.
Canadian milkvetch	ASCA11	Astragalus canadensis L.
Canadian white violet	VICA4	Viola canadensis L.
Canby's licorice-root	LICA2	Ligusticum canbyi Coult. & Rose
Carleton's sand verbena	ABCA	Abronia carletonii Coult. & Fisher
Carrot family	APIACF	Apiaceae
Carrot family	UMBELF	Umbelliferae
Chamisso arnica	ARCH3	Arnica chamissonis Less.
Chaparral willowherb	EPMI	Epilobium minutum Lindl. ex Lehm.
Chervil	ANSC8	Anthriscus scandicina (Weber ex Wiggers) Mansf.
Cinquefoil	POTEN	Potentilla L.
Clasping arnica	ARAM2	Arnica amplexicaulis Nutt.
Claspleaf twistedstalk	STAM2	Streptopus amplexifolius (L.) DC.
Clearwater cryptantha	CRFR2	Cryptantha fragilis M.E. Peck
Cleavers	GAAP2	Galium aparine L.
Climbing nightshade	SODU	Solanum dulcamara L.
Clover	TRIFO	Trifolium L.
Columbian monkshood Columbine	ACCO4	Aconitum columbianum Nutt.
Common beargrass	AQUIL XETE	Aquilegia L. Xerophyllum tenax (Pursh) Nutt.
Common cattail	TYLA	Typha latifolia L.
Common chickweed	STME2	Stellaria media (L.) Vill.
Common cowparsnip	HELA4	Heracleum lanatum Michx.
Common dandelion	TAOF	Taraxacum officinale G.H. Weber ex Wiggers
Common duckweed	LEMI3	Lemna minor L.
Common mullein	VETH	Verbascum thapsus L.
Common nipplewort	LACO3	Lapsana communis L.
Common plantain	PLMA2	Plantago major L.
Common selfheal	PRVU	Prunella vulgaris L.
Common St. Johnswort	HYPE	Hypericum perforatum L.
Common yarrow	ACMI2	Achillea millefolium L.
Cow clover	TRWO	Trifolium wormskioldii Lehm.
Creeping buttercup	RARE3	Ranunculus repens L.
Creeping sibbaldia	SIPR	Sibbaldia procumbens L.
Crevice alumroot	HEMI7	Heuchera micrantha Dougl. ex Lindl.
Crossflower	CHTE2	Chorispora tenella (Pallas) DC.
Curled starwort	STCR2 RUCR	Stellaria crispa Cham. & Schlecht. Rumex crispus L.
Curly dock Curlytop knotweed	POLA4	Polygonum lapathifolium L.
Curvepod yellowcress	ROCU	Rorippa curvisiliqua (Hook.) Bess. ex Britt.
Cusick's milkvetch	ASCU5	Astragalus cusickii Gray
Cusick's Indian paintbrush	CACU7	Castilleja cusickii Greenm.
Cusick's speedwell	VECU	Veronica cusickii Gray
Dandelion	TARAX	Taraxacum G.H. Weber ex Wiggers
Darkthroat shootingstar	DOPU	Dodecatheon pulchellum (Raf.) Merr.
Darkwoods violet	VIOR	Viola orbiculata Geyer ex Holz.
Desertparsley	LOMAT	Lomatium Raf.
Dock	RUMEX	Rumex L.
Drops of gold	DIHO3	Disporum hookeri (Torr.) Nichols.
Duncecap larkspur	DEOC	Delphinium ×occidentale (S. Wats.) S. Wats. (pro sp.) [barbeyi × glaucum]

Common name	Code	Scientific name
Dutchman's breeches	DICU	Dicentra cucullaria (L.) Bernh.
Dwarf fireweed	EPLA	Epilobium latifolium L.
Dwarf groundsmoke	GAHU2	Gayophytum humile Juss.
Eastern showy aster	ASCO3	Aster conspicuus Lindl.
Eaton's aster	ASEA	Aster eatonii (Gray) T.J. Howell
Elephanthead lousewort	PEGR2	Pedicularis groenlandica Retz.
Elkweed	FRSP	Frasera speciosa Dougl. ex Griseb.
Enchanter's nightshade	CIAL	Circaea alpina L.
Eschscholtz's buttercup	RAES	Ranunculus eschscholtzii Schlecht.
Explorer's gentian Fairybells	GECA DISPO	Gentiana calycosa Griseb. Disporum Solich, ex D. Don
False bugbane	TRCA	Disporum Salisb. ex D. Don Trautvetteria caroliniensis (Walt.) Vail
False hellebore	VERAT	Veratrum L.
False Solomon's seal	SMILA	Smilacina Desf.
Falsegold groundsel	SEPS2	Senecio pseudaureus Rydb.
Feathery false Solomon's seal	SMRA	Smilacina racemosa (L.) Desf.
Felwort	SWPE	Swertia perennis L.
Fendler's waterleaf	HYFE	Hydrophyllum fendleri (Gray) Heller
Fernleaf biscuitroot	LODI	Lomatium dissectum (Nutt.) Mathias & Constance
Fewflower pea	LAPA5	Lathyrus pauciflorus Fern.
Field bindweed	COAR4	Convolvulus arvensis L.
Field chickweed	CEAR4	Cerastium arvense L.
Fireweed	EPAN2	Epilobium angustifolium L.
Fivestamen miterwort	MIPE	Mitella pentandra Hook.
Fleabane	ERIGE2	Erigeron L.
Foothill arnica	ARFU3	Arnica fulgens Pursh
Forget-me-not	MYOSO	Myosotis L.
Fragrant bedstraw	GATR3	Galium triflorum Michx.
Fringed grass of Parnassus Fringed willowherb	PAFI3 EPGL4	Parnassia fimbriata Koenig Epilobium glandulosum Lehm.
Garden sorrel	RUAC2	Rumex acetosa L.
Gentian	GENTI	Gentiana L.
Geranium	GERAN	Geranium L.
German knotgrass	SCAN2	Scleranthus annuus L.
German-madwort	ASPR	Asperugo procumbens L.
Giant goldenrod	SOGI	Solidago gigantea Ait.
Giant hyssop	AGAST	Agastache Clayton ex Gronov.
Giant mountain aster	ASMO3	Aster modestus Lindl.
Giant red Indian paintbrush	CAMI12	Castilleja miniata Dougl. ex Hook.
Gilia	GILIA	Gilia Ruiz & Pavón
Glandular willowherb	EPHA	Epilobium halleanum Hausskn.
Glaucus willowherb	EPGL	Epilobium glaberrimum Barbey
Globe penstemon	PEGL5	Penstemon globosus (Piper) Pennell & Keck
Goldenrod Grand collomia	SOLID COGR4	Solidago L. Collomia grandiflora Dougl. ex Lindl.
Grassy tarweed	MAGR3	Madia gracilis (Sm.) Keck & J. Clausen ex Applegate
Graygreen thistle	CICA6	Cirsium canovirens (Rydb.) Petrak
Gray's licorice-root	LIGR	Ligusticum grayi Coult. & Rose
Green false hellebore	VEVI	Veratrum viride Ait.
Green gentian	FRASE	Frasera Walt.
Gypsyflower	CYOF	Cynoglossum officinale L.
Hairy arnica	ARMO4	Arnica mollis Hook.
Hare's ear mustard	COOR	Conringia orientalis (L.) Dumort.
Hawkweed	HIERA	Hieracium L.
Heartleaf arnica	ARCO9	Arnica cordifolia Hook.
Heartleaf bittercress	CACO6	Cardamine cordifolia Gray
Heartleaf twayblade	LICO6	Listera cordata (L.) R. Br. ex Ait. f.
Heartleaf minerslettuce	MOCO4	Montia cordifolia (S. Wats.) Pax & K. Hoffmann
Henbit deadnettle	LAAM	Lamium amplexicaule L.
High mountain cinquefoil	POFL3	Potentilla flabellifolia Hook. ex Torr. & Gray
Hooded ladies'-tresses	SPRO	Spiranthes romanzoffiana Cham.
Hookedspur violet Horehound	VIAD MAVU	Viola adunca Sm. Marrubium vulgaro I
Horenound Howell's marshmarigold	CABI2	Marrubium vulgare L. Caltha biflora DC.
nowen a marannanguu		

Common name	Code	Scientific name
Howell's triteleia	BRHO	Brodiaea howellii S. Wats.
Idaho licorice-root	LITE2	Ligusticum tenuifolium S. Wats.
Idaho trillium	TRPE3	Trillium petiolatum Pursh
Indian paintbrush	CASTI2	Castilleja Mutis ex L. f.
Indianpipe	MOUN3	Monotropa uniflora L.
Jacob's-ladder	POLEM	Polemonium L.
Jacob's-ladder	POPU3	Polemonium pulcherrimum Hook.
Japanese knotweed	POCU6	Polygonum cuspidatum Sieb. & Zucc.
Jessica sticktight	HAMI	Hackelia micrantha (Eastw.) J.L. Gentry
Knotweed	POLYG4	Polygonum L.
Lambstongue ragwort	SEIN2	Senecio integerrimus Nutt.
Lanceleaf figwort	SCLA	Scrophularia lanceolata Pursh
Large mountain fleabane	ERCO6	Erigeron coulteri Porter
Largeflower fairybells	DISM2	Disporum smithii (Hook.) Piper
Largeflower triteleia	BRDO	Brodiaea douglasii S. Wats.
Largeleaf avens	GEMA4	Geum macrophyllum Willd.
Largeleaf sandwort	ARMA18	Arenaria macrophylla Hook.
Larkspur	DELPH	Delphinium L.
Leafy white orchis	HADI7	Habenaria dilatata (Pursh) Hook.
Lesser burdock	ARMI2	Arctium minus Bernh.
Lettuce	LACTU	Lactuca L.
Lewiston cornsalad	VALO	
		Valerianella locusta (L.) Lat.
Licorice-root	LIGUS	Ligusticum L.
Lily family	LILIAF	
Little western bittercress	CAOL	Cardamine oligosperma Nutt.
Littleleaf minerslettuce	MOPA2	Montia parvifolia (Moc. ex DC.) Greene
Littleleaf pussytoes	ANMI3	Antennaria microphylla Rydb.
Liverleaf wintergreen	PYAS	Pyrola asarifolia Michx.
Longleaf starwort	STLO	Stellaria longifolia Muhl. ex Willd.
Longstalk clover	TRLO	Trifolium longipes Nutt.
Longstalk starwort	STLO2	Stellaria longipes Goldie
Lupine	LUPIN	Lupinus L.
Lyall's angelica	ANAR3	Angelica arguta Nutt.
Maiden blue eyed Mary	COPA3	Collinsia parviflora Lindl.
Manyflower tonella	TOFL	Tonella floribunda Gray
Mapleleaf goosefoot	CHHY	Chenopodium hybridum auct. non L.
Mariposa lily	CALOC	Calochortus Pursh
Marsh marigold	CALTH	Caltha L.
Marsh violet	VIPA4	Viola palustris L.
Meadow-rue	THALI2	Thalictrum L.
Menzies' campion	SIME	Silene menziesii Hook.
Menzies' fiddleneck	AMRE2	Amsinckia retrorsa Suksdorf
Mexican bedstraw	GAAS3	Galium asperrimum Gray
Milkvetch	ASTRA	Astragalus L.
Minerslettuce	MONTI	Montia L.
Mint	MENTH	Mentha L.
Mint family	LABIAF	Labiatae
Miterwort	MITEL	Mitella L.
Monkeyflower	MIMUL	Mimulus L.
Moss campion	SIAC	Silene acaulis (L.) Jacq.
Mountain deathcamas	ZIEL2	Zigadenus elegans Pursh
Mountain monardella	MOOD	Monardella odoratissima Benth.
Mountain sweetcicely	OSCH	Osmorhiza chilensis Hook. & Arn.
Mountain tansymustard	DERI2	Descurainia richardsonii O.E. Schulz
Mouse-ear chickweed	CERAS	Cerastium L.
Mt. Albert goldenrod	SOSP	Solidago spathulata DC.
Muskflower	MIMO3	Mimulus moschatus Dougl. ex Lindl.
Mustard family	CRUCIF	Cruciferae
Narrowleaf bur-reed	SPAN2	Sparganium angustifolium Michx.
Narrowleaf plantain	PLLA	Plantago lanceolata L.
Neckweed	VEPE2	Veronica peregrina L.
Nettleleaf horsemint	AGUR	
Nightflowering silene	SINO	Agastache urticifolia (Benth.) Kuntze Silene noctiflora L.
Nighthowening Sliene	SINU	
Nodding beggartick	BICE	Bidens cernua L.

common name	Code	Scientific name
Nodding chickweed	CENU2	Cerastium nutans Raf.
Nodding microceris	MINU	Microseris nutans (Hook.) Schultz-Bip.
Northern bedstraw	GABO2	Galium boreale L.
Northern bugleweed	LYUN	Lycopus uniflorus Michx.
Northern starwort	STCA	Stellaria calycantha (Ledeb.) Bong.
Norton's St. Johnswort	HYFON	Hypericum formosum Kunth var. nortoniae (M.E. Jones) C.L. Hitche
Drange agoseris	AGAU2	Agoseris aurantiaca (Hook.) Greene
Oregon checkerbloom	SIOR	Sidalcea oregana (Nutt. ex Torr. & Gray) Gray
Oregon saxifrage	SAOR2	Saxifraga oregana T.J. Howell
Oxeye daisy	CHLE80	Chrysanthemum leucanthemum L.
Pacific aster	ASCH2	Aster chilensis Nees
Pacific onion	ALVA	Allium validum S. Wats.
Pacific trillium	TROV2 ARPA13	Trillium ovatum Pursh
Parry's arnica Parry's lousewort	PEPA3	Arnica parryi Gray Pedicularis parryiGray
Patience dock	RUPA5	Rumex patientia L.
Payette beardtongue	PEPA29	Penstemon payettensis A. Nels. & J.F. Macbr.
	LATHY	Lathyrus L.
Pea family	LEGUMF	Legumaceae
Pennsylvania pellitory	PAPE5	Parietaria pensylvanica Muhl. ex Willd.
Peppermint	MEPI	Mentha ×piperita L. (pro sp.) [aquatica × spicata]
Perfoliated minerslettuce	MOPE3	Montia perfoliata (Donn ex Willd.) T.J. Howell
Philadelphia fleabane	ERPH	Erigeron philadelphicus L.
Pimpernel willowherb	EPAL	Epilobium alpinum L. p.p.
Pink family	CARYOF	Caryophyllaceae
Pioneer violet	VIGL	Viola glabella Nutt.
Piper's anemone	ANPI	Anemone piperi Britt. ex Rydb.
Plantainleaf buttercup	RAAL	Ranunculus alismifolius Geyer ex Benth.
Plumeless thistle	CARDU	Carduus L.
Poke knotweed	POPH	Polygonum phytolaccifolium Meisn. ex Small
Pondweed	POTAM	Potamogeton L.
Popular buttercup	RAPO	Ranunculus populago Greene
Prickly lettuce	LASE	Lactuca serriola L.
Primrose monkeyflower	MIPR	Mimulus primuloides Benth.
Purple monkeyflower	MILE2	Mimulus lewisii Pursh
Pussytoes	ANTEN	Antennaria Gaertn.
Queen's cup beadlily	CLUN2	Clintonia uniflora (Menzies ex J.A. & J.H. Schultes) Kunth
Raceme pussytoes	ANRA	Antennaria racemosa Hook.
Ragwort	SENEC	Senecio L.
Red baneberry	ACRU2	Actaea rubra (Ait.) Willd.
Red clover	TRPR2	Trifolium pratense L.
Robbins' milkvetch	ASRO	Astragalus robbinsii (Oakes) Gray
Rocky Mountain chickweed	STOB	Stellaria obtusa Engelm.
Rocky Mountain goldenrod Rocky Mountain pond-lily	NUPO2	Solidago multiradiata Ait. Nuphar polysepala Engelm.
Rose campion	LYCO	Lychnis coronaria (L.) Desr.
Roughfruit fairybells	DITR2	Disporum trachycarpum (S. Wats.) Benth. & Hook. f.
Sanddune wallflower	ERAS2	Erysimum asperum (Nutt.) DC.
Saxifrage	SAXIF	Saxifraga L.
Scarlet gilia	GIAG	Gilia aggregata (Pursh) Spreng.
Scouler's popcornflower	PLSC2	Plagiobothrys scouleri (Hook. & Arn.) I.M. Johnston
Scouler's St. Johnswort	HYFOS	Hypericum formosum Kunth var. scouleri (Hook.) Coult.
Seep monkeyflower	MIGU	Mimulus guttatus DC.
Sheep cinquefoil	POOV2	Potentilla ovina Macoun ex J.M. Macoun
Shepherd's purse	CABU2	Capsella bursa-pastoris (L.) Medik.
Shootingstar	DODEC	Dodecatheon L.
Shrubby bedstraw	GAMU2	Galium multiflorum Kellogg
Siberian minerslettuce	MOSI2	Montia sibirica (L.) T.J. Howell
Sickletop lousewort	PERA	Pedicularis racemosa Dougl. ex Benth.
Sidebells wintergreen	PYSE	Pyrola secunda L.
Sierra pea	LANE3	Lathyrus nevadensis S. Wats.
Sierrra shootingstar	DOJE	Dodecatheon jeffreyi Van Houtte
Silverleaf phacelia	PHHA	Phacelia hastata Dougl. ex Lehm.
Simplestem bur-reed	SPER	Sparganium erectum L.

Common name	Code	Scientific name
Sitka valerian	VASI	Valeriana sitchensis Bong.
Slender bog orchid	HASA	Habenaria saccata Greene
Slender cinquefoil	POGR9	Potentilla gracilis Dougl. ex Hook.
Slender hawkweed	HIGR	Hieracium gracile Hook.
Slender phlox	MIGR	Microsteris gracilis (Hook.) Greene
Slender-spire orchid	HAUN	Habenaria unalascensis (Spreng.) S. Wats.
Slim larkspur	DEDE2	Delphinium depauperatum Nutt.
Small burnet	SAMI3	Sanguisorba minor Scop.
Small bur-reed	SPNA	Sparganium natans L.
Small geranium	GEPU2	Geranium pusillum L.
Small white violet	VIMA2	Viola macloskeyi Lloyd
Smallflower miterwort	MIST3	Mitella stauropetala Piper
Smallflower nemophila	NEPA	Nemophila parviflora Dougl. ex Benth.
Smallflower woodland-star	LIPA5	Lithophragma parviflorum (Hook.) Nutt. ex Torr. & Gray
Snake River phlox	PHCO10	Phlox colubrina Wherry & Constance
Snowbed draba	DRCR2	Draba crassifolia Graham
Snowline wintergreen	PYMI	Pyrola minor L.
Spearleaf arnica	ARLO6	Arnica longifolia D.C. Eat.
Speedwell	VERON	Veronica L. Costillais rhaviifalis Dudh
Splitleaf Indian paintbrush	CARH4	Castilleja rhexiifolia Rydb.
Spreading dogbane	APAN2	Apocynum androsaemifolium L.
Spreadingpod rockcress St. Johnswort	ARDI2 HYPER	Arabis ×divaricarpa A. Nels. (pro sp.) Hypericum L.
Starry false Solomon's seal Starwort	SMST STELL	Smilacina stellata (L.) Desf. Stellaria L.
Stickseed	HACKE	Hackelia Opiz
Sticky chickweed	CEVI3	Cerastium viscosum auct. non L.
Sticky cinquefoil	POGL9	Potentilla glandulosa Lindl.
Sticky purple geranium	GEVI2	Geranium viscosissimum Fisch. & C.A. Mey. ex C.A. Mey
Stiff clubmoss	LYAN2	Lycopodium annotinum L.
Stinging nettle	URDI	Urtica dioica L.
Stonecrop	SEDUM	Sedum L.
Stream orchid	EPGI	Epipactis gigantea Dougl. ex Hook.
Streambank wild hollyhock	ILRI	Iliamna rivularis (Dougl. ex Hook.) Greene
Strict forget-me-not	MYMI	Myosotis micrantha auct. non Pallas ex Lehm.
Subalpine fleabane	ERPE3	Erigeron peregrinus (Banks ex Pursh) Greene
Summer coralroot	COMA4	Corallorrhiza maculata (Raf.) Raf.
Sweet coltsfoot	PEFRP	Petasites frigidus (L.) Fries var. palmatus (Ait.) Cronq.
Sweetcicely	OSMOR	Osmorhiza Raf.
Tailed kittentails	SYMI	Synthyris missurica (Raf.) Pennell
Tall annual willowherb	EPPA2	Epilobium paniculatum Nutt. ex Torr. & Gray
Tall blue lettuce	LABI	Lactuca biennis (Moench) Fern.
Tall bluebells	MEPA	Mertensia paniculata (Ait.) G. Don
Tall buttercup	RAAC3	Ranunculus acris L.
Tall cinquefoil	POAR7	Potentilla arguta Pursh
Tall fringed bluebells	MECI3	<i>Mertensia ciliata</i> (James ex Torr.) G. Don
Tall groundsel	SEFO	Senecio foetidus J.T. Howell
Tall ragwort	SESE2	Senecio serra Hook.
Tall tumblemustard	SIAL2	Sisymbrium altissimum L.
Tapertip onion	ALAC4	Allium acuminatum Hook.
Tarweed fiddleneck	AMLY	Amsinckia lycopsoides Lehm.
Tasselflower brickellbush	BRGR	Brickellia grandiflora (Hook.) Nutt.
Teasel	DISY	Dipsacus sylvestris Huds.
Thistle	CIRSI	Cirsium P. Mill.
Threeleaf foamflower	TITR	Tiarella trifoliata L.
Threepetal bedstraw	GATR2	Galium trifidum L.
Thymeleaf sandwort	ARSE2	Arenaria serpyllifolia L.
Thymeleaf speedwell	VESE	Veronica serpyllifolia L.
Tinker's penny	HYAN2	Hypericum anagalloides Cham. & Schlecht.
Tiny trumpet	COLI2	Collomia linearis Nutt.
Tower rockcress	ARGL	Arabis glabra (L.) Bernh.
Tundra aster	ASAL2	Aster alpigenus (Torr. & Gray) Gray
huaublada	LISTE	<i>Listera</i> R. Br. ex Ait. f.
Twayblade Twin clover	TRLA8	Trifolium latifolium (Hook.) Greene

Common name	Code	Scientific name
Twinleaf bedstraw	GABI	Galium bifolium S. Wats.
Twistedstalk	STREP3	Streptopus Michx.
Umber pussytoes	ANUM	Antennaria umbrinella Rydb.
Varileaf cinquefoil	PODI2	Potentilla diversifolia Leĥm.
Veiny meadow-rue	THVE	Thalictrum venulosum Trel.
Velvet lupine	LULE3	Lupinus leucophyllus Dougl. ex Lindl.
Vetch	VICIA	Vicia L.
Violet	VIOLA	Viola L.
Virginia strawberry	FRVI	Fragaria virginiana Duchesne
Water speedwell	VEAN2	Veronica anagallis-aquatica L.
Watercress	RONA2	Rorippa nasturtium-aquaticum (L.) Hayek
Waterleaf	HYDRO4	Hydrophyllum L.
Water-starwort	CALLI6	Callitriche L.
Watson's willowherb	EPWA3	Epilobium watsonii Barbey
Wavyleaf thistle	CIUN	Cirsium undulatum (Nutt.) Spreng.
Western buttercup	RAOC	Ranunculus occidentalis Nutt.
Western columbine	AQFO	Aquilegia formosa Fisch. ex DC.
Western coneflower	RUOC2	Rudbeckia occidentalis Nutt.
Western dock	RUOC3	Rumex occidentalis S. Wats.
Western featherbells	STOC	Stenanthium occidentale Gray
Western meadow-rue	THOC	Thalictrum occidentale Gray
Western mountain aster	ASOC	Aster occidentalis (Nutt.) Torr. & Gray
Western pearly everlasting	ANMA	Anaphalis margaritacea (L.) Benth.
Western polemonium	POOC2	Polemonium occidentale Greene
Western rattlesnake plantain	GOOB2	Goodyera oblongifolia Raf.
Western sweetcicely	OSOC	Osmorhiza occidentalis (Nutt. ex Torr. & Gray) Torr.
Western water hemlock	CIDO	Cicuta douglasii (DC.) Coult. & Rose
Western waterleaf	HYOC	Hydrophyllum occidentale (S. Wats.) Gray
White brodiaea	BRHY2	Brodiaea hyacinthina (Lindl.) Baker
White clover	TRRE3	Trifolium repens L.
White hawkweed	HIAL2	Hieracium albiflorum Hook.
White marsh marigold	CALE4	Caltha leptosepala DC.
White sagebrush	ARLU	Artemisia Iudoviciana Nutt.
Wholeleaf saxifrage	SAIN4	Saxifraga integrifolia Hook.
Wild mint	MEAR4	Mentha arvensis L.
Willow dock	RUSA	Rumex salicifolius Weinm.
Willowherb	EPILO	Epilobium L.
Wintergreen	PYROL	Pyrola L.
Woodland buttercup	RAUN	Ranunculus uncinatus D. Don ex G. Don
Woodland pinedrops	PTAN2	Pterospora andromedea Nutt.
Woodland strawberry	FRVE	Fragaria vesca L.
Woollyhead parsnip	SPCA5	Sphenosciadium capitellatum Gray
Wormleaf stonecrop	SEST2	Sedum stenopetalum Pursh
Yellow avalanche-lily	ERGR9	Erythronium grandiflorum Pursh
Yellow avens	GEAL3	Geum aleppicum Jacq.
Yellow columbine	AQFL	Aquilegia flavescens S. Wats.
Yellow salsify	TRDU	Tragopogon dubius Scop.
Yellow sweetclover	MEAL2	Melilotus albus Medik.
Yellow sweetclover	MEOF	Melilotus officinalis (L.) Lam.
Yellow Wallowa Indian paintbrush	CACH16	Castilleja chrysantha Greenm.
rasses:		
Alaska oniongrass	MESU	Melica subulata (Griseb.) Scribn.
Alpine bentgrass	AGHU	Agrostis humilis Vasey
Alpine timothy	PHAL2	Phleum alpinum L.
American mannagrass	GLGR	Glyceria grandis S. Wats.
Basin wildrye	ELCI2	Elymus cinereus Scribn. & Merr.
Bearded fescue	FESU	Festuca subulata Trin.
Bearded wheatgrass	AGCA2	Agropyron caninum (L.) Beauv.
Beardless wheatgrass	AGIN5	Agropyron inerme (Scribn. & J.G. Sm.) Rydb.
Bentgrass	AGROS2	Agrostis L.
Blue wildrye	ELGL	Elymus glaucus Buckl.
	AGSP	Agropyron spicatum (Pursh) Scribn. & J.G. Sm.
Bluebunch wheatgrass	A001	
Bluebunch wheatgrass Bluegrass Bluejoint reedgrass	POA CACA4	Poa L. Calamagrostis canadensis (Michx.) Beauv.

Appendix A-2—Total species sorted in alphabetical order by common name (continued)

Common name	Code	Scientific name
Brome	BROMU	Bromus L.
Bulbous bluegrass	POBU	Poa bulbosa L.
California brome	BRCA5	Bromus carinatus Hook. & Arn.
Canada bluegrass	POCO	Poa compressa L.
Cheatgrass	BRTE	Bromus tectorum L.
Colonial bentgrass	AGTE	Agrostis tenuis Sibthorp
Columbia brome	BRVU	Bromus vulgaris (Hook.) Shear
Creeping bentgrass	AGST2	Agrostis stolonifera L.
Cusick's bluegrass	POCU3	Poa cusickii Vasey
Drooping woodreed	CILA2	Cinna latifolia (Trev. ex Goepp.) Griseb.
Fescue	FESTU	Festuca L.
Fowl bluegrass	POPA2	Poa palustris L.
Fowl mannagrass	GLST	Glyceria striata (Lam.) A.S. Hitchc.
Foxtail muhly	MUAN	Muhlenbergia andina (Nutt.) A.S. Hitchc.
Fringed brome	BRCI2	Bromus ciliatus L.
Grass family	POACF	Poaceae
Greenleaf fescue	FEVI	Festuca viridula Vasey
Idaho fescue	FEID	Festuca idahoensis Elmer
Japanese brome	BRJA	Bromus japonicus Thunb. ex Murr.
Kentucky bluegrass	POPR	Poa pratensis L.
Mannagrass	GLYCE	Glyceria R. Br.
Marsh bluegrass	POLE2	Poa leptocoma Trin.
Meadow foxtail	ALPR3	Alopecurus pratensis L.
Meadow ryegrass	FEPR	Festuca pratensis Huds.
Mountain bentgrass	AGVA	Agrostis variabilis Rydb.
Needlegrass	STIPA	Stipa L.
Nodding brome	BRAN	Bromus anomalus Rupr. ex Fourn.
Orchardgrass	DAGL	Dactylis glomerata L.
Orcutt's brome	BROR2	Bromus orcuttianus Vasey
Pacific brome	BRPA3	Bromus pacificus Shear
Pine bluegrass	POSC	Poa scabrella (Thurb.) Benth. ex Vasey
Pinegrass	CARU	Calamagrostis rubescens Buckl.
Poverty brome	BRST2	Bromus sterilis L. Kaalaria ariatata ayat n na nan Bara
Prairie Junegrass	KOCR	Koeleria cristata auct. p.p. non Pers.
Purple oniongrass	MESP	Melica spectabilis Scribn.
Purple reedgrass	CAPU AGRE2	Calamagrostis purpurascens R. Br.
Quackgrass Rattlesnake brome	BRBR5	Agropyron repens (L.) Beauv. Bromus briziformis Fisch. & C.A. Mey.
Redtop	AGAL3	Agrostis alba auct. non L.
Reed canarygrass	PHAR3	Phalaris arundinacea L.
Reedgrass	CALAM	Calamagrostis Adans.
	BRRI8	
Ripgut brome Rough bentgrass	AGSC5	Bromus rigidus Roth Agrostis scabra Willd.
Rough bluegrass	POTR2	Poa trivialis L.
Rye brome	BRSE	Bromus secalinus L.
Saltgrass	DISP	Distichlis spicata (L.) Greene
Sandberg's bluegrass	POSA12	Poa sandbergii
Shortawn foxtail	ALAE	Alopecurus aequalis Sobol.
Slender hairgrass	DEEL	Deschampsia elongata (Hook.) Munro
Slender muhly	MUFI2	Muhlenbergia filiformis (Thurb. ex S. Wats.) Rydb.
Smith's melicgrass	MESM	Melica smithii (Porter ex Gray) Vasey
Spike bentgrass	AGEX	Agrostis exarata Trin.
Spike trisetum	TRSP2	Trisetum spicatum (L.) Richter
Suksdorf's brome	BRSU2	Bromus suksdorfii Vasey
Sweet vernalgrass	ANOD	Anthoxanthum odoratum L.
Tall fescue	FEAR3	Festuca arundinacea Schreb.
Tall mannagrass	GLEL	<i>Glyceria elata</i> (Nash ex Rydb.) M.E. Jones
Tall oatgrass	AREL3	Arrhenatherum elatius (L.) Beauv. ex J.& K. Presl
Tall trisetum	TRCA21	Trisetum canescens Buckl.
Tall trisetum	TRCE2	Trisetum cernuum Trin.
Thin bentgrass	AGDI	Agrostis diegoensis Vasey
	AGTH2	Agrostis thurberiana A.S. Hitchc
Thurber's bentgrass Timber oatgrass	AGTH2 DAIN	Agrostis thurberiana A.S. Hitchc. Danthonia intermedia Vasey

Common name	Code	Scientific name
Tufted hairgrass	DECE	Deschampsia cespitosa (L.) Beauv. [orthographic variant]
Water whorlgrass	CAAQ3	Catabrosa aquatica (L.) Beauv.
Weak alkaligrass	PUPA3	Puccinellia pauciflora (J. Presl) Munz
Western fescue	FEOC	Festuca occidentalis Hook.
Western needlegrass	STOC2	Stipa occidentalis Thurb. ex S. Wats.
Wheatgrass	AGROP2	Agropyron Gaertn.
Wheeler bluegrass	PONE2	Poa nervosa (Hook.) Vasey
Wolf's trisetum	TRWO3	Trisetum wolfii Vasey
Grasslikes:		
Abruptbeak sedge	CAAB2	Carex abrupta Mackenzie
Aquatic sedge	CAAQ	Carex aquatilis Wahlenb.
Back's sedge	CABA3	Carex backii Boott
Baltic rush	JUBA	Juncus balticus Willd.
Beaked sedge	CARO6	Carex rostrata Stokes
Big-leaved sedge	CAAM10	Carex amplifolia Boott
Black alpine sedge	CANI2	Carex nigricans C.A. Mey.
Bladder sedge	CAUT	Carex utriculata Boott
Brown sedge	CASU6	Carex subfusca W. Boott
Bulrush	SCIRP	Scirpus L.
Chamisso sedge	CAPA14 CAPR5	Carex pachystachya Cham. ex Steud.
Clustered field sedge Colorado rush	JUCO2	Carex praegracilis W. Boott Juncus confusus Coville
Colorado rush	JUEF	Juncus effusus L.
Creeping spikerush	ELPA3	Eleocharis palustris (L.) Roemer & J.A. Schultes
Cusick's sedge	CACU5	Carex cusickii Mackenzie ex Piper & Beattie
Delicate spikerush	ELBE	Eleocharis bella (Piper) Svens.
Densely-tufted sedge	CALEL	Carex lenticularis Michx, var. lenticularis
Dewey sedge	CADE9	Carex deweyana Schwein.
Drummond's rush	JUDR	Juncus drummondii E. Mey.
Early sedge	CAPR4	Carex praeceptorium Mackenzie
Elk sedge	CAGE2	Carex geyeri Boott
Few-flowered spikerush	ELPA6	Eleocharis pauciflora (Lightf.) Link
Field woodrush	LUCA2	Luzula campestris (L.) DC.
Golden sedge	CAAU3	Carex aurea Nutt.
Hairlike sedge	CACA12	Carex capillaris L.
Henderson's sedge	CAHE7	Carex hendersonii Bailey
Hitchcock's smooth woodrush	LUHI4	Luzula hitchcockii Hämet-Ahti
Holm's Rocky Mountain sedge	CASC12	Carex scopulorum Holm
Hood's sedge	CAHO5	Carex hoodii Boott
Inflated sedge	CAVE6	Carex vesicaria L.
Jones' sedge	CAJO	Carex jonesii Bailey
Lakeshore sedge	CALE8	Carex lenticularis Michx.
Meadow sedge	CAPR7	Carex praticola Rydb.
Mertens' rush	JUME3	Juncus mertensianus Bong.
Mud sedge	CALI7	Carex limosa L.
Nearlyblack sedge	CASU7	Carex subnigricans Stacey
Nebraska sedge	CANE2	Carex nebrascensis Dewey
Northern cluster sedge	CAAR2	Carex arcta Boott Carex scirpoidea Michx.
Northern singlespike sedge	CASC10 CACO11	1
Northwestern sedge	JUPA	Carex concinnoides Mackenzie
Parry's rush Parry's sedge	CAPA18	Juncus parryi Engelm. Carex parryana Dewey
Raynolds' sedge	CAPA10 CARA6	Carex raynoldsii Dewey
Rock sedge	CASA10	Carex saxatilis L.
Ross' sedge	CARO5	Carex rossii Boott
Rush	JUNCU	Juncus L.
Saw-beak sedge	CAST5	Carex stipata Muhl. ex Willd.
Saw-leaved sedge	CASCP	Carex scopulorum Holm var. prionophylla (Holm) L.A. Standl
Sedge	CAREX	Carex L.
Sheep sedge	CAIL	Carex illota Bailey
Sheldon's sedge	CASH	Carex sheldonii Mackenzie
Short-beaked sedge	CASI2	Carex simulata Mackenzie
Showy sedge	CASP5	Carex spectabilis Dewey

Appendix A-2—Total species sorted in alphabetical order by common name (continued)

Common name	Code	Scientific name
Silvery sedge	CACA11	Carex canescens L.
Simple bog sedge	KOSI2	Kobresia simpliciuscula (Wahlenb.) Mackenzie
Slender sedge	CALA11	Carex lasiocarpa Ehrh.
Slenderbeak sedge	CAAT3	Carex athrostachya Olney
Smallflowered woodrush	LUPA4	Luzula parviflora (Ehrh.) Desv.
Small-fruit bulrush	SCMI2	Scirpus microcarpus J.& K. Presl
Smallwing sedge	CAMI7	Carex microptera Mackenzie
Smooth-stemmed sedge	CALA13	Carex laeviculmis Meinsh.
Soft-leaved sedge	CADI6	Carex disperma Dewey
Spikerush	ELEOC	Eleocharis R. Br.
Star sedge	CAMU7	Carex muricata L.
Swordleaf rush	JUEN	Juncus ensifolius Wikstr.
Thread rush	JUFI	Juncus filiformis L.
Torrent sedge	CANU5	Carex nudata W. Boott
Tuftedstem rush	JUBR3	Juncus brachyphyllus Wieg.
Twotipped sedge	CABI10	Carex bipartita All.
Widefruit sedge	CAEU2	Carex eurycarpa Holm
Woodrush	LUZUL	Luzula DC.
Woodrush sedge	CALU7	Carex luzulina Olney
Woolgrass	SCCY	Scirpus cyperinus (L.) Kunth
Woolly sedge	CALA30	Carex lanuginosa auct. non Michx.
Ferns and horsetails:		
Brittle bladderfern	CYFR2	Cystopteris fragilis (L.) Bernh.
Common horsetail	EQAR	Equisetum arvense L.
Horsetail	EQUIS	Equisetum L.
Ladyfern	ATFI	Athyrium filix-femina (L.) Roth
Maidenhair	ADPE	Adiantum pedatum L.
Male fern	DRFI2	Dryopteris filix-mas (L.) Schott
Marsh horsetail	EQPA	Equisetum palustre L.
Mountain woodfern	DRAU8	Dryopteris austriaca (Jacq.) Woynar ex Schinz & Thellung
Oakfern	GYDR	Gymnocarpium dryopteris (L.) Newman
Oregon cliff fern	WOOR	Woodsia oregana D.C. Eat.
Rattlesnake fern	BOVI	Botrychium virginianum (L.) Sw.
Scouringrush horsetail	EQHY	Equisetum hyemale L.
Smooth horsetail	EQLA	Equisetum laevigatum A. Braun
Variegated scouringrush	EQVA	Equisetum variegatum Schleich. ex F. Weber & D.M.H. Mohr
Western brackenfern	PTAQ	Pteridium aquilinum (L.) Kuhn
Western swordfern	POMU	Polystichum munitum (Kaulfuss) K. Presl
Mosses:		
Spagnum moss	SPHAG2	Sphagnum L.

Appendix B: Complete Constancy and Average Cover of All Species Present (style adopted from Hansen et al. 1995)

Constancy (CON) refers to the percentage of sample stands in which each species occurs.

Average cover (COV) refers to the the average percentage canopy cover of a species for the sample stands where it was recorded. For example, a vegetation type may be composed of 12 sample stands, but a particular species may be present in only 5 of those stands. The average cover for that species is calculated as the average canopy cover in those five stands.

Life form (LF) codes: PO = primary overstory tree, SO = subordinate overstory tree, U = understory tree, S = shrub, F = forb, G = grass, GL = grasslike, FH = ferns and horsetails.

Appendix B-1—Constancy and average cover of all species present in the following types:

- Subalpine Fir-Engelmann Spruce/Labrador Tea-Floodplain Plant Association (ABLA/LE)
- Subalpine Fir-Engelmann Spruce/Rusty Menziesia-Floodplain Plant Association (ABLA/ME)
- Subalpine Fir/Big Huckleberry-Floodplain Plant Association (ABLA/VA)
- Engelmann Spruce-Subalpine Fir/Holm's Rocky Mountain Sedge Plant Association (PIEN/CA)
- Engelmann Spruce-Subalpine Fir/Arrowleaf Groundsel Plant Association (PIEN/SE)
- Grand Fir/Pacific Yew/Twinflower-Floodplain Plant Association (ABGR/TA)

- Grand Fir/Black Hawthorn/Dewey Sedge Plant Association (ABGR/CR)
- Grand Fir/Rocky Mountain Maple-Floodplain Plant Association (ABGR/AC)
- Douglas-Fir/Rocky Mountain Maple-Mallow Ninebark-Floodplain Plant Association (PSME/AC)
- Douglas-Fir/Common Snowberry-Floodplain Plant Association (PSME/SY)
- Ponderosa Pine/Common Snowberry-Floodplain Plant Association (PIPO/SY).

Type N		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIE	N/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC)/SY
			7		3		3		6		9		5		5	1	2	2	3	4	1	6	6
Species	LF	CON	COV	CON	COV																		
ABGR	PO	_	_	_	_	_	_	_	_	_	_	100	54	20	75	75	35	4	7	_	_	_	_
ABLA	PO	85	14	100	20	100	24	16	10	77	24	_	_	_	_	_	_	_	_	_	_	_	—
ALRH2	PO	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	10	_	_	_	_
ALRU2	PO	—	—	—	—	_	—	_	—	_	_	—	—	—	—	33	7	_	—	—	—	_	_
LAOC	PO	_	_	_	_	33	20	_	_	_	_	_	_	_	_	_	_	4	5	_	_	_	_
PIAL	PO	14	5	—	_	—	_	—	_	_	—	_	_	_	—	—	—	—	—	—	—	_	_
PICO	PO	—	_	66	12	—	_	33	3	22	6	_	_	_	—	—	—	—	—	—	—	—	_
PIEN	PO	100	10	100	27	100	42	83	29	55	18	—	—	—	—	—	—	—	—	—	—	—	—
PIPO	PO	—	—	—	—	—	—	—	—	—	—	—	—	20	5	16	6	22	18	—	—	100	60
POTR15	PO	—	—	—	—	—	—	—	—	—	—	—	—	40	60	33	12	4	5	—	—	—	—
PSME	PO	_	_	_	_	_	_	_	_	_	_	20	15	20	40	50	21	83	42	100	56	_	_
ABGR	SO	_	_	_	_	_	_	_	_	_	_	40	13	60	23	33	10		_	_	_	_	_
ABLA	SO	71	10	33	5	33	5	16	3	55	5	_	_	_	_	_	_	_	_	—	—	_	_
ALRH2	SO	—	—	—	—	—	—	—	—	—	—	—	—	—	—	8	2	—	—	—	—	—	—
ALRU2	SO	—	—	—	—	—	—	—	—	—	—	20	5	—	—	8	5	—	—	—	—	—	—
BEPAS	SO	—	—	—	—	—	—	—	—	—	—	—	—	—	—	8	10	—	—	—	—	—	—
PIAL	SO	14	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
PICO	SO	—	—	—	—	—	—	50	2	—	—	—	—	—	—	—	—	—	—	—	—	—	—
PIEN	SO	28	4	—	—	33	20	50	10	55	4	—	—				_		—	—	—		
PIPO	SO	_	—	—	—	—	—	_	—	_	—	—	_	20	4	16	2	22	7	_	_	16	15
POTR15	SO	—	_	_	—	—	_	_	_	_	—	_	—	20	5	8	1	_	_	_	_	—	_
PSME	SO	—	_	_	—	—	_	_	_	_	_	20	5	20	1	16	7	43	8	50	45	_	_
TABR2	SO	—	—	—	—	—	—	_	—	_	—	100	24	_	_	_		_	_	_	_		<u> </u>
ABGR	U	_	_	_	_	_	_	_	_		_	100	13	80	5	91	10	9	2	—	—	16	1
ABLA	U	100	18	100	5	100	30	83	6	77	9		_	_	—	—	_	_	—	—	_	—	—
ALRU2	U	—	—	_	—	—	_	_	_	_	_	20	4	_	—	_		_	_	_	_	_	_
BEPAS	U	—	—	—	—	—	—	_	—	—	—	—	—	_	—	8	10	—	—	—	—	—	_

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIEN	I/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC)/SY
N			7	:	3	:	3		6	9)	ţ	5		5	1	2	2	3	4		6	
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
BEPAS	U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	10	_	_	_	_	_	_
UOC	U	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4	1	—	—	—	_
IAL	U	28	2	—	—	—	—	16	1	_	—	—	—	—	—	—	—	_	—	—	—	—	_
ICO	U		_	_		_		50	2		_			—	—	_	_	—	—	—	—	—	_
IEN	U	42	3	100	33	100	48	66	4	77	7	40	10	_	—	8	2		_	—	—	_	_
IPO	U	—	_	_	—	—	—	_	—	—	—	—	—	_	_	8	2	13	2	—	—	_	
OTR15	U	—	_	_	—	—	—	_	—	—	—	—	—	20	1	8	1	4	5				_
SME	U	—	—	_	—		_	—	—	—	—	—	—	20	1	16	1	35	3	75	15	16	1
SME	U	—	—	_	—	33	3	—	—	—	—	_	_	_	_		_	_		—	—		_
CGL	S	_	—	_	—		_	—	—	_	_	100	6	20	5	91	22	91	10	_	—	16	3
LIN2	S			_	_	_	_	_	—	_	_			20	15	_	_	9	3	_	—	16	2
LSI3	S	14	1	—	—	—	—	_	—	_	_	20	4	_	_	_	_	_			_	_	_
MAL2	S	_	—	—	_	_	_	_	_	_	_	80	3	80	6	91	5	83	11	50	2	66	25
RUV	S	—	—	—	—	—	_	16	1	_	—		_	—	_	_	_	_	—	—	—	—	_
EAQ	S	_	—	—	—	—	_	—	—	_	—	40	38	—	_	8	5		_	—	—	—	_
EOC2	S	_	—	_	_	—	_	_	_	_	_	20	3	_	_	16	9	43	24		_	_	_
BERE	S	—	_	_	_	_	_	_	_	_	—	20	1	20	2	25	1	22	2	75	2	33	43
ETUL	S	_	_		_	—	_	_	_			_	—	_	_	8	1	_	—	—	—	_	
HME	S	_	_		_	_	_	_	—	11	1	_	_	_	—	_	—	—	—	—	_	_	
HUM	S	_	—	—	—	33	3	_	_	—	—	20	2	_	—	_	_	<u> </u>	_	—	—	—	_
CLCO2	S	_	—	—	—	_	—	_	_	_	—	—	—	—	—	8	5	4	3	_	_	_	_
CLLI2	S	_	_	—	—	_	_	_	_	_	—	_	_	_	_		_	4	1	_	_		_
COST4	S	_	_	—	—	_	_	_	—		_	20	3	40	7	41	7	26	8	_	_	16	95
CRDO2	S		_	—	_	_	_	_	—		_	20	2	100	41	50	4	52	10	_	_	66	29
GAHU	S	42	5	—	_	_	_	_	—		_	_	_	_	<u> </u>			_					
IODI	S		_	—	—	—	—		<u> </u>		_	60	5	20	1	75	12	83	15	75	18	50	45
KAMI	S	14	1	—	—	_	—	16	1	11	5	—	_	—	—	_	—	—	_	—	_	—	_
AOC	S	_	_	_	_	_	_	16	5	—	_	—	_	—	—	_	—	—	_	—	_	—	_
EGL	S	100	55	33	10	33	10	—	—		_	_		_	—	—	—	—	—	—	—	—	
IBO3	S	—	—	—	—	—	—	—	—	11	1	100	14	_	—	_	_	_	_	—	—	—	_
	S		_	—	—		_	—	—		_		_	_	—	33	8	4	1	—	_	_	_
_OIN5	S	28	1		_	100	5		_	55	5	20	1	_	_	_	_	_	_	_	—	_	
OUT2	S	14	3	66	4	66	5	_	_	22	1	40	3	_	—	8	2	_	—	—	_	_	
MEFE	S	14	4	100	73	_	—	_	_	11	1		_	_	—	_	_	_	—	—	—	_	
PAMY	S	_	_	_	_	—	—	_	_	11	1	40	3	_	_	8	3	_	—	_	—	_	_
PHCA11	S		_			—	—		_		_	_	—	_	_	8	30	_	—	_	—	_	
PHEM	S	85	7	33	10	—	—	33	6	11	1		_						40		_		_
PHLE4	S	_	_	_	_	_	_	_	_	_	_	40	4	60	26	83	12	83	13	25	5	50	7
PHMA5	S	_	—	—	—	_	—	—	_	—	—	—	—	—	_	25	6	57	20	—	_	33	1
PRVI	S	_	—	—	—	_	—	—	_	—	—				_	8	1	22	2	—	_	16	5
RHPU	S	_	—	—	—	—	—	—	_	—	—	80	12	20	1	58	10	61	4	—	_	16	1
RHRA6	S	—	—	—	—	—	—	_	—	_	—		_		_	16	6	4	1	—	—	_	_
RIBES	S	_	—	—	—	—	_	_	—			40	2	20	2	—	—	17	2	_	—		_
RICE	S	—	—	—	—	_	—	—	—	11	15	—	—	—	—	—	—	4	10	—	—	16	5

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIEI	N/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSMI	E/SY	PIPC)/SY
Ν			7	:	3		3		6	9	Ð	:	5		5	1	2	2	3	4		6	;
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
RICO	S	_	—	—	_	_	_	_	_	_	_	_	_	_	_	8	10	4	3	_	_	_	_
RIHU	S	14	5	—	—	33	3	—	—	11	20	—	—	—	—	8	1			—	—	—	—
RIIR	S	_	—	—	—	_	_		_			_	_		_	16	2	17	4	—	—	—	—
RILA	S	—	—	—	—	100	9	16	1	55	10	80	4	40	2	33	5	17	4	—	—	—	_
RIMO2	S	—	—	—	—	—	—	—	—	11	3	—	—	—	—	8	10	17	(—	—	—	_
RINI2	S		_	_	_	_	—	_	_	_	—		_	-	_		_	4	1		_		-
ROGY	S	14	1	_	_	_	—	_	_	_	—	60	4	40	6	33	4	17	7	25	1	16	10
RONU	S	_	_	_	_	_	_	_	_	_	_	_	_	20	3	16	3	17	3	25	5		_
ROSA5	S	_	_	_	_	_	_	_	_	_	_			20	1		40	13	6	25	10	33	2
ROWO RUID	S S	—	—	—	—	—	_	_	—	—	_	40	20	_	—	16 8	13 1	26 4	7	_	—	16	10
RULE	S	_	_	_	_	_	_	_	_	_	_	_	—	_	_		I	4 9	6	_	_	16	3
RUPA		_	_	_	_	33	10	_	_	_	_	40	23	60	13	 58	4	9 48	6 15	_	_	16	
SACE3	S S	_	_	_	_	33	10	_	_	_	_	40	23		15	16	4 5	40 13	7	_	_	16	2 10
SACES SACO2	S	28	6		_		_	_	_		_				_	10	5	15	1	_	_		10
SAEC	S	20	0		_		_	_	_		_				_	_	_		_	_	_	16	1
SAEA	S	_	_	_	_	_	_	_	_	11	1	_	_		_	_	_		_	_	_		
SALA5	S	_	_		_		_	_	_		_	_	_	_	_	_	_	_	_	_	_	16	5
SALIX	S	_	_		_		_	33	1	11	1	_	_	_	_	_	_	_	_	_	_		_
SAMBU	S	_	_	_	_	_	_		<u> </u>	22	6	_	_	_	_	_	_	_	_	_	_	_	_
SHCA	Š	_	_	_	_	_	_	_	_	11	1	_	_	_	_	_	_	_	_	_	_	_	_
SOAU	Š	_	_	_	_	_	_	_	_			20	5	_	_	8	3	_	_	_	_	_	_
SOSC2	Š	_	_	_	_	33	5	_	_	_	_	20	2	20	25	_	_	_	_	_	_	_	_
SPBE2	S	_	_	_	_	33	10	_	_	_	_		_	_	_	25	1	57	21	75	17	66	15
SPIRA	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	25	5	_	_
SYAL	S	_	_	_	_	_	_	_	_	_	_	60	38	100	33	100	41	87	33	100	63	100	28
SYOR2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	16	25
VACA13	S	14	1	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_
VACCI	S	_	_	_	_	_	_	_	_	11	3	_	_	_	_	_	_	_	_	_	_	_	_
VAME	S	14	2	_	_	100	33	16	1	_	—	_	_	—	—	_	—	_	—	_	—	—	_
VASC	S	85	13	100	30	33	1	50	3	66	10	—	—	—	—	—	—	—	—	—	—	—	—
VAUL	S	_	_	66	15	66	13	33	30	11	1	_	_	—	—	—	_	_	_	_	_	_	_
ACCO4	F	28	1	_	_	33	5	16	15	77	9	_	_	_	_	8	1	_	_	_	_	_	—
ACMI2	F	14	1	_	—	33	3	33	3	33	2	_	—	20	1	16	3	22	2	75	1	33	4
ACRU2	F	—	—	—	—	—	—	_	—	22	1	20	1	20	1	8	3	9	2	—	—	—	—
ADBI	F	_	—	—	—	—	—	—	—	—	—	80	6	60	1	66	2	26	2	25	5	—	_
AGUR	F	_	_	—	_	—	_		_	_	_	—	_	20	1	8	1	9	2	_	_	_	_
ALVA	F	28	3	—	—	—	—	50	2	33	38	—	—	_	—	_	—	<u> </u>	_	—	—	_	_
AMLY	F		_	—	_	—	—	_	—	—	—	—	—	_	—	—	—	4	3	—	—	_	_
ANAL4	F	14	3	—	_	—	—	_	—		_	—	—	_	—		_	_	_	—	—	_	
ANAR3	F	_	—	_	—	_	—	—	—	11	1	—	—	_	—	16	1	4	1	—	_	_	_
ANEMO	F	—	—	_	—	_	—		_		_	—	—	_	—	8	1	—	—	—	_	_	
	F	_	_	_	_	_	_	16	1	22	3	100			-		1	_	-	_	—	_	_
ANPI	F	_	_	_	_	_	—	_	—	_	—	100	3	20	3	16	1	9	1	_	_	—	

196

		ADL	A/LE	ABL/		ADL	A/VA	PIEI	N/CA	PIEN	1/3E	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSMI	e/ac	PSMI	=/SY	PIPO)/SY
Ν		7	7	3	3	:	3		6	ç)	5		;	5	1	2	2	3	4		6	;
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
ANRA	F	_	_	_	_	_	_	_	_	11	5	_	_	_	_	_	_	_	_	_	_	_	_
ANSC8	F	—	—	—	—			—	—			—	—	—	—	—	—	22	3	—	—	—	—
ANTEN	F		_	—	—	33	10	—	—	11	1	_	—	_	—	—	—	—	—	—	—	—	—
ANUM	F	14	1	—	—	—	_	—	—	—	—	_	—	_	—	—	—	_	_	—	—	—	—
APAN2	F	—	—	—	—			—	—			—	—	—	—	—	—	4	1	—	—	—	_
AQFL	F	—	—	_	_	33	10	_	_	11	10		_	_	—	_	—	—	_		_	_	_
AQFO	F	—	_	_	_	—	_	_	_	22	1	20	5	_	_	_	_	_	_	25	3	_	_
ARAM2	F		_		_	_	_		_	11	1	_	—	_	_	_	—	_	_	_	_	_	_
ARCH3	F	14	1		_		-	33	1		_		_		_		_						_
ARCO9	F	14	1	66	3	66	13	_	_	55	3	40	3	20	3	41	5	61	15	100	10	33	8
ARGL	F	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	25	1	_	_
ARLA8	F	_	_	—	_	_	_	_	_	11	1		_	_	—	_	_	_	_	_	_	_	_
ARLO6	F	_	_	—	_	_	_	_	_	11	1		_	_	—	_	_	_	_	_	_	_	_
ARLU	F	_	_	_	_		_	_	_	11	10		_		_		_	_	_		_		_
ARMA18		_	_	_	_	33	1	_	_	22	Ĩ	40	3	20	3	41	2	4	1	25	1	16	1
ARMI2	F		_	_	_	_	_	40			_	_	_	_	_	_	_	22	1	_	_	—	_
ARMO4	F	14	Ĩ	_	_	_	_	16	10	22	2	_	_	_	_	_	_	_	_	_	_	_	_
ARNIC	F	_	_	_	_	_	_	_	_	11	ľ	_	_	_	_	_	_	_	_	_	_		_
ARSE2		_	_	_	_	_	_	_	_		45	_	_	_	_	_	_	_	_	_	_	16	3
ASAL2	F	—	_	_	_	—	—	_	—	11	15	—	—	—	—	_	—	_	_	_	—	10	0
ASCA11	F	—	_	_	—	—	—	_	—	—	_		_				_	_	_	_	—	16	2
ASCA2 ASCO3	F	—	_	_	—	—	—	_	—	—	_	60	8	20	2	25	6 2	26	4	_	—	—	
	г г	_	_	_	_	_	_	_	_	_	_	_	_		3	16	۲ ۱	20	4	_	—	_	
ASEA	г г	_	_	_	_		3	_	_	44	2	_	_	20	3	8	I	_	_	_	—	_	
ASFO ASMO3		_	_	_	_	33	3	_	_	44	Z	_	_	20	1	_	_	_	—	_	—	_	
ASIVIUS		14	3	_	_	33	2	16	5	_	_	_	_	20	I	_	_	_	—	_	—	_	
ASOC ASTER	Г	14	3	_	_		Z	10	5	 22	3	_	_	_	_	_	_	_	_	 25	1	_	
BASA3		_	_	_	_	_	_	_	_		3	_	_	_	_	_	_	_	_	25	I	16	1
BRDO	F	_	_	—	—	_	—	_	_	_	—	_	—	_	—	_	—	_	—	_	_	16	3
BRODI	F	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	_	16	1
CABI2	F		_		_	_	_	33	1		_		_			_	_		_	_	_	10	-
CABU2	F							55	-							8	1						
CACH16	F	28	1													0	1				_		
CACO11	F	20	1	_	_	_		_			_		_	20	5	_	_		_	_	_		
CARDU	F		_				_				_		_	20	_				_	25	3		
CEAR4	F		_										_							25	1	16	3
CEVU	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	3	20			_
CHLE80	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	- -	_	25	1	_	_
CIAL	F	_	_	_	_	33	1	_	_	_	_	40	21	40	10	58	3	61	15	25	1	_	
CIAR4	F	_	_	_	_		<u> </u>	_	_	_	_					8	3			20		16	1
CIRSI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	4	1	_	_		
CIVU	F	_	_	_	_	_	_	_	_	_	_	_	_	40	1	<u> </u>	<u> </u>	- -	·	_	_	_	_
														-0	1			4	5				

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIEI	N/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC)/SY
Ν			7		3		3		6		Ð		5		5	1	2	2	3	4	ļ	e	ò
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
CLME	F	—	—	—	—	—	—	_	—	_	_	—	_	_	_	—	_	4	1	—	—	—	_
CLUN2	F	14	5	—	—	66	3	_	—	_	—	80	9	_	—	33	2	4	3	—	—	—	_
COCA13	F	_	—	_	_	_	—	_	—	_	_	20	35	_	—	_	_	_	—	_	—	—	_
COMA4	F	—	—	—		_	—	_	—	_	—	40	1	_	—	_	1		_	—	—	—	_
COPA3	F	_	_	_	_	_	_	_	_	_	_		_		_	8	1	4	1	_	_	_	_
CRFR2	F	_	_	_	_	_	_	_	_	_	_	20	3	20	1	_	1		_	_	_	_	—
CRUCIF		_	_	_	—	_	_	_	_	_	_	_	_		1	8	1	4	1	_	_	_	—
CYOF	F	_	_	_	_	_	_	_	_	44	_	_	_	20	1	8	Т	22	2	_	_	_	_
DELPH	F	_	_	_	_	_	_	_	_	11	5		_	_	_	_	_	_		_	_	_	_
DICU	F	_	_	_	_	_	_	_	_	_	_	20 60	8	_	_	66	7	4	10	_	_	_	_
DIHO3 DISM2		_	—	_	_	_	—	_	—	_	_	60 20	8	—	—	00	ſ	4	3	—	_	_	_
	F	_	—	—	—	_	—	10	-	_	—		3	—	—	—	—	—	—	—	_	—	_
DISPO DISY	F	_	—	—	—	_	—	16	I	_	—	_	_	—	—	8	1	4	1	—	—	—	_
DIST DITR2	F	_	_	_	_	_	_	_	_	_	_	20	1	40	4		I	4 22	2	_	_	16	1
DOAL	F	14	2	_	_	_	_	83	1	11	1	20	I	40	4	_	_	22	Z	_	_	10	I
DOJE	F	28	2 18	_	_	_	_	50	1	22	10	_	_	_	_	_	_	_	_	_	_	_	_
EPAL	F	20	10	_	—	_	—	50	9	33	10	_	—	_	_	_	_	_	_	_	_	_	_
EPAN2	F	28	1	66	1	100	2	16	1	44	3		_				_	13	4	 25	10	33	8
EPGI	F	20			_		2				5	_	_		_	8	1	- 15	-	25	10	- 55	0
EPGL	F		_		_		_			11	1		_		_				_		_		
EPGL4	F		_	_	_	33	1	_	_	11	3		_	20	1	_	_	_	_	_	_		_
EPILO	F	_	_	_	_		<u> </u>	16	1	22	3	_	_	20	<u> </u>	_	_	_	_	_	_	_	_
ERCO6	F		_	_	_	33	5		<u> </u>		_	_	_	_	_	_	_	_	_	_	_	_	_
ERGR9	F	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	17	7	25	5	16	10
ERPE3	F	57	2	33	1	_	_	33	8	66	6	_	_	_	_	_	_		<u> </u>		_		
ERSP4	Ē	_	_	_		_	_	16	3	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
FRVE	F	_	_	_	_	66	6	_	_	_	_	60	3	20	1	25	2	35	3	50	18	33	3
FRVI	F	14	1	_	_	_	_	_	_	33	5	_	_				_	4	10	_	_	_	_
GAAP2	F	_	_	_	_	_	_	_	_	11	3	20	3	_	_	41	6	74	9	100	5	50	11
GABI	F	_	_	_		33	1	16	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
GABO2	F	_	_	_	_	_	_	16	1	11	1	_	_	_	_	_	_	_	_	_	_	_	_
GALIU	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	9	6	_	_	33	2
GATR2	F	_	_	_	_	_	_	_	_	_	_	60	4	100	3	33	2	26	7	25	1	_	_
GATR3	F	_	_	_	_	33	10	_	_	22	1	—	_	_	_	_	_	_	_	25	3	—	_
GECA	F	85	4	33	1	_	_	33	2	22	2	_	_	_	_	_	_	_	_	_	_	_	_
GEMA4	F	14	1	_	_	33	1	16	1	11	1	20	1	_	_	16	4	9	1	_	_	_	_
GEPU2	F	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	_	_	_	—	_	16	5
GEVI2	F	_	_	_	—	_	_	_	_	11	1	_	—	_	_	_	—	_	_	—	_	_	_
GOOB2	F	_	_	_	_	33	5	_	_	_	—	40	2	20	1	16	3	13	2	_	_	_	_
HABEN	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	8	1	—	—	—	—	—	—
HACKE	F	—	—	—	—	33	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
HADI7	F	14	1	—	_	_	—	_	—	22	2	—	—	20	1	—	_	—	_	_	—	—	_
HASA	F	28	1	_	_	33	1	_	—	_	_	_	_		_	8	1	_	_	_	_	_	_

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIEN	I/CA	PIEN	I/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC)/SY
N		7	,	3	3		3	(3	ç)	ť	5		5	1	2	2	3	4	ļ	6	3
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	CO
HAUN	F	_	_	_	_		_	16	5	_	_	_	_	_	_		_	_	_	_	_	_	
HELA4	F	—	—	—	_	_	_	—	—	44	8	—	—	20	1	33	3	13	4	—	—	—	_
HEUCH	F	—	—	—	—	—	—	—	—	—	—	20	1	—	—	—	—	4	1	—	—	—	_
HIAL2	F	_	_	_	_	33	10	_	_	_	_	_	_	_	_	8	1	9	1	_	_	_	_
HIERA	F	_	_	_	_	—	_	_	_	_	—	—	_	_	—	16	2	17	3	25	1	33	3
HYAN2	F	_	_	—	_	33	1	_	_	_	—	—	_	_	—	_	_	—	—	_	_	_	_
IYCA4	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4	1	—	—	—	
HYFE	F	_	_	—	—	—	—	—	_	22	1	—	_	_	_	—	_	9	2	_	_	_	_
HYFON	F	14	1	—	—	—	—	16	1	11	1	—	—	—	—	—	—	—	—	—	—	—	_
HYPE	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	13	1	_	_	_	_
HYPER	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	4	5	_	_	_	_
LRI	F	_	—	—	_	—	_	—	—	_	_	—	—	20	3	—	—	_	_	25	3	—	
ABI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	3	_	_	_	_	_	_
ACTU	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	3	_	_	_	
_ANE3	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_	_	_	_	_
ASE	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	3	_	_	_	
ATHY	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	5	17	5	25	1	33	8
EGUMF	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	25	3	_	_
ICA2	F	14	1	_	_	33	1	50	3	33	5	_	_	_	_	_	_	_	_		_	_	_
ICO6	F	14	1	_	_				_		_	_	_	_	_	_	_	_	_	_	_	_	_
IGR	F	14	1	_		_	_	16	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
IGUS	F			_	_	_	_			_	_	_	_	_	_	8	1	_	_	_	_	_	_
ILIAF	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_	_	_	_	_
_IPA5	Ē									_						0	-			25	5		
LISTE	I E	_	_	_		_	_	_	_	22	1	_	_	20	1	_	_	_	_	25	5	_	
ITE2	F	42	2	_	—	33	1	_	—	22	4	_	_	20	I	_	_	_	—	_	—	_	
	F	42	2	_	—	55	I	_	—	_	_	_	_	_	_	_	_	_	—	_	—	16	1
UPIN	Г	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	1	_	_	10	I
_UPO2	Г	14	1	_	_	100	6	16	3	_	_	_	_	_	_	_	_	4	I	_	_	_	_
		14	I	_	_	100	0	10	3	_	_	_	_	_	_	_	_	9	1	_	_	16	3
LYAL		14	1	33	10	_	_	_	_	_	_	_	_	_	_	_	_	9	I	_	_	10	3
LYAN2	F	14	I	33	10	—	_	_	—	_	_	_	—	_	_	—	—	4	1	_	—	—	_
LYCO	F	—	—	_	_	—	—	—	—	—	—	_	—		_	_	—	4	I	—	—	—	
MEAR4		_	_	_	_		_		_			_	_	20	1	_	_	_	_	_	_	_	_
MECI3	F	_	_	_	_	66	8	33	1	55	12	_	_	_	_	_	_	_	_	_	_	_	_
MENTH	F	_	_	_	_	_	_	_	_	_	_		_	_	_	8	1	_	_	_	_	_	_
MEOF	F	—	—	—	—	—	—	—	—		_	20	1	—	—	_	_	—	—	—	—	—	
MEPA	F	—	—	—	—	—	—	—	—	11	5	—	—	_	—	8	1	_	_	—	—	_	-
MIGR	F	—	—	—	—	—	—		_	—	—	_	—	_	—	—	_	9	3	—	—	—	_
MIGU	F	—	—	—	—	—	_	16	1	_	_	—	—	—	—	—	—	—	—	—	—	—	_
MILE2	F	—	—	—	—	—	—	16	1	33	2	—	—			—	—	<u> </u>		—	—	—	_
MIMO3	F	—	—	—	—	—	—	16	1	—	—	—	—	20	2	—	—	4	1	_		—	-
MINU	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	25	1	_	_
MIPE	F	14	2	33	1	_	_	83	3	22	20	20	1	_	_	_	_	4	1	_	_	_	-
MIPR	F	—	_	_	_	33	1	16	8	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIEI	N/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC	0/SY
N			7		3		3		6	9	9		5		5	1	2	2	3	4	ļ	6	6
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
MIST3	F	14	1	—	—	33	3	_	_	33	6	—	—	—	_	8	3	4	10	—	—	—	_
MITEL	F		_	_	_	—	—	_	—	11	1		_	_	_	_	_	_	_	—	—	—	_
MOCO4	F	14	1	33	1	_	_	_	_	33	10	60	6	20	1	33	4	26	3		_		40
MOPE3 MOSI2	F			_				_		11	1	20	10	20 20	3	16	2	74 4	7 5	100	4	33	12
MOUN3	F	_	_	_	_	_	_	_	_		· —	_	_	20		8	1	- -	_	_	_	_	_
OSCH	F	_	_	_	_	33	5	_	_	22	1	100	7	80	1	66	4	65	5	100	5	33	14
OSMOR	F	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	50	4	_	_
OSOC	F	_	_	_	_	_	_	_	_	22	3	_	_	40	3	8	1	9	1	_	_	_	_
PAFI3	F	14	2	—	—	33	10	_	_	66	4	_	—	—	_	_	_	—	—	—	—	—	_
PEGL5	F	28	1	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	_	_		_	_
PEGR2	F	14	1	_	—		_	50	2	11	1	—	—	—	—	_	—	_	—	—	—	—	_
PERA	F	_	—	_	—	66	2		_	22	2	_	—	—	_	_	—	_	—	—	_	_	
POBI6 POFL3		71	 17	_	_	33	1	33 100	1	11	3	_	_	—	_	_	_	_	_	_	—	_	
POFL3 POGL9	F	/ 1	17	_	_	33	I	100	6	11 11	1	_	_	_	_	8	1	4	1	_	_	_	
POPU3	F	_	_	_	_	33	3	16	1	44	2	_	_	_	_	0	<u> </u>	4	_	_	_	_	_
PRVU	F	_	_	_	_		_		_	—	_	_	_	20	1	8	1	_	_	_	_	_	_
PTAN2	F	_	_	_	_	_	_	_	_	_	_	_	_			8	1	_	_	_	_	_	_
PYAS	F	14	15	_	_	33	3	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_
PYSE	F	14	10	66	7	100	9	33	1	66	1	20	1	_	_	_	_	_	_	_	_	_	_
RAUN	F	—	—	—	—	33	3	16	1	—	—	20	1	—	—	—	—	13	1	—	—	—	—
RUAC2	F	—	—	—	—	33	1	—	—	—	—	—	—		_	—	—	—	—	25	3	—	—
RUCR	F	_	—	_	—	_	_	_	_		_	—	_	20	1		_	_	_	—	—	_	
RUOC2 SAAM3	F	_	_	_	_	33	10	_	_	33	4	_	_	40 20	2	16	1	_	_	_	_	_	
SAAMS SAAR13	F	14	1	_	_	33	10	16	3	11 77	1	_	_	20	I	_	_	_	_	_	_	_	
SASI10	F	14	<u> </u>	_	_	_	_	66	8	22	4	_	_	_	_	_	_	_	_	_	_	_	_
SECY	F	42	2	_	_	_	_	33	3		- -	_	_	_	_	_	_	_	_	_	_	_	_
SEIN2	F		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	1	_	_	_	_
SENEC	F	_	_	_	—	_	_	_		_	_	_	_	—	_	_	_	4	1	_	_	_	_
SEPS2	F	—	_	—	—	—	—	—	—	22	4	—	—	—	—	—	—	—	—	—	—	—	_
SEST2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	25	5	_	_
SETR	F	28	3	—	—	—	—	33	13	100	26	—	—	—	—	—	—		<u> </u>	—	—	—	_
SIAL2	F	_	_	—	_	—	—	_	_		_	_	—	_	_	—	—	4	1		_	_	_
SIME	F	_	_	_	_	_	_	_	_	11	3	_	_	_	_	_	_	- 10	_	50	3	_	_
SINO SIOR		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	13 4	1	_	_	_	_
SMRA	F	_	_	_	_	_	_	_	_	_	_	40	11	40	3	16	3	4 91	3	 50	2	16	3
SMST	F	14	1	_	_	33	1	_	_	_	_	100	19	40	20	91	16	17	4	50 50	4	16	3
SODU	F		<u> </u>		_		<u> </u>	_	_	_								4	1				_
SOLID	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	5	_	_	16	1
SOSP	F	_	_		_		_	_	_	11	1	_	_	_	_		_			_	_		_
STAM2	F	14	5	_	_	66	3	16	1	44	2	20	1	_	_	16	1	4	3	25	1	_	_

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIEI	N/CA	PIEN	N/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSME	E/SY	PIPC)/SY
Ν		7	7		3	:	3		6	ę)	5	5		5	1	2	2	3	4		6	;
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
STCA	F	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	9	3	—	_	_	_
STCR2	F	—	_	_	_	—	_	—	_		_	_	_	20	1	_	_	_	_	—	_	_	_
STELL	F	—	—	—	—	—	—	16	1	11	1	—	—	—	—	—	—	—	—	—	—	—	
STLO	F	—	—	—	—	—	—	—	—	—	—	20	3	—	—	8	10	—	—	—	—	—	_
STME2	F	—	—	—	—	—	—	—	—		_	20	1	—	—	—	—	26	4	—	—	16	10
STOC	F	—	—	—	—	_	_	_	_	22	2	—	_	_	—	_	—	_	—	_	—	—	
SWPE	F	_	—	—	—	_	_	_	_	22	4	—	_	_	—	_		_	_		_	_	_
TAOF	F	—	—	—	—	_	_	_	_	22	2	_	_	_	—	8	1	22	2	50	3	33	2
TARAX	F	_	—	—	—	_	—	_	—	_	—	—	_	_	—	_	_	4	1	_		—	
THALI2	F	—	—	—	—			—	—	—					_			9	2	25	1	—	—
THOC	F	_	_	_	_	33	1	_	—	55	18	20	1	60	25	33	1	30	4	_	_	—	_
THVE	F	—	—	—	—	66	18	—	—	11	35	—	—	—	—	—	—	—	—	—	—	—	
TITR	F	14	15	—	—	66	13	—	—	—	—	80	6	—	—	8	5			_	—	—	
TOFL	F	_	_	_	_	_					_	_				8	3	26	11	25	5	—	
TRCA	F	—	_	_	_	33	1	16	1	11	3	20	1	40	1	8	1		_	_	_	_	_
TRDU	F	—	—	—	—	—	—		_	—	—			—	—	—	—	13	2	—	—	50	3
rrifo	F	—	—	—	—	—	—	16	2	—	—	20	1	—	—	—	—	4	1	—	—	—	_
FRLA6	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	16	2	—	—	—	—	—	
FRLA8	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4	7	—	—	—	—
TRLO	F	—	—	—	—	—	—	—	—	11	2	—	—	—	—	—	—	—	—	—	—	—	_
TROV2	F	—	—	—	—	—	—	—	—	—	—	20	1	—	—	8	1	13	5	—	—	—	_
TRPE3 TRPR2	F	—	—	—	_	—	—	—	—	_	—	—	—	—	_	8	1	—	—	75	2	—	_
TRPR2	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	25	15	16	3
TRRE3	F	—	—	—	—	33	1	—	—	—	—	—	—	—	—	8	1	—	—	—	—	—	_
TRWO	F		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	16	1
UMBELF	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	8	1	—	—	—	—	—	_
URDI	F	—	—	—	—	—	—	—	—	11	1	—	—	—	—	33	2	13	2	—	—	—	_
VASI	F	_	_	_	_	33	25	_	_	44	4	_	_	_	_	_	_	4	1	_	_	_	_
VEAM2	F	—	—	—	_	33	1	16	1	—	—	—	—	—	_	—	—	4	1	—	—	—	_
VECU	F	—	—	—	—	—	_	16	1	—	_	—	—	—	—	—	—	—	_	—	—	—	_
VERAT	F	14	2	—	—	—	—	16	1	11	1	—	—	—	—	—	—	—	—	—	—	—	_
VERON	F	—	—	—	—	—	—	16	1	—	—	—	—	—	—	—	—	—	—	25	3	—	_
VESE	F	14	1	—	—	—	—	16	1	—	—	—	—	—	—	—	—	—	—	—	—	—	_
VETH	F	_	—	—	—	_	—	_	—	_	—	—	—	20	1	8	1	9	1	—	_	—	
VEVI	F	14	1	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
VEWO2	F	28	1	—	_	_	—	16	1	_	—	—	—	_	_	_	—	—	—	_	—	—	_
VIAD	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_	_	_	_	_
VIAM	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	35	4	25	1	33	13
VICA4	F	—	—	—	—	—	—	—	—	—	—	60	5	20	15	25	5	39	6	—	—	—	_
VIGL	F	_	_	_	_	_	—	_	—	_	_	40	6	40	1	33	2	4	1	_	_	_	
VIOLA	F	42	2	33	3	66	10	50	4	44	1	20	1	40	3	41	6	26	2	25	1	_	
VIOR	F	_	—	—	—	—	—	—	—	11	3	—	—	—	—	—	—	—	_	_	—	—	_
VIPA4	F	14	3	—	—	—	—	16	10	—	—	—	—	—	—	—	—	—	—	—	—	—	_
XETE	F	14	15	—	—	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIE	N/CA	PIE	N/SE	ABG	R/TA	ABG	R/CR		R/AC	PSM		PSM	E/SY	PIPO	0/SY
Ν			7		3		3		6		9		5		5		12	2	3		4		6
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
ov																							
ZIEL2	F	—	—	—	—	—	—	—	—	11	1	—	—		_	_	_	_	—	—	—	—	_
AGEX	G	 14	1		_	_	_	—	_	_	_		_	20	1	8	1	_	_	_	_	_	_
AGHU AGROS2	G G	14	1	_		_	_	33	2	11	1	_	_	_	—	_	_	—		—		_	_
AGROSZ AGSC5	G	_	_	_	_	_	_	16	2			_	_	_	_	_	_	_	_	_	_	_	
AGSP	G	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	16	3
ANOD	Ğ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	16	10
AREL3	Ğ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	4	1	50	2	_	_
BRAN	G	_	_	_	_	_	_	_	_	11	3	_	_	_	_	_	_	_	_	_	_	_	_
BRBR5	G	—	—	—	_	—	_	_	_	_	—	_	—	_	_	—	—	_	—	_	—	16	1
BRCA5	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	3	_	_	_	
BRCI2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	8	3		_	—	—	—	
BROMU	G	_	—	_	_	—	—	—	—	—	—		_	_	_	—	—	4	3	_	—	_	_
BROR2	G	—	—	—	—	—	—	—	—	—	—	40	9	20	3	_	_	4	10	—	—	16	3
BRPA3	G	_	_	_	_	_	_	_	_	_	—	_	—	_	_	8	2		_	_	_	_	
BRRI8 BRTE	G G		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4 13	5 2	_	_		
BRVU	G	14	1	_	_	33	 25	_	_	22	4	60	9	20	5	41	3	30	4	25	5	16	5
CAAQ3	G		<u> </u>	_	_		25	16	5		<u> </u>		_	20	_	-	_		<u> </u>		_		_
CACA4	G	28	30	_	_	66	7	16	1	11	1	_	_	_	_	_	_	_	_	_	_	_	_
CAPU	Ğ		_	_	_	_			_	_		_	_	_	_	_	_	_	_	_	_	16	3
CARU	G	_	_	_	_	33	5	_	_	_	_	_	_	_	_	_	_	9	9	50	14	_	_
CILA2	G	_	_	_	—	_	—	_	_	22	3	_	_	_	_	_	—	4	1	_	—	16	5
DAGL	G	_	—	_	—	—	—	16	1	—	_	20	1	20	15	16	1	13	3	50	3	33	3
DAIN	G	28	2	_	_	33	1	16	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_
DECE	G	28	1	—	—	—	—	66	3	—	—	—	—	—	—	—	—	—	—	_		—	_
DEEL	G		_	—	_	_	_	16	1	_	_	_	_	_	_	_	_		_	25	1		_
ELGL	G	14	1	—	—	33	1	33	10	22	3	20	1	60	9	66	4	65	6	50	16	50	4
FEID FEOC	G	_	—	_	_	—	_	_	_		1	40	3		1	40	3	4	5			16	3
FESTU	G G	_	_	_	_	33	3	_	_	11	I	40	3	20	I	16	3	48 4	8 1	75	2	16	10
FESU	G	_	_	_	_		3	_	_	_	_	20	1	 60	18	 25	9	4 13	14	_	_	_	
FEVI	G	_	_	_	_	_	_	16	3	_	_	20			10	25	9		14	_	_	_	
GLEL	G	14	5	_	_	33	20	16	1	11	4	_	_	20	1	_	_	9	2	_	_	_	_
GLST	Ğ		_	_	_						_	_	_		_	8	5	_		_	_	_	_
MESM	Ğ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	5	_	_	_	_	_	
MESU	G	_	_	_	_	_	_	_	_	_	_	20	20	40	3	50	11	22	6	25	15	_	
MUFI2	G	_	_	_	—	_	_	16	1	_	_	_	_	_	_	_	_	_	_	_	—	_	_
PHAL2	G	14	1	_	_	33	1	33	3	_	_	_	_	_	_	_	_	4	5	_	_	_	_
PHPR3	G	—	—	—	—	—	—	16	1	—	—	20	1	—	—	_	—	4	1	—	—	16	1
POA	G	—	—	—	_	—	_	—	—	_	_	—	_	—	—	8	1	22	8	_	—	_	_
PONE2	G	—	—	—	—	—	_	—	—	—	—	—	—	_		_	_	4	25	25	5	33	1
POPA2	G	—	—	—	—	—	—	—	_	—	—	—	—	20	1	8	2	—	—	25	3	—	_

202

Туре		ABL	A/LE	ABL	A/ME	ABL	A/VA	PIEI	N/CA	PIEN	I/SE	ABG	R/TA	ABG	R/CR	ABG	R/AC	PSM	E/AC	PSM	E/SY	PIPC	0/SY
N			7	:	3	:	3		6	ç)	ť	5		5	1	2	2	3	4	Ļ		6
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	CO
POPR	G	_	—	_	—	_	—		<u> </u>	—	—	—	—	20	1	—	_	39	15	50	13	33	3
PUPA3	G	_	-	_	_	_	-	16	1	—	_	—	_	—	—	—	_	—	—	—	—	_	
TRCA21	G	—	—	—	—	—	—	—	—	—	—	—	—	20	40	16	10	26	8	_	_	16	5
TRCE2	G	_	—	_	—	_	—	_	—	—	—	—	—			—	_	13	4	25	3	_	
CAAM10 CAAQ	GL GL							33	22	_	_	_	_	20	4	_	_	_		_	_	16	1
CABA3	GL	_	_	_	_	_	_			_	_	_	_	_	_	_	_	22	4	_	_	16	3
CABI10	GL	_	_	_	_	_	_	_	_	11	1	_	_	_	_	_	_	_		_	_	_	_
CADE9	GL	_	_	_	_	_	_	_	_	_	_	40	4	100	12	50	3	39	12	_	_	16	5
CADI6	GL	—	—	—	—	—	—	16	1	—	—	—	—	—	—	—	—	—	—	—	—	—	_
CAGE2	GL	—	—	—	—	—	—	—	—	—	—	—	—	20	1	50	10	35	11	75	30	66	14
CAHE7	GL	—	—	—	—	—	—	-		—	—	_	—	—	—	8	4	—	_	—	—	—	
CAIL CAJO	GL GL	14	1	_	—	_	_	16	15 2	_	_	_	_	_	_	_	_	_	_	_	_	_	
CAJO CALA13	GL	14	40	_	_	33	30	33	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CALE9	GL	14	1	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CALU7	GL	42	2	_	_	_	_	16	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CAMI7	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_	_	_	_	_
CAMU7	GL	—	_	_	_	_	_	16	1	_	_	_	_	_	_	_	_	_	_	_	—	—	_
CANI2	GL	28	1	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	_	—	—	_
CAPA14 CAREX	GL	14	1	_	_		5	_	—		1	_	_	—	_		 10	_		—	—	_	_
CAREX CARO5	GL GL	_	_	33	1	33	э	_	_	11 22	8	20	3	_	_	8	10	9 17	4 7	 25	3	33	23
CASC12	GL	71	27		<u> </u>	33	6	100	62	11	4	20		_	_	_	_		<u> </u>	25			
CAUT	GL	28	1	_	_	33	6	16	5		<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
ELPA6	GL	28	4	_	_	_	_	33	28	_	_	_	_	_	_	_	_	_	_	—	_	_	_
JUDR	GL	28	1	_	—	_	_	66	1	_	—	_	—	_	_	_	—	—	_	_	_	_	_
JUEN	GL	14	2	—	—	33	1	16	1	11	1	_	—	—	—	_	—	—	_	—	—	—	-
JUFI	GL	—	—		_	33	2		_		_	_	—	—	—	—	—	_	—	—	—	—	
JUME3 LUCA2	GL GL	_	—	33	1	_	—	33 33	1 2	11	3	_	_	—	—	_	_	9	2	 50	8	16	3
LUCA2 LUHI4	GL	14	10	33	10	_	_	- 55	<u> </u>	_	_	_	_	_	_	_	_	9	<u> </u>	50	0	10	_
LUPA4	GL	28	4			33	1	16	1	_	_	20	3	_	_	_	_	_	_	_	_	_	_
ADPE	FH			_	_	_		_		_	_	20	1	_	_	_	_	_	_	_	_	_	_
ATFI	FH	_	_	_	_	_	_	_	_	_	_	40	2	20	5	25	1	17	5	_	_	_	_
CYFR2	FH	—	—	—	—	—	—	—	—	—	—	20	5	20	1	25	1	52	4	50	1	—	_
DRAU8	FH	—	—	—	—	—	—	—	—	—	—	20	1		_	—	—	4	1	—	—	—	_
DRFI2	FH			_	—				_		_	—	—	20	5	_	_	—	—	—	—		_
EQAR	FH	14	60	_	_	33	60	33	2	22	4	—	_	_	—	8	1 3	20	1	—	-	16	1
EQHY GYDR	FH FH		_		_		_		_		_	40	1		_	41	3	30	1		_	16	1
POMU	FH	_	_	_	_	_	_	_	_	22	1	40 40	3	_	_	25	4	_	_	_	_	_	_
PTAQ	FH	_	_	_	_	_	_	_	_			20	5	20	2	16	4	13	2	_	_	16	3

Appendix B-1—Constancy and average cover of all species present in the following types (continued)

- Engelmann Spruce/Common Horsetail Plant Association (PIEN/EQ)
- Lodgepole Pine/Holm's Rocky Mountain Sedge Plant Community (PICO/CA)
- Ponderosa Pine/Black Hawthorn Plant Community (PIPO/CR)
- Black Cottonwood/Mountain Alder-Red-Osier Dogwood Plant Association (POTR15/AL)
- Black Cottonwood/Common Snowberry Plant Community Type (POTR15/SY)
- Black Cottonwood/Rocky Mountain Maple Plant Community Type (POTR15/AC)

- Red Alder/Common Snowberry/Dewey Sedge Plant Community Type (ALRU/SY)
- White Alder/Blackberry Plant Community Type (ALRH2/RU)
- White Alder/Mesic Shrub Plant Community Type (ALRH2/SH)
- Arctic Willow Plant Association (SAAR27)
- · Booth's Willow/Inflated Sedge Plant Community (SABO2/CAV).

Туре		PIEN	N/EQ	PICC	D/CA	PIP	O/CR	POTF	R15/AL	POTR15	SY	POTF	R15/AC	ALR	U2/SY	ALR	H2/RU	ALRH	12/SH	SA	AR27	SABO2	/CAV
Ν			1	1	1		1		7	5			2		5		26	:	3		3	1	
Species	LF	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov
ABGR	PO	_	—	_	—	_	_	—	_	—	—	—	_	20	5	—	_	_	_	—	—	_	—
ABLA	PO	—	—	100	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
ALRH2	PO	—	—	—	—	—	—	14	5	—	—			—	—	100	68	92	64	—	—	—	—
ALRU2	PO	_	—	_	_	_	—	_	_	—		50	25			_	—	_	—	_	—	—	—
BEPAS	PO	—	—	_		—	—	—	—	—	—	—	—	40	18	—	—	_	—	—	—	—	—
PICO	PO			100	15	—	—	_	—	—	_	—	—	—	—	—	—	—	—	_	_	—	_
PIEN	PO	100	25	_	_				_	_	_			—	—	_	_	_	_	_	_	_	_
PIPO	PO	_	_	_	_	100	20	14	2			50	15	_	_					_	_		_
POTR15	PO	_	_	_	_	_	_	85	27	100	49	100	43	40	_	33	20	23	23	_	_		_
PSME	PO	_	_	_	_	_	_		10	_	_	_	—	40	4	_	_	7	6	_	_	_	_
ABGR	SO	_	—	_	—	—	—	14	10			—	—	_	_	—	—	<u> </u>		_	—	_	_
ALRH2 ALRU2	SO SO	_	—	_	—	—	—	_	—	20	50	 50	5	20	35	—	—	61	26	_	—	_	—
	50 S0	_	_	_	_	_	—	_	_	_	_	50	5	20	35	_	—	3	 10	_	_	_	_
JUNI PICO	SO SO	_	_	100	5	_	_	_	_	_	_	_	_	_	—	_	_	3	10	_	_	_	_
PIEN	30 S0	_	_	100	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PIPO	SO			100		100	5				_												
POTR15	SO	_	_	_	_	100	5	42	8	60	14	100	8	_	_		_	3	8	_	_	_	_
PRAV	SO	_	_	_	_		_		_		—	100	_		_	_	_	11	20	_	_	_	_
ABGR	U	_	_	_	_	_	_	28	12	_	_	50	1	60	5	_	_	3	1	_	_	_	_
ABLA	U	100	10	100	2	_	_			_	_		_		_	_	_	_	<u> </u>	_	_	_	_
ALRH2	Ŭ	_	_	_	_	_	_	14	1	_	_	_	_	_	_	33	15	30	9	_	_	_	_
ALRU2	Ũ	_	_	_	_	_	_			_	_	_	_	40	6	_		_	_	_	_	_	_
BEPAS	Ŭ	_	_	_	_	_	_	_	_	_	_	_	_	20	5	_	_	_	_	_	_	_	_
PIAL	Ū	_	_	100	1	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_
PICO	Ū	_	_	100	6	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
PIEN	Ū	_	_	100	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PIPO	Ū	_	_	_	_	_	_	14	5	20	4	50	1	40	2	_	_	3	5	_	_	_	_
POBA2	U	_	_	_	_	_	_	_	_	20	3	_	_	_	_	_	_	_	_	_	_	_	_
POTR15	U	_	_	_	_	_	_	71	10	60	1	100	2	_	_	_	_	19	3	_	_	_	_
PRAV	U	_		_	_	_	_	14	1	_	_	_	_	_	_	_	_	3	15	_	_	_	_
ROPS	U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
ACER	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	5	_	_	_	_
ACGL	S	_	_	_	_	100	1	71	11	_	_	100	1	80	3	33	20	30	6	_	_	_	_
ALIN2	S	_	_	_	_	_	_	57	17	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ALSI3	S	—	—	—	—	_	—	14	10	_	—	_	—	—	—	—	—	—	—	—	—	—	—

Туре		PIEI	N/EQ	PICO	D/CA	PIP	O/CR	POTE	R15/AL	POTR15	SY	POTE	R15/AC	ALR	U2/SY	ALR	H2/RU	ALR	12/SH	SA	AR27	SABO	2/CAV
N			1		1		1		7	5			2		5		26		3		3	1	
Species	LF	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	cov	CON	C0\
AMAL2	S	_	_	_	_	100	3	85	6	60	3	50	4	40	2	66	6	23	5	_	_	_	_
BEOC2	S	—	—	—	—	100	15	28	38	—	—	—	—	40	12	—	—	15	20	—	—	—	—
BERE	S	_	_	_	_	100	1	—	_	—	_	—	_	20	1	—	_	_	_	—	—	_	_
CERE2	S	—	—	—	—	—	—	—	—	—	—	—	—	—	—	33	5	30	6	—	—	—	—
CESA	S	—	—	—	—	—	—	14	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CHUM	S	—	—	_	—	—	—	14	1	_	_	—	—	—	—	—	—	_	_	_	_	—	—
CLCO2	S	—	—	—	—	—	—		_	20	1	—	—	—	—	—	—	3	1	—	_	—	—
CLLI2	S	_	—	—	_		_	14	8	20	2	—	—			—	—			—	—	_	_
ST4	S	_	_	_	—	100	5	85	20	20	1			60	10			53	20	_	_	_	_
CRDO2	S	_	_		_	100	30	71	13	80	35	100	63	60	18	33	20	50	9	_	_	_	_
GAHU	S	_	_	100	1	400	_	40	_						_					_	_	_	_
HODI	S	_	_	100	10	100	3	42	5	80	7	50	50	60	5	33	15	30	14	_	_	_	_
KAMI LOCI3	S	_	_	100	10	_	_	_	_	_	_	_	_	_	_	_	_		-	_	_	_	_
MEFE	S S	_	_	100	2		_	_	_	_	_	_	_	_	_	_	_	3	I	_	_	_	_
PHEM	S	_	_	100	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PHLE4	S	_	—	100	5	100	6	71	27	80	38	100	22	100	39	100	4	<u></u> 96	29	_	—	_	_
PHMA5	S	_	_		_	100	0	14	4	60	4	50	2	100	39	100	4	3	29		_	_	_
POBA2	S	_	_		_	_	_		-	20	3	- 50	<u> </u>	_	_	_	_	3	20		_	_	
PRAR3	S	_	_		_	_	_	_	_	20	_	_	_	_	_	_	_	3	30	_	_	_	_
PRCE	Š	_	_	_	_	_	_	14	2	_	_	_	_	_	_	_	_	3	20		_	_	_
PRDO	Š	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	3	8	_	_	_	_
PRUNU	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
PRVI	Š	_	_	_	_	100	10	14	22	40	20	50	3	20	1	33	5	26	7	_	_	_	_
RHAL2	Š	_	_	_	_	_	_	14	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RHGL	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
RHPU	S	—	_	_	_	100	10	28	4	40	2	50	1	80	13	66	3	50	7	_	_	_	_
RHRA6	S	_	_	_	_	100	40	42	27	20	15	_	_	_	_	66	8	34	6	_	_	_	_
RIBES	S	_	_	_	_	_	_	14	1	20	1	50	4	20	1	_	_	3	5	_	_	_	_
RICE	S	100	3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
RICO	S	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	7	4	_	_	_	—
RIHU	S	—	_	_	—	_	_	14	2	—	—	_	_	20	5	_	_	_	—	_	—	_	—
RIIR	S	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1	—	—	—	—
RILA	S	100	3	—	—	—	—	28	1	—	—	—	—	40	8	33	5	15	4	—	—	—	_
RIMO2	S	—	—	—	—	_	_				_	—	—	—	—	—	—	3	5	—	—	—	—
RINI2	S	—	—	_	_	100	2	28	13	20	8		_	_	_	—	_	15	2	_	—	_	_
ROGY	S	_	—	—	_	—	—	—	_	—	—	50	7	20	5	—	—	3	2	—	—	_	—
RONU	S	—	—	_	_	—	—	_	_		40	—	—	—	—	—	—	3	1	_	—	—	_
ROSA5	S	_	—	_	—	—	—	_	—	20	10		_	_		_	—	3	5	_	—	_	_
ROWO	S	_	_	_	_	_	_	_	_	60	7	50	1	_	_	_	—	23	2	_	_	_	_
RUBA	S	_	_	_	_	_	_	1.4	10	_	—	_	_	_	_	_	_	3	10	_	_	_	_
RUBUS	S S	_	_	_	_	_	_	14	10	_	_	_	_	_	_		 72	11	4	_	_	_	_
RUDI2	-	_	_	_	_	_	_			_	_	_	_	—	—	66		3	1	_	—	_	_
RUID	S	—	—	_	—	—	—	28	3	—	—	—	—	_	—	66	1	3	15	—	_	_	_

Appendix B-2—Constancy and average cover of all species present in the following types: (continued)

Туре		PIE	N/EQ	PICO	D/CA	PIP	O/CR	POTF	R15/AL I	POTR15	/SY	POTE	R15/AC	ALR	U2/SY	ALR	H2/RU	ALRH	12/SH	SAA	AR27	SABO2	2/CAV
N			1		1		1		7	5			2		5		26		3		3	1	
Species	LF	CON	cov	CON	cov	CON	cov	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov	CON	COV
RULA	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	70	7	1	_	—	_	_
RULE	S	—	—	—	—	—	—	14	1	—	—	50	1	—	—	—	—	11	6	—	—	_	—
RUPA	S	_	_	—	—	100	3	57	19	—	—	50	4	80	19	_	_	30	12	—	—	—	—
SAAR27	S	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	100	67	—	—
SABO2	S	—	—	—	—	—	—		_	—	—	—	—	—	—				_	100	14	100	90
SACE3	S	_	_	_	_	—	_	28	2	—	_	—	—	—	—	33	10	19	3	—	—	—	—
SACO2	S	100	3	_	_	—	_	—	—	—	_	—	—	—	—	—	—	_	—	_	_	—	—
SAFA	S	_	_	—	_	_	_		_	—	_	—	—	—	_	_	_	_	—	33	3	—	—
SALIX	S	_	_	—	_	_	_	14	3	—	_	—	—	_		33	3	_	—	—	_	—	—
SAMBU	S	_	_	_	_	_	_			—	_	_	_	20	1	_	_	_	_	—	_	_	—
SARI2	S		_	_	_		_	14	1	—	_	_	—	20	1		_	_	_	_	_	—	—
SASC	S	_	_	_	_	—	_	28	4	_	_	_	—	_		—	_	—	_	_	—	_	_
SASI2	S	_	—	—	—	_	—		_	_	—	_	_	20	1	—	_	_	_	_	_	_	—
SPBE2	S	_	—	_	_	—	—	14	3	20	5	50	1	20	3	—	_	3	5	_	_	_	—
SPDE	S	—	—	100	25	—	—			_		_		_	_	—	_			_	_	—	_
SYAL	S	—	—	_		—	—	57	14	100	18	100	50	100	20	—	_	23	10	_	_	—	-
VASC	S	_	_	100	15	—	—	—	—	_	—	—	—	_	_	—	_	—	_	_	_	_	-
ACCO4	F	100	3	_	—	—	—		_		_	_	_	20	1	—	—	_		—	—	—	_
ACMI2	F	_	_	_	—	—	—	14	1	40	1	_	_	_	_	—	—	23	11	—	—	—	—
ACRU2	F	100	3	_	—	—	—	14	1	—	—	_	—	—	—	—	—	_	_	—	—	—	—
ADBI	F	_	_	_	_	_	_	14	1	_	—	_	—		_	_	—	7	1	_	_	_	_
AGAST	F	_	_	_	_	_	_		_		_	_	_	20	1	_	_	-	_	_	_	_	_
AGUR	F		_	_	_	_	_	14	2	20	1	_	_	_	_	_	_	19	1	_	_	_	_
ALVA	F	100	5	_	_	_	_	_	_		_	_	_	_	—	_	_	_	_	_	_	_	_
AMRE2		_	_	_	_	_	_		_	20	1	_	_	_	_	_	_	_	_	_	_	_	_
ANAR3	F	_	_	_	_	_	_	14	2	_	_	_	_		_	_	_	3	4		_	_	_
ANEMO	F F	100		_	_	—	_		1	—	—	—	—	20	1	—	_	_	_	33	5	_	_
ANMA	F	100	3	_	_	_	_	14	Ĩ		_	_	_	_	_	_	_	_	_	_	_	_	_
ANPI ANSC8	F	—	_	_	_	100	5	14	10	20 40	3	—	—	_	_	66	18		17	_	_	_	_
ANSCO APAN2	F	_	_	_	_	100	Э	14	10 2	40	53	_	_	_	_	00	10	57	17	_	_		_
APANZ	F	_	_	_	_	_	_	14	Z	20	3	_	_	_	_	_	_	_	_	_	_		_
AQFO ARCH3	F	_	_	_	_	_	_	14	1	20	3	_	_	_	_	_	_	_	_	_	_	_	_
ARCO9	F	_	_	_	_	_	_		2	_	_	 50	10	20	1	_	_	11	1	_	_	_	_
		_	_	_	_	_	_	14	2 1	—	_	50	10	20	I	_	_	3	1	_	_	_	_
ARLU ARMA18	F	_	_	_	_	_	_	14	I	_	_	_	_	20	5	_	_	ა	I	_	_	_	_
ARMAIO ARMI2	F	_	_	_	_	100	5	28	16		1	_	_	20	5	66	18	 34	4	_	_	_	_
ARIVIIZ ASAL2	F	_	_	_	_	100	5	20	10	40	I	_	_	_	_	00	10	54	4	33	1	_	_
ASALZ ASAL7	F	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_		_	33 33	1	_	_
ASAL/ ASCA2	F	_	_	_	_	_	_	14	3	_	_	50	2	_	_	_	_	3	1	55	1	_	_
ASCA2 ASCH2	F	_	_	_	_	_	_	14	5	_	_	50	2	_	_	_	_	3	1	_	_	_	
ASCH2 ASCO3	F	_	_	_	_	_	_	_	_	20	3	_	_	_	_	_	_	3	-		_	_	
ASCOS	F	100	3	_		_		14	1	20	5	_		_		_		_		_		_	_
ASFO ASMO3	F	100	5	_	_	_	_	14	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ASINOS	Г	_	_	_				14	I	_		_	_		_	_	_	_	_	_	_		

Туре		PIEI	N/EQ	PICO	D/CA	PIP	O/CR	POTE	R15/AL	POTR15	SY	POTE	R15/AC	ALR	U2/SY	ALR	H2/RU	ALRH	I2/SH	SAA	AR27	SABO	2/CAV
N			1		1		1		7	5			2		5		26	3	3		3	1	I
Species	LF	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	C0\
ASPR	F	_	_	_	_	_	_	_	_	40	1	_	_	_	_	_	_	_	_	_	_	_	_
ASTER	F	_	—	—	_	_	_	28	2	20	1	_	_	20	1	_	_	3	5	_	—	_	_
BRODI	F	—	—	—	—	—	—	14	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CACH16	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	33	3	—	—
CACO11	F	—	—	—	—	—	—	—	—	—	—	—	—	20	1	—	—	—	—	—	—	—	—
CAOL	F	—	—	—	—	—	—	—	—	20	1	—	—	_	_	—	—	—	—	—	—	—	—
CASTI2	F	—	—	—	—	—	—	14	1	—	—	—	—	—	—	—	—	—	—	—	—	—	_
CIAL	F	—	—	—	—	100	3	28	8	20	1	50	1	100	6	33	3	30	12	_	—	—	_
CIAR4	F	—	_	_	_	—	_	14	1	_	—	—	_	—	—	_	_	3	5	_	_	_	—
CIRSI	F	—	—	—	_	—	—	28	1	20	1	—	_	_	_	—	_	15	1	_	—	_	—
CIVU	F	—	—	_	—	—	—	—	—	—	—	50	1	—	—	_	—	—	—	—	—	_	_
CLEMA	F	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	3	3	_	_	_	—
CLUN2	F	_	_	_	_	_	_	14	1	_	_	_	_	20	1	_	_	_	_	_	_	_	_
COAR4	F	_	_	_	_	_	_	_	_	20	5	_	_	_	_	_	_	_	_	_	_	_	_
COGR4	F	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_
COOR	F	_	—	_	—	_	—	—	_	_	—	_	—	—	—	33	3	_	_	—	—	_	_
CRUCIF	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
CYOF	F	_	_	_	_	100	1	28	1	40	2	50	1	_	_	_	_	30	2	_	_	_	_
DEOC	F	_	_	_	_	_	_	14	8	_	_	_	_	_	_	_	_	_	_	_	_	_	_
DIHO3	F	_	_	_	_	_	_	14	1	_	_	_	_	20	1	_	_	_	_	_	_	_	_
DISY	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	33	1	30	3	_	_	_	_
DITR2	F	_	_	_	_	_	_	_	_	_	_	50	1	_	_	_	_	3	1	_	_	_	_
DOAL	F	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		33	1	_	_
EPAN2	F	_	_	100	1	_	_	_	_	_	_	_	_	_	_	33	3	3	1	_		_	_
EPGI	F	_	_			_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
EPGL	F	100	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_
EPGL4	F			_	_	_	_	14	1	_	_	_	_	_	_	_	_	3	1	_	_	_	_
EPILO	Ē	_	_	_	_	_	_			_	_	_	_	20	1	_	_	3	1	_	_	_	_
ERIGE2	F	_	_	_	_	_	_	_	_	20	1	_	_		<u> </u>	_	_	_	<u> </u>	_	_	_	_
ERPE3	F	_	_	100	4	_	_	14	1	20	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
FRVE	F	_	_			_	_	14	3	_	_	50	1	20	1	_	_	_	_	_	_	_	_
GAAP2	F	_	_		_	100	5	57	5	100	15	50	1	20		66	18	76	16	_	_	_	
GAAS3	F					100		51		100		50	1	_	_			10			_		
GALIU	Ē							_		_			1	60	2								
GATR2	5	_	_	_	_	_	_	28	1	20	1	50	1	20	3		_	3	1	_	_	_	_
GATR2		_	—	_	—	_	_	14	2	20	I	50	1	20	5	_	—	5	I	_	_	_	_
GEAL3	Ē		_	_	_		_	14	2	20	1	_		_		_			_	_	_	_	_
GEALS	Г С	_	_	100	1	_	_	_	_	20	I	_	_	_	_	_	_	_	_	_	_	_	_
GECA GEMA4	г с	_	_	100	I	_	_	14	5	_	_	_	_	40	2	_	_	7	1	_	_	_	_
		_	_	_	_	_	_	14	5	_	_	_	_	40	2	_	_	-	1	_	_	_	_
GERAN		400	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	10	_	_	_	
GEUM		100	Т	_	_	_	_		-	_	—	_	_	—	_	_	_	3	10	_	—	_	
HADI7		_	_	_	_	_	_	28	T A	_	_	_	_		_	_	_	_	—	_	_	_	_
HAMI	F	-	_	_	_	_	_	14	1		_		_	20	1	_	_		_	_	_	_	_
HELA4	F	100	3	—	—	—	_	28	2	40	4	50	1	80	4		—	26	5	_	—	—	_

Appendix B-2—Constancy and average cover of all species present in the following types: (continued)

GENERAL TECHNICAL REPORT PNW-GTR-682

Type N		PIEN/EQ 1		PICO/CA		PIPO/CR 1		POTR15/AL I		POTR15/SY 5		POTE	POTR15/AC		ALRU2/SY		ALRH2/RU		ALRH2/SH		SAAR27		SABO2/CAV	
												2		5		26		3		3		1		
Species	LF	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	
HEUCH	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	
HIAL2	F	_	—	_	—	_	_	14	1	_	_	—	_	_	—	—	—	_	_	—	—	_	—	
HYCA4	F	—	—	—	—	—	—			—	—	_		20	1		—		_	—	—	—	—	
HYFE	F	_	—	_	_	_	—	14	1	_	_	50	1	_	_	33	5	34	2	_	_	_	—	
HYPE	F	_	_	_	_	—	—	28	1	_	_	_	_	_	—	—	—	15	1	—	_	_	_	
HYPER	F	—	—	—	—	—	—	_	—	20	1	—	—	_	_	—	_	3	1	—	—	—	—	
LAAM	F	—	—	—	—	—	—		_	20	1	—	—	—	—	—	—	—	—	—	—	—	—	
LABI	F	—	—	—	—	—	—	14	1	—	—	—	—	—	—	_	—		_	—	—	—	_	
LABIAF	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	7	2	_	_	_	—	
LACO3	F	_	_	_	_	_	—	_	_		_	_	_	_	_	_	_	1	3	_	_	_	—	
LASE	F	_	_	_	_	_	_		1	20	1	_	_	_	_	_	_	11	1	_	_	_	_	
LATHY	F	—	—	—	_	_	—	14	I	—	—	_	—	—	_	—	_		-	—	_	_	_	
LEGUMF	•	—	—	—	_	_	—	_	—	—	—	_	—	—	_	—	_	3	I		_	_	_	
LICA2 LIPA5	F	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	7	1	33	5	_	_	
LIFAS	F	_	_	100	1	_	_	_	_	_	_	_	_	_	_	_	_	1	I	_	_	_	_	
LUCC06	F	_	_	100	I	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_	
LOCOS	F	_	_	_	_			_	_	20	-	_		20	1	_	_	_		_	_		_	
LYAL	F				_		_	_		_	_	_	_	20	1			11	3		_			
LYUN	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_			_	_	_	_	
MAGR3	F	_	_		_	_	_	_	_	20	1	_	_	20	<u>'</u>		_	_	_	_	_	_	_	
MEAR4	F	_	_	_	_	_	_	_	_			_	_	_	_	_	_	7	1	_	_	_	_	
MECI3	F	_	_	_	_	_	_	28	1	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	
MEOF	F	_	_	_	_	_	_		<u> </u>	_	_	_	_	_	_	_	_	3	1	_	_	_	_	
MEPI	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	_		_	_	_	_	
MERTE	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	
MIGU	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_	
MIMO3	F	100	5	_	_	_	_	_	_	20	1	_	_	_	_	_	_	7	1	_	_	_	_	
MIPE	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
MIST3	F	_	_	_	_	_	_	_	_	_	_	_	_	40	1	_	_	_	_	_	_	_	_	
MITEL	F	100	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	2	_	_	_	_	
MOCO4	F	_	_	_	_	_	_	14	2	20	1	50	3	80	7	_	_	15	10	_	_	_	_	
MOPE3	F	_	_	_	_	100	1	_	_	40	11	_	_	_	_	66	9	76	9	_	_	_	_	
MOSI2	F	_	_	_	—	—	_	_	_	_	—	—	_	—	—	_	—	3	20	—	—	—	_	
MYOSO	F	—	_	_	—	—	_	_	—	_	—	—	_	20	1	_	—	_	_	—	—	—	_	
OSCH	F	100	1	—	—	100	1	14	1	40	8	50	1	60	1	66	5	34	8	—	—	—	—	
OSOC	F	—	_	_	—	—	_	14	20	—	_	50	1	60	2	_	_	—	_	_	—	—	—	
PAFI3	F	—	_	—	—	—	_	_	_	—	_	—	_	_	_	_	_	—	_	33	1	—	_	
PAPE5	F	—	_	_	—	—	—	14	1	—	_	—	—	_	_	—	_	11	5	—	—	—	—	
PEGR2	F	—	—	—	—	—	—	—	—	—	_	_	—	—	—	_	—	—	—	100	6	_	—	
PENST	F	—	—	—	—	—	—	—	—	20	1	_	—	—	—	_	—			—	—	_	_	
POBI7	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	3	1	—	—	_	_	
POCU6	F	—	—	_		—	—	—	—	—	—	—	—	—	—	—	—	3	20	—	—	—	_	
POFL3	F	—	—	100	1	_	_	_	_	_	_	—	_	_	_	—	—	_	_	_	_	—	_	

Туре		PIE	I/EQ	PICO	D/CA	PIP	0/CR	POTE	R15/AL	POTR15	SY	POTE	15/AC	ALR	J2/SY	ALR	H2/RU	ALRH	12/SH	SAA	AR27	SAB02	2/CAV
N			1		1		1		7	5			2		5		26	3	}		3	1	
Species	LF	CON	cov	CON	cov	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov	CON	cov	CON	cov	CON	CO
POGL9	F	_	_	_	_		—	14	1	20	1	_	_		_	_	_	_	_	_	_	_	_
POGR9	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	3	1	_	_	_	_
POLA4	F	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_
POLYG4	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	11	1	_	_	_	_
POTEN	F	_	_	_	_	_	_	_	_		_	_	_	20	1	_	_	3	1	_	_	_	_
PRVU	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PYSE	F	—	—	—	_	—	—	14	1	_	—	_	—	—	_	—	_	—	—	—	—	_	_
RANUN	F	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
RAUN	F	—	—	—	—	—	_	—	_	_	—	_	—	20	1	—	_	3	1	—	—	—	
RUCR	F	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RUMEX	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1	_	_	_	_
RUOB	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_
RUOC2	F	_	_	_	_	_	_	28	4	_	_	50	1	40	1	33	10	_	_	_	_	_	_
RUPA5	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	3	3	3	_	_		_
RUSA	F	_		_	_	_	_	_	_	_	_	_	_	_		_	_	3	5	_	_		_
SAAR13	F	100	20	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SCAN2	F			_	_	_	_	_	_	20	3	_	_	_	_	_	_	_	_	_	_	_	_
SCLA	F	_	_	_	_	_	_	14	1	20	_	_	_	_	_	_	_	_	_	_	_	_	_
SECY	F	_	_	_	_	_	_		<u> </u>	_	_	_	_	_	_	_	_	_	_	33	1	_	
SEDUM	F	_	_	_	_	_	_	_	_	_	_	_	_	20	3		_	_	_		<u> </u>	_	_
SESE2	F		_	_	_			28	2	40	2	50	2	20	_		_		_				
SETR	, E	100	20			_		14	1		2	50	2										
SIAL2	, E	100	20	_	_	100	1		I	20	1	_	_	_	_	_	_	7	1	_	_	_	_
SIME		_	_	_	_	100	1	_	—	20	1	_	—	_	—	_	_	1	I	_	—	_	_
SINC		_	_	_	_	100	1	14	2	20	2	_	—	_	—	_	_	15	1	_	—	_	_
SMRA		_	_	_	_		I	28	2	40	11	100	3	40	1	_	_	7	2	_	—	_	_
SMRA		_	_	_	_	_	_	20 28	6	40 40	6	50	3 1	40 80	4	_	_	7	2	_	_	_	_
SODU	Г	_	_	_	_	100	1		1	40	0	50	I	00	4	66	10	46	2	_	_	_	_
2000	Г	_	_	_	_		I	14	6	_	_	_	_	_	_	00	10	40	2	_	_	_	_
SOLID STCR2	Г Г	_	_	_	_	_	_	14	0	_	_	_	_	_	_	_	_	_	_	_	_	100	3
STELL	F	_	_	_	_	—	—	_	_	_	—	_	—	20	1	_	_	_	—	_	—	100	5
OTMED	Г	_	_	_	_	100	1	_	_	40	2	_	_	20	I	_	_	_	_	_	_	_	_
STME2		_	_	_	_	100 100	1	 14	1	40	2 1		_	20	1	_	_	10	1	_	_	_	
TAOF	F F	—	—	_	—		I	14		20	1	_	_		1	_	—	19	1	_	—	—	
THOC	F	400	_	—	—	_	_	28	3	20	I	—	—	20	I	_	—	7	I	—	_	—	
THVE		100	5	_	—	400	1	_	—	_	_	_	_	—	—	_	_			_	—	_	
TOFL	F	_	—	_	—	100	I		_	_	_	_	_	—	_	_	_	7	2	—	_	_	
TRCA	F	_	_	_	_	_	_	28	6		_	_	_	_	_	_	_		_	_	_	_	
TRDU	F	—	—	—	_	—	_	14	1	20	1	—	—		—	—	—	7	1	—	—	—	
TRIFO	F	—	—	—	—	—	—	—	_	—	—		_		_	_	—	7	2	—	—	—	
TROV2	F	_	_	_	—	_	—		_	_	_	50	1	20	1	—	_	_	_	_	—	_	_
TRRE3	F	—	_	_	—	—	—	14	1	—	—	_	—	_	_	_		_	_	—	—	_	_
URDI	F	_		_	—	—	—	42	1	—	—	_	—	60	2	33	15	69	5	—	—	_	_
VEAM2	F	100	10	_	—	—	—	—	—	—	—	_	—	—	—	—	—	_	<u> </u>	—	_	—	_
VERON	F	_	_	—	—	—	—	—	_	_	_	—	—	—	—	—	—	3	1	—	—	_	_

Appendix B-2—Constancy and average cover of all species present in the following types: (continued)

Туре		PIEN	N/EQ	PICC	D/CA	PIP	O/CR	POTE	R15/AL	POTR15	/SY	POTE	R15/AC	ALR	U2/SY	ALR	H2/RU	ALR	I2/SH	SAA	R27	SABO2	/CAV
Ν			1	1			1		7	5			2		5		26	:	}	:	3	1	
Species	LF	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
VETH	F	_	—	_	_	—	—	_	_	20	1	_	—	—	_	_	_	_	_	_	—	_	—
VIAM	F	—	—	—	—	_	_		_	20	1	_	_		_	—	—		_	—	—	—	—
VICA4	F	_	—	—	—	100	60	14	60	20	15	100	7	20	5	_	—	34	7	—	—	—	—
VICIA	F	—	—	—	—	—	—		_	20	3	—	—		_	—	—	—	—	—	—	—	—
VIGL	F	_	_	100		_	_	14	1		_	_	_	60	3 1		-	7	7	_	—	_	_
VIOLA ZIEL2	F	_	_	100	2	_	_	_	_	20	2	_	_	20	I	33	5	1	1	33	1	_	_
AGSC5	г G	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	3	3	33	I	_	_
AGSC5 AGTH2	G	100	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	5	_	_	_	_
AREL3	G		_	_	_	_	_	14	1		_	_	_		_	_	_	_	_	_	_	_	_
BRCA5	G	100	3	_	_	_	_	14	10	_	_	_	_	_	_	_	_	7	2	_	_	_	_
BRJA	Ğ	_	_	_	_	_	_			20	1	_	_	_	_	_	_		_	_	_		_
BROMU	G	_	_	_	_	_	_	_	_	_	_	_	_	20	3	_	_	_	_	_	_	_	_
BROR2	G	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	7	1	_	_		—
BRRI8	G	—	_	_	—	_	_	_	—	—	—	—	_	_	—	66	10	3	15	—	_	_	—
BRTE	G	—	—	_	—	100	50	14	2	20	2	—	_	—	_	—	—	30	9	—	—	_	—
BRVU	G	100	3	_	_	—	—	14	1	—	_	_	_	—	—	_	_	7	4	—	_	—	_
CACA4	G	_		—	—	—	—	14	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CILA2	G	100	1	—	—	—	—	14	1	_	_	—	—		_	_	_		_	—	—	—	_
DAGL	G	_	—	—	—	—	—	—	—	20	5	—	_	40	2	33	1	11	4		_	—	_
DECE ELCI2	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	2	33	1	_	_
ELGIZ	G G	_	_	_	_	 100	1	71	5	 100	4	 100	3	80	8	 100	6	3 57	3 5	_	_	_	_
FEOC	G	_	_		_	100	1	71	5	100	4	100	3	20	0	100	0	57	5		_	_	_
FESU	G	_	_	_	_	_	_	14	3	_	_	50	1	40	6	_	_	3	3	_	_	_	_
GLEL	G	100	15	_	_	_	_	14	3	_	_		_		_	33	3	_	_	_	_	_	_
GLYCE	Ğ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3	1	_	_	_	_
MESU	G	_	_	_	_	_	_	_	_	_	_	_	_	20	15	_	_	_	_	_	_	_	_
PHAL2	G	_	_	_	_	_	_	14	1	_	_	—	_	_	_	_	—	_	_	_	_	_	_
PHAR3	G	—	—	_	—	—	—	—	—	20	5	—	_	20	10	_	—	_	—	—	—	—	—
PHPR3	G	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	—	_	_
POA	G	—	—	—	—	_	_	14	3	20	10	—	—		_	—	—	7	1	—	—	—	—
POPR	G	—	—	—	_	100	3	57	4	60	30	—	—	60	2	—	—	26	7	—	—	_	—
STOC2	G	_	—	—	—	—	—	_	_	20	1	_	—	_	_	_	—	_	_	_	—	_	—
TRCA21	G	_	_	_	_	_	_		-	_	_	_	_	_	_	_	_	3	1	_	—	_	_
CAAM10 CAAR2	GL GL	_	_	_	_	_	_	14	1 1		1	_	_	_	—	_	_	3	2	_	_	_	—
CAAR2 CABA3	GL	_	_	_	_	_	_	14	I	20 20	3	_	_	_	_	_	_	_	_	_	_	_	_
CADAS CADE9	GL	_	_	_	_	100	1	71	4	20 40	3 1	 50	1	100	10	_	_	61	6	_	_	_	_
CAGE2	GL	_	_	_	_		_		- -	20	5		_	40	2	_	_		_	_	_	_	_
CAHO5	GL	_	_	_	_	_	_	14	1	20	3	_	_		<u>_</u>	33	5	_	_	_	_	_	_
CAIL	GL	_	_	100	8	_	_	— —	_		_	_	_	_	_		_	_	_	_	_	_	_
CAMI7	GL	_	_	_	_	_	_	28	1	20	1	_	_	_	_	_	_	_	_	_	_	_	_
CANI2	GL	_	_	100	8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Туре		PIEI	N/EQ	PICO	D/CA	PIP	0/CR	POTE	R15/AL	POTR15	/SY	POTE	R15/AC	ALR	U2/SY	ALR	H2/RU	ALR	12/SH	SA	AR27	SABO	2/CAV
N			1		1		1		7	5			2		5		26		3		3	1	
Species	LF	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	COV	CON	cov	CON	COV	CON	cov	CON	cov	CON	cov
CAPR4	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	1	100	10
CAREX	GL	100	3	_	_	_	_	_	_	_	_	_	_	_	_	33	1	_	_	33	5	_	_
CARO5	GL	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_
CASC12	GL	_	_	100	70	_	_	14	1	_	_	_	_	_	_	_	_	_	_	66	18	_	_
CASU7	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	66	26	_	_
CAUT	GL	100	15	100	1	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_
CAVE6	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	30
ELPA6	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	66	46	_	_
JUDR	GL	_	_	100	1	_	_	_	_	—	_	—	—	_	_	_	_	_	_	_	_	_	_
LUCA2	GL	_	_	_	_	_	_	_	_	20	1	_	_	20	1	_	_	_	_	_	_	_	_
ATFI	FH	_	_	_	_	_	_	14	2	_	_	_	_	60	4	_	_	15	4	_	_	_	_
CYFR2	FH	_	_	_	_	_	_	14	1	_	_	_	_	20	1	_	_	15	2	_	_	_	_
DRFI2	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	5	7	1	_	_	_	_
EQAR	FH	100	85	_	_	_	_	28	50	20	1	_	_	20	3	33	5	26	2	_	_	_	_
EQHY	FH	_	_	_	_	_	_	42	2	_	_	—	—	60	2	33	1	46	8	_	_	_	_
EQLA	FH	_	_	_	_	100	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
EQPA	FH	_	_	_	_	_	_	_	_	_	_	_	_	20	3	_	_	_	_	_	_	_	_
EQVA	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	50	_	_
GYDR	FH	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_
POMU	FH	_	_	_	_	_	_	_	_	_	_	_	_	20	3	_	_	_	_	_	_	_	_
PTAQ	FH	_	_	_	_	_	_	14	1	_	_	_	_	_	_	_	_	3	1	_	_	_	

Appendix B-2—Constancy and average cover of all species present in the following types: (continued)

Appendix B-3—Constancy and average cover of all species present in the following types:

- Willow/Aquatic Sedge Plant Association (SAL/CAA)
- Booth's Willow/Holm's Rocky Mountain Sedge Plant Association (SABO2/CAS) •
- Willow/Bluejoint Reedgrass Plant Association (SAL/CAC)
 Willow/Mesic Forb Plant Community Type (SAL/FO)
 Farr's Willow/Pacific Onion Plant Community (SAFA/AL)

- Undergreen Willow/Holm's Rocky Mountain Sedge Plant Association (SACO/CAS) Drummond's Willow/Arrowleaf Groundsel Plant Community (SADR/SE)
- Lemmon's Willow/Mesic Forb Plant Community (SALE/MF)
- Coyote Willow Plant Association (SAEX)
 Sitka Willow/Common Horsetail Plant Community (SASI2/EQ)
- Undergreen/Willow/Bladder Sedge Plant Community Type (SACO/CAU)

Туре		SAL/	CAA	SAB	D/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SAC	D/CAU	SAC	D/CAS	SAD	R/SE	SAL	E/MF	SA	EX	SASI	2/EQ
N			2		0		4		10	1			1		5		1		1	1	3	1	
Species	LF	CON	cov	CON	cov	CON	COV	CON	cov	CON	cov	CON	COV	CON	COV	CON	cov	CON	cov	CON	COV	CON	cov
ABGR	U	_	_	_	_	_	_	_			_	_	_		_	_	_	_	_	8	1		_
ABLA	U	_	_	10	3	_	_	30	5	_	_	_	_	40	2	_	_	100	5	15	1	_	_
JUOC	U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_
PIEN	U	_	_	_	_	25	3	20	4	_	_	_	_	_	_	_	_	100	5	46	7	_	_
POTR15	Ū	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	23	5	100	10
PSME	Ū	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_
ROPS	Ū	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	1	_	_
ALIN2	Š	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	5	100	35
ALSI3	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	5	15	1	_	_
BEGL	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	7	3	_	_
CLLI2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	2	_	_
COST4	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	30	5	100	15
CRDO2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	2		
KAMI	S	_	_	_	_	25	1	10	5	_	_	_	_	_	_	_	_	_	_			_	_
LEGL	S	_	_		_	25		10		_	_			20	2		_		_		_		_
LOIN5	S							10	2					20	2			100	20	30	4		
PHEM	S							10	20									100	20	50	4		
PHLE4	S							10	20											15	21		
POFR4	S	50	1																	30	3		
RHPU	S	50	I	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
RIHU	S	_	_	_	_	_	—	_	—	_	—	_	—	_	—	_	—	100	 15	7	2	_	_
RIIR	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		15	, 15	2	_	_
RILA	S	_	_	_	_	_	—	_	—	_	—	—	—	_	—	_	—	100	5	15	2	_	_
RIMO2	S	_	_	_	_	_	_	10	4	_	_	_	_	_	_	_	_	100	5	_	_	_	_
ROWO	S	_	_	_	_	_	_	10	4	_	—	_	_	_	—	_	—	_	—	15	10	_	_
RUBUS	S	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	—	_	—	15	10	100	1
SABA3	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	10	100	I
SABAS SABO2	S	100	 49	100	70	 50	72	 50	 65	 100	18	_	_	_	_	_	_	_	_	7		_	_
SABO2 SACO2	S S	100		100	10	50 50	72	50 40	65 44		10	 100	 50	100	61	_	_	100	20	7	2 40	_	_
SACUZ		—	—	10	10	50	15		44 75	—	_		50		01	100	80		20			_	_
SADR SAEX	S	—	_	_	_	_	_	20	75	_	_	_	_	_	—	100	00	100	10	15	8	_	_
	S			—	—	_	—	—	—			_	—	—	_	—	—	100	10	100	63	—	_
SAFA	S	50	60	_	_	_	_	_	_	100	60	_	_	_	_	_	_	_	_		_	_	_
SALA5	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	—	23	2	_	_
SALA6	S	_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	_			7	5	_	_
SALE	S	_	—	_	—	_	_	—	—	_	_	_	_		_	—	—	100	70	_	—	_	—
SALIX	S	_	—	_	—	—	_			_	_	_	_	20	1	_	—	—	—	—	—	_	—
SAMY	S	—	—	—	—	—	_	10	85	—	—	_	_	_	_	_	—	—	—	—	—	_	—

Туре		SAL	/CAA	SAB	O/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACC	/CAU	SACO)/CAS	SAD	R/SE	SALI	E/MF	SA	EX	SASI	2/EQ
N			2		10		4		10		1		1		5		1	1	I	1	3	1	1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov	CON	COV	CON	CO
SARI2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46	28	_	_
SASI2	S	_	_	_	—	_	_	_	_	_	_	—	_	20	20	_	_	_	—	7	6	100	70
SAWO	S	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	20	_	_
SHCA	S	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	7	1	_	—
SYAL	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
VACA13	S	_	_	10	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VACCI	S	_	_	_	_	25	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VASC	S	_	_	_	_	_	_	20	12	_	_	_	_	_	_	_	_	_	_	_	_	_	—
ACCO4 ACMI2	F	_	_	10	1	_	_	30	12	—	—	—	_	40	2	—	—	100	3	—	—	—	_
ACMI2	F	100	1	_	—	_	_	20	6	—	—	—	_	20	1	—	—	—	_	38	3	—	_
AGAU2	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	—	_	_	_	_	_	_	_
AGUR	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
ALVA	F	_	_	_	_	_	_	40	12	100	80	_	_	_	_	_	_	_	_	_	_	_	_
ANAL4	F	_	_	_	_	_	_	10	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ANAR3	F	_	_	_	_	_	_	20	8	_	_	_	_	40	4	_	_	100	10	38	3	_	_
ANMA	F	_	_	_	_	_	_	20	2	_	_	_	_	20	10	_	_	_	_	30	3	100	3
ANMI3	F	_	_	_	_	25	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ANTEN	F	_	_	_	_		_	_	_	_	_	_	_	20	1	_	_	_	_	_	_	_	_
ANUM	F	_	_	_	_	_	_	10	3	_	_	_	_			_	_	_	_	_	_	_	_
APIACF	F	_	_	_	_	_	_	10	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AQUIL	F	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	15	1	_	_
ARCH3	F	_	_	10	1	50	1	20	1	100	1	_	_	40	1	_	_	_	_	7	2	_	_
ARDI2	F	_	_		_		<u> </u>		<u> </u>			_	_		<u> </u>	_	_	_	_	7	1	_	_
ARLA8	F	_	_	_	_	_	_	_	_		_		_	_	_	_	_		_	7	1	_	
ARLO6	F			_			_	_	_		_		_	_	_	_	_		_	15	1	_	
ARLU	F																			46	1		
ARMA18	F							10	3							_				40	4		
ARMO4	F			10	1		_	10	1				_	40	6								
ARNIC	, E	_			I	_	_	20	3	_	_	100	5	40	0	_	_	_	_	_	_	_	_
ARPA13		—	—	—	—	—	_	10	3	_	_	100	5	_	_	_	_	_	—	_	—	_	_
ASAL7	F	_	_		_	_	_	10	1			_	_	_		_	_			_		_	_
ASAL7 ASCH2	Г С	—	—	_	_	—	_	10	I	_	_	_	_	_	_	_	_	_	_	7	2	_	_
	Г С	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		2	—	
ASEA ASFO		_	—	20	14	_	_	30	 14	_	_	_	_	20	10	_	_	100	 15	23 7	ວ 1	_	
ASFU	г г	_	—	20	14	_	_	30	14	_	_	_	_	20	10	_	_				5	_	
ASMO3	г г		1	_	_	 25	5	40	9	_	_	_	_	_	_	_	_	100	3	38	-	_	
ASOC	F	50	I	—	—	25	Э	40	9	—	—	_	—	—	—	—	—	—	—	7 7	15	—	
ASRO	F	_	—	_	_	—	_			—	—	_	—	—	—	—	—	—	—	1	10	100	10
ASTER		_	—	_	_	_	—	20	3	_	—	_	—	—	—	_	_	_	—	45		100	10
ASTRA	F	_	_	_	_	—	_	10	1			_	_	_	_	_	_	_	_	15	3	_	_
CABI2	F	_	_		_		_		_	100	1	_	_		_	_	_	_	_		_	_	_
CACH16	F	—	—	20	1	25	1	20	1	—	—	—	—	20	1	—	—		_	7	1	—	
CACO6	F	—	—	—	—	—	_		_	_	—	_	_	_	—	—	—	100	1	—	—	—	_
CACU7	F _	_	_	_	_	_	_	10	1	_	—	_	—	_	_	_	—	_	—		_	_	_
CAMI12	F	_	_	_	_	_		_	_	_	_	_	_			_	_	_	_	23	2	_	_

Appendix B-3—Constancy and average cover of all species present in the following types (continued)

Туре		SAL	/CAA	SAB	O/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACO	D/CAU	SACO)/CAS	SAD	R/SE	SALI	E/MF	SA	EX	SASI	2/EQ
Ν			2		10		4		10		1		1		5		1	1	1	1	3	1	i 📃
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
CARH4	F	_	—	_	_		_		_	_	—	_	_	_	_	_	_	_	—	7	1	_	_
CARO2	F	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	15	1	—	_
CASTI2	F	_	_	10	5	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CERAS	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
CHHY	F	_	_	_	_	_	_	_	—	_	_	_	_	_	—	_	—	_	_	7	1	_	_
CHLE80	F	_	_	_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	_	7	1	_	—
CIAL	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
CIAR4	F	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	7	1	_	_
CICA6	F	_	_		—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
CIDO	F	—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	7	5	_	_
CIRSI	F	_	—	_	—	—	—	—	_	_	—	_	—	_	_	—	_	_	_	7	3	_	—
CIVU	F	_	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	_	_	7	5	_	_
COCA5	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	—
COGR4	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	—	—
CRUCIF	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	15	1	—	—
CYOF	F	_	_	_	_	_	_	_	_		_		_	_	_	—	_	_	_	7	1	—	_
DISY	F	—	—	_	—	—	—	—	_	—	—	—	—	—	—	—	—	_	—	23	1	—	_
DOAL	F	50	1	20	6	—	—	70	5	—	—	—	—	20	1	—	—	—	—	—	—	—	—
DOJE	F	—	—	10	30	—	—	_	_	—	—	—	_	—	—	_	_	_	_	_	_	—	_
DOPU	F	_	_	_	_	_	_	_	_	_	_	100	15	_	_	_	_	_	_	_	_	—	—
EPAL	F	_	—	_	_	_	—	10	1	—	_	—	_	—	—	—	_	_	_		_	—	_
EPAN2	F	_	_	_	_	_	_	10	5	_	_	_	_	_	_	_	_	100	10	7	15	_	—
EPGL	F	_	_	_	_	_	_	_	_	_	_	_	_	20	1	_	_	_	_	15	3	_	_
EPGL4	F	_	_	_	_	25	1	10	3	_	_	_	—	_	—	100	3	_	_	15	1	_	_
EPILO	F	—	—	10	3	25	1	10	3	—	—	—	—	—	—	—	—	—	—	15	1	—	_
EPLA	F	_	—	_	_	_	—	_	_	_	—	_	—	—	—	_	_	—	—	15	9	—	_
EPPA2	F	_	_	_	_	_	_	20	1	_	_	_	_	_	—	_	_	_	_	_	_	_	_
ERAS2	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	
ERIGE2	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	23	1	—	
ERPE3	F	—	—	30	2	75	10	20	6	—	—	—	—	40	2	—	—	—	—	7	1	—	
ERSP4	F	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	3	—	
FRASE	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
FRVE	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
FRVI	F	—	—	—	—	—	—	20	6	—	—	—	—	—	—	—	—	—	—	15	2	—	_
GAAP2 GAAS3	F	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	_	—	7	1	100	5
GAAS3	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	10	_	
GABI	F	—	—	—	—	—	—	—	—	—	—	—	—	20	1	—	—	—	—	7	1	—	_
GABO2	F	—	—	10	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
GATR2 GATR3	F	—	—	—	_	25	1	—	—	—	—	—	—		—	—	—	_	_	15	2	—	
GATR3	F	—	—	—	—	—	—	—	—	—	—	—	—	20	1	—	—	—	—	7	3	—	_
GECA	F	_	_	40	5	50	1	40	18	_	_	_	_	20	3	_	_	_	_	—	_	_	_
GEMA4	F	—	—	_	—	—	—	—	—	—	—	—	—	—	—	_	—	100	1	30	2	100	1
GEUM	F	_		_	_	_	_	_	_	_		_	_	_	—	_	_	_	_	7	1	_	
GIAG	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	—	7	10		

Туре		SAL	/CAA	SAB	O/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACC)/CAU	SACC	D/CAS	SAD	R/SE	SALI	E/MF	SA	EX	SASI	2/EQ
Ν			2		10		4		10		l		1		5		1	1	I	1	3		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
GICO2	F	—	_		_	_	_	_	_	_	_	—	_	—	_	_	_	_	_	15	2	—	_
GILIA	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
HABEN	F	_	_	_	_	_	_	10	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HAMI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	5	_	_
HASA	F	_	—	—	_	_	_	10	1	—	—	_	_	40	1	100	3	—	—	_	—	—	
HELA4	F	_	_	_	_	_	_	10	3	_	_	_	_	_	_	_	_	100	3	30	5	_	_
HIERA	F	_	_	_	_	_	_	10	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HYAN2	F	_	_	_	_	_	_	_	_	_	_	_	_	40	8	_	_	_	_	_	_	_	_
HYFON	F	_	_	_	_	25	8	50	6	_	_	_	_	40	1	_	_	_	_	15	1	_	_
HYFOS	F	_	_	_	_		_	_	_	_	_	_	_	_		_	_	_	_	7	1	_	_
HYOC	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
HYPE	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
ILRI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u>'</u>	100	3
LASE	F	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	_	15	1	100	_
LATHY	Ē																			10		100	3
LICA2		_	_	20	6	_	_	40	9	_	_	100	3	_	_		_	100	1	7	5	100	5
LILIAF	Г С	_	—	20	0	—	—	40	9	_	—	100	5	_	—	_	—	100	I	7	1	_	_
		 50	1	40	2	100	5	40	3	_	_	_	_	20	1	_	_	_	_	1	I	_	_
LITE2	F	50	I		Z		5	40	3	—	—	—	—	20	I	_	—	—	—	7	-	_	
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1	_	_
LOPU3		_	—	_	_		_		_	—	_	_	_		_	_	_		_	1	2	_	_
LUPO2	F	_	—	_	—	25	1	20	3	_	_	_	—	40	2	_	—	100	3	_	_	_	_
MEAL2	F _	_	—	_	—	—	—	_	_	_	_	_	—	_	_	_	—	_	_	7	2	_	_
MEAR4	F	—	—	—	—	—	—	_	_	—	—	—	—	_	—	—	—	_	_	30	1	_	_
MECI3	F	_	—	_	—	_	—	30	3	—	_	_	—	_	_	_	—	100	5	23	22	—	_
MEPI	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	100	5
MIGU	F	_	_	—	—	—	—	10	3	—	—	—	—	—	—	—	—	—	—	7	1	—	_
MILE2	F	—	—	_	—	—	—	10	3	_	_	—	—	40	1	_	—	—	—	—	—	_	_
MIMO3	F	—	—	_	—	—	—	_	—	_	_	—	—	40	1	100	10	—	—	7	1	100	1
MIPE	F	—	—	_	—	_	—	10	1	—	—	_	—	40	2	_	_	—	_	_	—	_	
MIPR	F	—	_	10	2	—	_	10	1	_	_	_	_	20	1	_	_	—	_	_	—	_	
MITEL	F	—	—	—	—	—	—	20	6	—	—	—	—	—	—	—	—	—	—	—	—	—	
MOCO4	F	_	_	_	_	25	3	30	14	_	_	_	_	20	2	_	_	_	_	7	1	100	1
MONTI	F	_	_	_	_	_	_	10	3	_	_	_	_	_	_	_	_	_	_	_	_	_	
MYOSO	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	1	_	
PAFI3	F	_	_	_	_	_	_	30	7	100	1	100	10	40	1	_	_	100	1	23	3	_	_
PEGL5	F	_	_	_	_	_	_	30	2	_	_	_	_	20	1	_	_	_	_	_	_	_	_
PEGR2	F	_	_	20	1	50	1	80	2	_	_	100	5	40	1	_	_	_	_	7	1	_	
PENST	F	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	
PEPA29	F	_	_	_	_	25	60	_	_	_	_	_	_	_	_	_	_	_	_			_	_
PHHA	, F	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	7	5	_	_
PLLA	F	_	_	_	_		_	_	_	_	_	_	_	_	_		_	_	_	7	3 3		_
PLMA2	י ב	_	_	_	_	_	_		_		_				_		_			, 15	1		_
POFL3	F	_	_	60	11	100	 12	90	23	100	1	_	_	100	3	_		100	3	15	I	_	_
		_	_		11	100	12				I	_	_	100	Э	_	_	100	3	_	_	_	_
POLYG4	F	_	_	_	_	_		10	1	_	_	_	_	_	_	_	_	_	_	_	_		_

Appendix B-3—Constancy and average cover of all species present in the following types (continued)

Туре		SAL	/CAA	SAB	0/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACO)/CAU	SACO	O/CAS	SAD	R/SE	SAL	E/MF	SA	EX	SASI	2/EQ
N			2		10		4		10		1		1		5		1		1	1	3	1	
Species	LF	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV
POVI3	F	50	1	_	—	_	_		_	100	1	_	_	_	_		_	_	_	—	_	_	_
PRVU	F	_	—	_	—	—	_	_	_	_	_	_	_	_	_	_	_	—	_	7	1	_	—
PYAS	F	—	—	_	—	—	_	_	—	—	_	_	—	_	_	_	—	100	3	—	_	—	—
RAAL	F	—	—	—	—	25	3	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—
RANUN	F	—	_	—	—	—	—	_	—	_	—	_	_	_	—	—	_	_	—	7	1	—	—
RAOC	F	—	_	—	—	—	—		_	_	—	_	_	_	—	—	_	_	—	7	1	—	—
RAPO	F	—	—	—	_	—	—	10	3	_	—	—	—	_	—	—	—	—	—	_	_	—	—
RARE3	F	_	_	_	_	_	—		_	_	_	_	—	_	_	_	_	_	—	7	1	_	_
RAUN	F	—	—	—	—	—	—	10	3	—	—	—	—	—	—	—	—	—	—		_	—	—
RUCR	F	—	_	_	—	_	—	—	_	_	_		—	_	_		_		—	23	2	_	—
RUOC2	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	46	3	100	5
RUPA5	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
SAAM3	F	—	—	—	—	—	—	10	5	—	—	—	—	—	—	—	—	100	5	—	—	—	—
SAAR13	F	—	—	—	—	—	—	40	2	—	—	—	—	—	—	—	—	100	3	15	15	—	—
SCLA	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
SECY	F	100	2	40	16	25	5	70	16	100	20	100	20	80	4	—	—	—	—	—	—	—	—
SEPS2	F	—	—	—	—	—	—	10	20	_	—	—	—	—	—	—	—	—	—	38	18	—	—
SESE2	F	—	—	—	—	_	_	—	—	—	—	—	_	—	—	—	—	—	_	38	6	_	—
SETR	F	—	—	10	1	25	1	40	7	—	—	—	—	20	20	100	20	100	10	38	10	—	—
SIAC	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
SINO	F	—	—	—	—	—	—			—	—	—	—	—	—	—	—	—	—	7	1	—	—
SIPR	F	_	—	—	—	—	—	20	10	—	—	—	—	—	—	—	—	—	_	—	—	—	—
SOCA6	F	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	15	6	100	15
SODU	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
SOLID	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
SOMU	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	15	2	—	—
SPCA5	F	—	—	—	—	—	—	—	—	—	—	100	3			—	—	100	3	7	1	—	—
SPRO	F	_	—	_	_	—	_	_	—	_	—	—	_	20	1	_	—	_	_	_	_	_	_
STCA	F	_	—		_	—	_		_	_	—	_	_	_	—	_	—	_	_	7	3	100	1
STCR2	F	_	—	10	5	—	_	10	3	_	—	_	_	_		_	_	_	_		—	—	_
STLO2	F	—	—	_	_	—	—			_	—	_	—	20	1	_	—	_	—	_		—	_
TAOF	F	_	_	_	_	_	—	10	1	_	_	_	—		_	—	_	_	—	38	1	_	_
THALI2	F	—	_	—	—	_	—	—	_	—	_	_	_	20	2	—	_	_	—		_	_	—
THOC	F	—	_	—	_	_	—	_	_	_	_	_	—	_	_	—	_	_	_	15	3	_	_
THVE	F	—	_	_	—	_	—	—	_	_	_		_	_	_		_	100	20	—	_	_	—
TRCA	F	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	100	5	—		—	—
TRDU	F	_	_	—	_	—	_	_	_	_	_	_	—	_	_	_	—	_	_	7	1	—	—
TRIFO	F	_	_	—	_	—	—	—	_	—	_	_	—	—	—	—	_	_	—	23	1	—	_
TRPR2	F	—	—	—	—	—	—		<u> </u>	—	—	—	—	—	—	—	—	—	—	7	1		_
TRRE3	F	_	—	—	_	—	—	10	1	—	—	—	—	—	—	_	—	—	—	—			-
URDI	F	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—	—	7	3	100	10
VERAT	F	—	—	10	1	—	—	10	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
VERON	F	—	—	—	—	—	—	10	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
VESE	F	_	_	_	_	_	_	20	1	_	_	_	_		_	_	_	_	_	_	_	_	_

GENERAL TECHNICAL REPORT PNW-GTR-682

Туре		SAL	CAA	SAB	0/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACO)/CAU	SACO	D/CAS	SAD	R/SE	SALE	E/MF	SA	EX	SASI	2/EQ
Ν			2		10		4		10		1		1		5		1	1		1	3	1	1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
VETH	F	_	_	_	_	_	—	_	_	—	_	_	_	_	—	_	—	_	—	15	1	_	_
VEWO2	F	_	—	10	1	25	1	20	1	—	—	—	—	20	1	_	—	—	—	—	—	—	—
VIMA2	F	—	—			_	_	10	3	—	—	—	—		_			_		—	—	—	—
VIOLA	F	—	—	30	12	50	2	40	8	—	—	—	—	60	3	100	10	100	15	—	—	—	—
VIOR	F	_	_			_	—	_	_	—	_	_	_	—	—	_	—	_	_	7	1	_	_
VIPA4	F	_	_	10	1	_	—		_	—	_	_	_	—	—	—	—	_	_	—	_	_	_
ZIEL2	F	_	_	—	—	_	—	10	3	—	_	100	3	—	—	—	—	_	_	—	_	_	—
AGAL3	G	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	7	1	—	—
AGCA2	G	—	—			_	_		_	—	—	—	—	—	—	—	—	—	—	15	2	—	—
AGHU	G	—	—	10	10	50	2	20	4	—	—	_	—	—	—	—	—	—	—	—	—	—	—
AGIN5	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	5	—	—
AGROS2	G	—	—	—	—	—	—	10	1	—	—	100	5	—	—	—	—	—	—	—	—	—	—
AGSC5	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	15	2	—	—
AGST2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	15	21	—	—
AGTE	G	—	—	—	—	—	—	10	15	—	—	—	—	—	—	—	—	100	3	—	—	—	_
AGTH2	G	—	—	10	1	25	3	10	5	—	—	—	—	20	3	—	—	—	—	—	—	—	_
AGVA	G	—	—	10	20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
BRBR5	G	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	—
BRCA5	G	—	—	—	—	—	—	10	5	—	—	—	—	20	1	—	—	—	—	15	3	—	—
BRCI2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	100	10	—	—	—	—
BRJA	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
BROR2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
BRTE	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	2	—	—
CACA4	G	—	—	10	5	100	66	30	6	—	—	—	—	40	16	—	—	100	30	15	7	—	—
CILA2	G	—	—	—	—	—	—	—	—	—	—	—	—	20	8	100	3	—	—	—	—	—	—
DAIN	G	—	—	20	12	25	1	30	6	—	—	—	—	—	—	—	—	—	—	7	1	—	—
DECE	G	50	1	30	4	75	5	60	13	100	15	100	3	20	45	_	—	—	—	15	1	_	
ELCI2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
ELGL	G	—	—	—	—	—	—	—	—	—	—	—	—	20	36	—	—	100	5	30	4	100	10
FEID	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	_
FEPR	G	_	_	_	—	—	—		_	—	—	_	—	—	—	_	—	_	—	7	1	_	
FEVI	G	—	—	—	—	—	—	10	1	—	—	—	—	—	—	—	—	—	—	—	—	—	
GLEL	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	100	5	—	—	15	2	—	
KOCR	G	—	—	—	—	—	—	20	3	—	—	—	—	—	—	—	—	—	—	—	—	—	
MUAN	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	3	—	
MUFI2	G	—	—	10	5	—	_	30	11	—	—	—	—			—	—	—	—	—		—	
PHAL2	G	—	—	10	1	75	1	50	1	—	—	—	—	20	1	—	—	—	—	7	1	—	_
PHAR3	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	23	30	—	
PHPR3	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	1	_	
POA	G	_	_	_	_	_	_	10	1	_	_	_	_	_	_	_	_	_	_	7	5	_	
POCO	G	—	—	—	—	_	—	—	—	—	—	_	—	_	—	—	—	_	—	7	3	—	
POLE2	G	—	_	—	—	—	—	10	1	—	_	—	—	—	—	—	—	—	—	—	—	—	—
POPA2	G	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	—	—	—	7	2	100	25

Appendix B-3—Constancy and average cover of all species present in the following types (continued)

Туре		SAL	/CAA	SAB	O/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACO	D/CAU	SAC	D/CAS	SAD	R/SE	SAL	E/MF	SA	EX	SAS	I2/EQ
N			2		10		4		10		1		1		5		1		1	1	13		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
POPR	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46	9	_	_
TRSP2	G	_	_	_	—	_	_	_	_	—	_	_	_	_	_		_	_	_	7	1	_	—
TRWO3	G	—	—	10	5	50	1	40	4	—	—	—	—	20	1	—	—	—	—	—	—	—	—
CAAB2	GL		_	_	_	—	_	10	1	—	_	_	_	_	_		_	_	—	—	_	_	
CAAQ	GL	100	70	10	5	_	_	10	25	—	—	—	—	20	3	—	—	—	—	_	_	100	1
CAAR2	GL	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	7	1	_	—
CAAU3	GL	_	_	_	—	_	_	—	—	—	_	—	_	_	_	—	_	_	—	7	1	_	—
CACA12	GL	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
CAHO5	GL	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	_	—
CAIL	GL	—	—	10	10	25	5	10	5	—	—	—	—	20	1	—	—	—	—	—	—	—	—
CAJO	GL	_	—	—	—	—	_	20	6	—	_	—	—	20	1	—	—	—	—	_	—	—	—
CALA30	GL	_	—	—	—	—	_	—	—	—	_	—	—	_	_	—	—	—	—	7	5	—	—
CALE9	GL	_	—	10	15	—	_	10	1	—	_	—	—	20	5	—	—	—	_	_	—	—	—
CALU7	GL	_	—	20	3	—	_	20	1	_	_	100	10	—	_	_	_	_	_	7	1	_	—
CAMI7	GL	—	—	—	—	—	—	10	12	—	—	—	—	40	1	—	—	—	—	23	3	100	3
CANE2	GL	—	—	10	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CANI2	GL	—	_	10	1	—	—	10	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CAPA18	GL	—	_	10	15	_	—	—	_	—	—	_	_	—	—	—	_	—	—	—	—	—	—
CAPR4	GL	—	_	20	1	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CAPR7	GL	—	—	—	—	25	1	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
CAREX	GL	—	—	—	—	—	—	10	1	—	—	—	—	—	—	—	—	100	3	23	1	—	—
CASA10	GL	—	—	—	—	—	—	—	—	100	1	—	—	—	—	—	—	—	—	—	—	—	—
CASC10	GL	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	7	1	—	—
CASC12	GL	50	1	100	62	100	12	80	11	100	15	100	15	100	56	100	3	_	_	_	_	_	_
CAST5	GL	—	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	15	1	—	_
CAUT	GL	—	_	20	6	50	6	10	1	—	_	100	80	—	_	—	—	_	—	7	1	—	_
ELPA3	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	2	_	_
ELPA6	GL	50	3	40	26	25	10	10	1	_	_	_	_	20	30	_	_	_	_	_	_	_	_
JUBA	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	—
JUCO2	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	—
JUDR	GL	_	—	20	4	—	—	10	5	—	—	—	—	40	1	—	—	—	—	—	—	_	—
JUEF	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
JUEN	GL	_	_	_	_	_	_	_	_	_	_	_	_	40	1	_	_	_	_	7	1	100	1
JUME3	GL	_	_	10	10	_	_	20	2	_	_	100	10	_	_	_	_	100	1	_	_	_	_
JUNCU	GL	_	_	_	_	_	_	10	10	_	_	_	_	_	_	_	_	_	_	7	3	_	_
JUPA	GL	_	_	_	_	_	_	10	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LUCA2	GL	_	_	10	1	_	_	20	1	_	_	_	_	20	1	_	_	_	_	_	_	_	_
LUPA4	GL	_	_	_	_	_	_	10	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LUZUL	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	_	—
SCIRP	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	—
SCMI2	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	2	_	_
ATFI	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
CYFR2	FH				_				_											7	1		

••					-		•	•			-	•••											
Туре	SAL/CAA		SAB	0/CAS	SAL	/CAC	SA	L/FO	SAF	A/AL	SACO)/CAU	SAC	D/CAS	SAD	R/SE	SAL	E/MF	SA	EX	SAS	I2/EQ	
Ν			2		10		4		10		1		1		5		1		1		13		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov
EQAR	FH	_	_	_	_	_	_	20	30	_	—	100	10	60	2	_	_	100	3	61	17	100	30
EQLA	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	2	_	_
EQVA	FH	100	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	26	_	_

Appendix B-3—Constancy and average cover of all species present in the following types (continued)

- Sitka Alder/Ladyfern Plant Association (ALSI3/AT)
 Sitka Alder/Drooping Woodreed Plant Association (ALSI3/CI)
 Sitka Alder/Mesic Forb Plant Community Type (ALSI3/FO)
 Mountain Alder/Ladyfern Plant Association (ALIN2/AT)
 Mountain Alder/Tall Mannagrass Plant Association (ALIN2/GL)

- Mountain Alder/Common Horsetail Plant Association (ALIN2/EQ)
- Mountain Alder/Common Snowberry Plant Association (ALIN2/EQ)
 Mountain Alder/Dewey Sedge Plant Community Type (ALIN2/CA)
 Red-Osier Dogwood/Ladyfern Plant Association (COST4/AT)
 Red-Osier Dogwood Plant Association (COST4)

- Mountain Alder-Red-Osier Dogwood/Mesic Forb Plant Association (ALIN2-CO) ٠

Туре		ALS	I3/AT	ALS	SI3/CI	ALS	613/FO	ALI	N2/AT	ALIN	12/GL	ALIN	2-CO	ALIN	12/EQ	ALIN	I2-SY	ALIN	2/CA	COS	T4/AT	COS	ST4
Ν			2		2		8		3		2		3		1		1	2	2		2	9	,
Species	LF	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov
ABGR	PO	—	—	_	_	_	—	33	5	_	—	_	_	_	_	_	_	_	_	_	_	_	_
ABLA	PO	50	5	_	_	13	5	_	_	—	_	_	—	_	_	_	_	_	_	_	_	_	_
PIEN	PO	_	—	_	_	13	10	—	—	—	—	—	—	—	_	_	_	—	—	_	_	_	—
ABGR	SO	_	_	—	_	13	14	_	—	_	—	_	_	_	_	_	_	—	—	_	—		_
ALRH2	SO	_	_	_	_	_	—	_	_	_	_	_	—	100	10	_	_	_	_	_	_	11	4
PSME TABR2	SO SO	_	_	_	_	_	_	_	_	_	_	_	_	100	10	_	_	_	_	_	_	22	4
ABGR	30 U	_	_	 50	1	 25	5	33	1	_	_	67	6	_	_	100	2	50	1	_	_	22	4
ABLA	Ŭ	100	6	50	1	50	4		_	_	_		_	_	_		_			_	_	_	_
PIEN	Ŭ	50	1	50	1	25	1	33	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PIPO	Ŭ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	11	1
PSME	Ū	_	_	_	_	_	_	_	—	_	_	33	6	_	_	100	1	_	_	_	_	11	1
TSME	U	_	_	_	_	13	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ACGL	S	—	—	_	—	—	_	—	—	—	—	33	2	_	—	100	1	_	—	50	3	66	10
ALIN2	S	—	—	—	—	—	—	100	82	100	90	100	75	100	90	100	30	100	88	50	10	—	—
ALSI3	S	100	68	100	85	100	86	_	_	_	—	_	—	_				—	_	—	—	_	_
AMAL2	S	—	—	—	—	—	—	33	3	—	—	—	—	100	1	100	1	_	—		_	33	2
BEOC2 BERE	S	_	—	_	_	_	—	_	—	_	_	_	_	_	_	100 100	35	_	_	50	5	33	12
CERE2	S S	_	_	_	—	_	_	_	_	_	_	_	_	_	_	100	I	_	_	_	_	33	11
CHUM	S	_	_	_	_	13	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
CLLI2	S	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	22	2
COST4	Š	_	_	_	_	_	_	100	10	_	_	100	45	_	_	100	4	100	9	100	60	100	52
CRDO2	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	3	_	_	50	10	33	14
HODI	S	_	_	_	_	_	_	33	10	_	_	33	4	100	3	100	20	50	3	_	_	33	27
LIBO3	S	_	—	_	—	—	—	—	_	—	—	—	—	—	—	_	—	_	—	—	—	11	2
LOIN5	S	50	15	—	—	13	5	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1
LOUT2	S	50	1	—	—	25	4	—	—	—	—	33	1	—	—	—	—	—	—			_	—
OPHO	S	_	_	_	_		_	_	_	_	—	—	_	—	—	_	—	_	—	50	1	—	—
PAMY	S	_	—	_	_	13	3	_	—	_	—	—	_	_	_	_	_			_	—	_	_
PHCA11 PHLE4	S S	_	_	_	_	_	_	33	5	_	_	67	23	100	3	100	4	50 50	5 55	50	10	66	 10
PHLE4 PHMA5	S	_	_	_	_	_	_	- 33	5	_	_	33	23	100	-	100	4	50	55	50	10	22	2
PRVI	S	_	_	_	_	_	_	33	5	_	_	33	2	_	_	100		_	_	_	_	11	5
RHPU	S	_	_	_	_	_	_		_	_	_	33	7	_	_	_	_	_	_	_	_	33	6
RHRA6	S	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	22	8
RIBES	S	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_		_	—	11	2

GENERAL TECHNICAL REPORT PNW-GTR-682

Туре		ALS	13/AT	ALS	613/CI	ALS	13/FO	ALIN	2/AT	ALIN	2/GL	ALIN	2-CO	ALIN	12/EQ	ALIN	12-SY	ALIN	2/CA	COS	F4/AT	COS	ST4
Ν			2		2		8		3	2			3		1		1	2	2		2	9)
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	CO
RIHU	S	100	7	—	—	13	4	67	23	50	35	—	_	—	_	—	—	50	3	—	_	_	_
RIIR	S	_	_	_	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	11	5
RILA	S	100	14	—	—	63	8	67	4	_		33	2	—	—	100	2	—	—	50	20	22	39
RIMO2	S	_	—	_	_	_	—	_	—	50	10	—	—	_	—	_	_	—	—	—	—		_
RINI2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_		_	_	_	11	4
RIWO	S	—	_	_	_	—	_	—	_	_	_		_	100	_	—	_	50	1	_	_		_
ROGY	S	_	_	_	_	_	_	_	_	_	_	33	1	100	1	_	_	_	_	_	_	33	1
ROSA5	S	_	_	_	_	_	_		_	_	_	33	5	_	_	_	_		_		_		
ROWO	5	_	_	_	_	_	_	33	1	_	_	33	25	_	_	_	_	50	3	50	5	33	19
RUBUS	S	_	—	_	—	_	—	_	—	—	—	33	1	—	—	_	_	—	—	—	—		
RUDI2	S	_	_	_	_	_	_	_	_	_	_		_	_	_	400	1	_	_	_	—	11	20
RUID	S	_	_	_	_	_	_	_	_	_	_	33	1	_	_	100	1			_	—		
RULE	S S	100	3	—	_	40	_	33		—	—	33	25	_	—	_	_	50	3	100	12	11	5 30
RUPA		100	3	—	_	13	I	33	60	—	—	67	35	_	—	_	_	100	12	100	IZ	44	
SABO2 SACE3	S S	_	_	—	_	13	10	_	—	—	—	—	_	_	—	_	—	—	—	—	—	11	1
		_	_	_	_	15	10	_	_	_	_	_	_	_	_	_	_		1	_	_		15
SAEX	S	_	_	—	—	—	—	_	—	—	_	—	—	_	—	_	—	50	I	—	—	11	
SARI2 SASC	S S	 50	3	_	_	13	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
SASC SASI2	S	50	3	 50	3	13	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SOAU	S	_	_	50	3	25	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SOSC2	S	_	_	_	_	13	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SPBE2	S	—	_	_	—	13	5	—	_	_	—	33	2	100	1	100	4	_	—	_	_	11	1
SYAL	S	—	—	_	_		5	33	20	_	—	55 67	18	100	1	100	55	 50	3	 50	3	44	21
VAME	S	50	3			 50	12	55	20	_	_	07	10	100	1	100	55	50	5	50	5	44	21
VASC	S	50	5			13	5																
VAUL	S	50	15	_		15	5																
ACCO4	F	100	3	50	1	38	12	_	_	50	1	_	_	_	_	_	_	_	_	_	_	11	1
ACMI2	F		_		_		12	33	1		_	33	1	100	3	_	_	50	1	_	_		_
ACRU2	F	_	_	_	_	13	20	33	2	_	_	67	1	100	_	_	_		<u> </u>	_	_	_	_
ADBI	F	_	_	_	_		20		_	_	_		<u> </u>	_	_	_	_		_	50	3	22	3
AGUR	F	_	_	_	_	13	1	_	_	_	_	_	_	_	_	_	_		_		_		_
ANAR3	F	_	_	100	7	63	3	33	3	50	20	67	3	100	1	_	_	50	3	50	1	22	2
ANMA	F	_	_	50	1		_		_	_		_	_		_	_	_		_	_	_		_
ANPI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	_
ANSC8	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_		<u> </u>	_	_	_	_	33	3
AQFL	F	_	_	_	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	_
AQFO	F	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	_	_	_
ARCO9	F	_	_	_	_	25	4	33	1	_	_	_	_		_	100	3	_	_	_	_	22	1
ARLU	F	_	_	50	1	13	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
ARMA18	F	_	_	_	_	38	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ARMI2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	22	2
ARNIC										50	15												-

Appendix B-4—Constancy and average cover of all species present in the following types: (continued)

Appendix B-4—Constanc	y and average cover o	of all species	present in the follow

Туре		ALS	I3/AT	ALS	613/CI	ALS	3/FO	ALIN	12/AT	ALIN	2/GL	ALIN	2-CO	ALIN	l2/EQ	ALIN	12-SY	ALIN	2/CA	COS	T4/AT	COS	ST4
Ν			2		2		В		3	2	2		3		1		1		2		2	9	•
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov
ASCA2	F	_	_	_	_	_	_	33	8	_	_	_	_	_	_	_	_	50	1	50	3	_	_
ASEA	F	—	_	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	11	1
ASFO	F	50	3	50	1	13	1	_	—	—	—	—	_	—	—	—	—	_	—	—	_	—	—
ASMO3	F	—	—	—	—	—	—	33	2	—	—	—	—			—	—	—	—	—	—	—	—
ASOC	F	—	—	—	—	—	—	—	—	—	—	—	—	100	10	—	—	—	—	—	—	—	—
ASTER	F	—	—	—	—	—	—	—	—	—	—	33	1		_	—	—	50	5	—	—	—	—
BRHO	F	—	—	—	—	—	—	—	—	—	—	—	—	100	1	—	—	—	—	—	—	—	—
CACO6	F	50	10	50	1	—	—	33	1	—	—	—	—	—	—	—	—	—	—	50	5	—	—
CALOC	F	—	—	—	—	—	—	—	—	—	—	—	—	100	1	—	—	—	—	—	—	_	—
CARDA	F	—	—	—	—	_	—	—	—	—	—	—	—	_	—	—	—	50	1	—	—	—	_
CEAR4	F	—	—	—	—	_	—	—	—	—	—	—	—	100	1	—	—	—	—	—	—	11	3
CHLE80	F	—	—	—	—	—	—	—	—	—	—	—	—	100	15	—	—	—	—	—	—	—	—
CIAL	F	—	—	50	5	38	27	67	10	50	3	67	6	—	—	100	5	50	3	100	10	33	2
CIAR4	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1
CIDO	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1
CIRSI	F	—	—	_	_		_	—	_	—	_	—	_	—	_	_	—	_	_	_	_	11	1
CLUN2	F	—	—	—	—	13	5	—	—	—	—	—	—	—	—	—	—	—	_	50	3	—	_
COLI2	F	—	—	—	—		_	—	—	—	—	—	—	—	—	—	—	50	1	—	—	—	—
COMA4	F	—	_	_	—	13	3	—	_	—	—	—	_	—	—	_	—	_	_	—	_	_	_
DICU	F	—	_	_	_	_	—	_	_	—	—	_	—	—	—	_	—	50	1	_	_	_	_
DIHO3	F	—	_	_	_	_	—	33	2	_	—	_		—	—	_	—	50	1	_	—	_	_
DISPO	F	—	—	—	—	_	—	—	—	—	—	33	1	—	—	—	—			—	—		_
DISY	F	—	_	_	—	_	—	_	_	_	—	33	1	—	—	_	—	50	1	_	—	11	5
DITR2	F	—	_	_	—	_	—	33	3		_	—	—	—	—	—	—	—	—	—	—	—	—
DOJE	F		_		_		_	—	—	50	1	—	—	—	_	_	—	_	_	—	—	_	_
EPAL	F	50	1	50	3	13	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
EPAN2	F	_	—		_	25	3	—	—	—	_	—	—	—	_	—	—	—	—	—	—	_	_
EPGL	F	_	_	50	1	_	_				_	_	_	_	_	_	_	_	_		_	_	_
EPGL4	F	_		50	1	_	_	33	15	100	3	_	_		_	_	_	_	_	50	1	_	_
EPILO	F	_	_	_	—	-	_	_	_	_	_	_	—	100	3	_	_	_	_	_	_	_	_
ERPE3	F	_	—	_	_	13	1	_	_	_	_	_	_			_	_	_	_	_	_	_	_
ERPH	F	_	—	_	—	_	_	_	_	_	_		_	100	10		_		_	_	_	_	_
FRVE	F	_	—	_	_	_	_		_	—	_	33	1	_	_	100	1	50	1	—	_	—	_
FRVI	F		_	_	_	_	_	33	1				_		_	_	_	_	_				
GAAP2	F	50	3	_	_	_	_	33	10	50	10	33	5	100	5	_	_	_	_	50	10	55	7
GAMU2 GATR2	F	_	_	_	—	_	_	67		_	_	33	1	100	3	100			5		1		-
	F	50	 10	100		100		67	3		10		I	_	_	100	6	50	э	50	I	22	1
GATR3	F			100	3	100	3	100		50	10	67		100	1	100	-	100	1		20	_	_
	F	50	3	50	1	38	2	100	6	50	1	67	2	100	I	100	1	100	1	50	20	_	_
HABEN	F	_	_	_	_	40	_	33	I	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HACKE		_	_		-	13	1		10	_	_	_	—	_	_	_	_	_	—		-	_	_
HADI7	1	_	_	50	1	_	—	33	10	_	_	_	—	_	_	_	_	_	—	50	1	44	1
HAMI	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	

Туре		ALS	I3/AT	ALS	313/CI	ALS	13/FO	ALIN	I2/AT	ALIN	2/GL	ALIN	2-CO	ALIN	l2/EQ	ALIN	2-SY	ALIN	2/CA	COST	T4/AT	COS	ST4
N			2		2		8		3	2	2	:	3		1		1	2		2	2	g)
Species	LF	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	CO/
HASA	F	_	—	100	1	—	—	—	_	—	—	—	—	_	—	—	—	_	_	_	—	_	_
HELA4	F	50	1	50	30	75	21	100	9	100	14	67	2	—	—	—	—	100	2	—	—	33	3
IEMI7	F	_	_	_	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	—
HEUCH	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	2
HAL2	F	_	_	_	_	25	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HIGR	F	_	_	_	_	13	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HYDRO4	F	_	_	_	_	_	_	_	_	_	_		_	_	_	100	1	_	_	_	_	_	_
HYFE	F	_	_	_	_	25	8	_	_	_	_	33	1	_	_		_	50	3	50	15	22	40
HYPE	F	_		_	_	20	0				_		1		_		_	50	5	50	10	22	1
HYPER		_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	_	_	_	22	I
	г -	_	_	_	—	_	_		•	_	_	_	_	_	_	—	_	_	_	_	_	_	_
ILRI	F	—	—	—	—	—	—	33	10	—	—	—	—	—	—	—	—	—	—	—	—	—	—
LABI	F	_	—	_	—	—	_	33	3	_	_	_	_	—	_	—	_	—	_	—	_		_
LABIAF	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1
LASE	F	—	—	_	—	—	—	33	1	—	—	—	—	—	—	—	—	—	—	—	—	—	_
LATHY	F	_	_	_	_	_	—	_	_	_	_	_	_	—	—	_	—	50	3	_	_	_	_
LEGUMF	F	_	_	_	_	_	_	_	_	_	_	_	_	100	5	_	_	_	_	_	_	_	_
LEMI3	F	_	_	_	_	_	_	33	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LICA2	Ē	_	_	_	_	25	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LIGR	F		_		_	20	_'	_	_	_	_	33	4	_	_	_	_	_	_	_	_	11	1
LIPA5	5				_	_		_	_	_			-	100	5			_	_		_		1
		_	_	_	_	_	_	_	_	_	_	_	_	100	5	_	_	_	_	_	_	44	_
LISTE	F	_	—	_	_	_	_	—	—	_	_	_	—	400	_	_	_	_	_	_	_	11	1
LULE3	F _	—	_	_	_	_	—	_	_	_	_	_	_	100	3	_	—	_	_	_	—		_
MEAL2	F	—	_	_	_	_	—	_	_	_	—	—	_	_	—	_	—	_	—	_	—	11	2
MEAR4	F	_	_	_	_	_	_	_	_	_	—	—	_	_	—	_	—	_	—	_	—	11	1
MECI3	F	_	—	—	—	63	12	—	—	_	—	67	8	—	_	—	_	50	3	—	_	—	_
MELU	F	_	_	_	_	_	_	_	_	_	_	_	_	100	3	_	_	_	_	_	_	_	_
MEPA	F	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
MEPI	F	_	_	_	_	_	_	33	3	_	_	_	_	_	_	_	_	_	_	_	_	11	1
MIGU	F	_		50	1	_	_	67	1	50	1	_	_	100	15	_	_	_	_	50	10	11	1
MILE2	F	50	3	100	3	_	_		_	50	1	_	_			_	_	_	_				_
MIMO3	Ē	50	5	50	3	_	_	33	3	100	5												
MIPE	' -	_	_	100		25	2	33	3		1	_	_	_	_	_	_	50	1	50	1	_	_
	г г	_	_	100	2	25	Z	33	3	50	1	_	_	_	_	_	_	50	I	50	I	_	_
MIPR	F			_	—	_	_			50	2	_	_	_	_		_		_	_	_		_
MIST3	F	50	10				_	33	25	50	1	_	_	_	_	100	1	50	1	_		11	1
MOCO4	F	100	1	100	18	38	9	100	19	—	—	67	8	—	—	100	11	100	3	50	20	33	1
MOPA2	F	—	_	—	_	—	—	—	—	—	—	—	_	—	—	_	—	50	3	—	—	—	_
MOPE3	F	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	_	33	5
OSCH	F	100	4	50	3	100	2	33	2	_	_	67	2	100	3	100	1	100	2	_	_	33	3
OSOC	F	_	_	_	_	13	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PAFI3	F	_	_	50	1	13	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
POPU3	F	_		50	-	25	1		_		_								_		_	_	
		—	_	—	_		4	_	—	_	—	—	—	—	—	_	—	_	—	_	—	—	_
POTEN	F	_	_	_	_	13	T	_	_	_	_	_	_	_	_	—	_	_	_	—	_		_
PRVU	F		—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1

Appendix B-4—Constancy and average cover of all species present in the following types: (continued)

GENERAL TECHNICAL REPORT PNW-GTR-682

Appendix B-4—Constancy and average cover of all species present in the following types: (continued)

Туре		ALS	I3/AT	ALS	13/CI	ALS	I3/FO	ALIN	12/AT	ALIN	2/GL	ALIN	2-CO	ALIN	I2/EQ	ALIN	2-SY	ALIN	2/CA	COST	F4/AT	COS	ST4
N			2		2		8	;	3	2	2		3		1		1	2	2	2	2	9)
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	CO
PYAS	F	_	_	_	_	13	20	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PYMI	F	—	—	_	—	13	1	—	—	—	—	—	—	—	_	_	—	—	—	—	—	—	—
PYROL	F	—	—	_	_	13	3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_
PYSE	F	—	_	—	—	13	3	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—
RAOC	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	11	1
RAUN	F	—	—	_	_	—	—	67	5	—	—	—	—	100	10	100	1	50	1	50	5		_
RONA2	F	—	—	50	1	—	—	33	1	—	—	—	—	—	—	—	—	—	—	50	1	11	20
RUCR	F	—	—	—	—	—	—	33	1	—	—	—	—	100	3	—	—	—	—	—	—	—	—
RUOC2	F	—	_	50	2	13	5	67	3	_	—	_	_	_	_	_	_	50	5	_	—	11	1
SAAR13	F	100	16	50	1	25	2	—	_	50	15	—	_	_	_	—	_	_	_	50	15	_	—
SCLA	F	—	_	—	_	13	1	—	—	—	_	—	_	—	_	—	_	_	_	—	—	—	—
SEIN2	F	—	—	—	—	13	1	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	_
SESE2	F	—	_	—	_	—	_	—	—	—	_	_	_	—	_	_	—	_	_	—	_	11	1
SEST2	F	—	—	—	—	—	—	—	—	—	—	—	—	100	3	—	—	—	—	—	—	—	_
SETR	F	100	8	100	6	38	3	67	1	100	9	—	—	100	3	—	—	50	1	_	—	22	1
SINO	F	_	_	—	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	_
SIOR	F	50	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SMRA	F	_	_	_	_	_	_	33	2	_	_	33	15	_	_	_	_	_	_	_	_	33	1
SMST	F	_	_	_	_	13	1	67	10	50	3	33	3	100	5	100	1	_	_	100	4	11	3
SOCA6	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
SODU	F	—	—	_	_	_	_	—	—	—	—	_	—	—	—	_	—	—	_	—	_	11	5
STAM2	F	100	5	50	1	50	6	67	4	—	—	_	—	—	—	_	—	—	_	50	30	11	5
STCR2	F	—	—	50	3	—	_	—	—	—	—	_	—	—	—	_	—	—	_	—	—	—	_
STLO	F	—	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	_	_	_	—	_
TAOF	F	—	_	_	_	13	1	—	_	_	—	33	1	100	10	_	—	50	1	—	—	11	3
THOC	F	—	_	_	_	25	4	33	3	_	—	_	—	_	—	_	—	_	—	—	—	22	1
THVE	F	_	_	_	_	38	8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TITR	F	50	5	_	_	13	1	67	6	—	_	_	_	—	_	_	_	_	_	50	5	_	_
TOFL	F	_	_	_	_	_	_	_	—	—	_	33	1	—	_	_	_	_	_	—	_	11	1
TRCA	F	_	_	—	_	_	_	_	—	_	_	—	_	_	_	—	_	50	3	50	15	—	
TROV2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
TRPE3	F	—	_	—	_	_	_	_	—	_	_	—	_	_	_	_	_	_	_	_	_	11	1
TRRE3	F	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	50	1	_	_	_	
URDI	F	_	_	_	_	38	3	67	3	50	20	_	_	_	_	100	2	100	2	50	15	11	3
VASI	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	
VEAM2	F	_	_	_	_	_	_	33	1	_	_	_	_	100	15	_	_	_	_	50	1	_	_
VERAT	F	_	—	_	_	13	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VERON	F	_	_	_	_	_	_	_	_	_	_	_	_	100	3	_	_	_	_	_	_	_	_
VESE	F	50	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_	_	_
VETH	F	_	_		_	_	_	_	_	_	_		_	_	_		_	_	_	_	_	11	1
VEWO2	F	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
VICA4	F	_	_	_		13	5	33	15	_	_	33	5	_	_	_	_	50	3	50	5	33	1
VIGL				50	1	25	4	33	2	_	_		_	100	20	100	3		2		0	22	8

Туре		ALS	I3/AT	ALS	613/CI	ALS	13/FO	ALIN	I2/AT	ALIN	2/GL	ALIN	2-CO	ALIN	12/EQ	ALIN	12-SY	ALIN	2/CA	COS	F4/AT	CO	ST4
N			2		2		8		3	2	2	:	3		1		1	2	2		2	ç	9
Species	LF	CON	cov	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov	CON	C0\
VIOLA	F	100	2	50	5	63	15	_	_	_	_	_	_	_	_	_	_	_	_	50	5	_	_
VIOR	F	_	_	_	_	13	5	_	_	—	_	_	—	_	_	_	_	_	_	—	_	_	—
AGRE2	G	—	—	_	—	_	—	—	—	_	—	33	2	—	—	_	—	—	—	—	—	—	—
AGROS2	G	—	_		_		_	—	_	_	—	33	1		—	—	_	_	—	_	_		_
AGST2	G	_	_	_	_	—	_	—	_	—	—	_	_	—	—	—	_		—	_	_	11	70
AGTH2	G	_	_	50	1	—	_	—	—	—	—	—	_	_	_	—	—		—	_	_	_	—
AREL3	G	_	—				_	—	—	—	—	_	_	100	3	—	—	—	—	_	—	—	—
BRCA5	G	_	—	50	1	13	4	—	—	—	—	_	_	—	—			—	—	_	—	_	_
BROMU	G	_	—	—	—	—	—	—	—	—	—	_	—	—	—	100	1	—	—	_	—	22	1
BRRI8	G	—	—	—	—		_	—	—	—	—	_	—	—	—	—	_	—	—	_	—	11	1
BRSU2	G	—	—	—	—	13	3	_	_	_	—	—	—	—	—	—	—	—	_	—	_		
BRTE	G		_	—	—		_	—	—	_	—	—	—	—	—	—	—		_	—	_	11	10
BRVU	G	50	1		_	50	4		_	—	_	_	—	_	—	_	—	50	1	—	—	11	1
CAAQ3	G	_	_	50	5	—	—	33	3	—	_	_	—	_	_	_		_	—	—	—	_	_
CACA4	G			50	3		_	_	_	400	_	_	—	_	_	400	_	_	—	_	_		_
CILA2	G	50	5	100	15	25	1	_	_	100	9	—	_		_	100	8	_	_	_	_	11	2
DAGL	G	_	_	_	_	_	_	_	_	_	_	—	_	100	5	_	—	_	_	_	_		_
DEEL	G	_	_		_		_		_	_	_		_	_	_	_	—		_	_	_	11	1
ELGL	G	_	_	50	4	63	2	33	2	_	_	67	3	400	45	_	_	50	5	_	_	33	ľ
FEAR3	G	_	_	_	_	_	_	_	_	_	_	_	_	100	15	_	_	_	_	_	_	_	_
FEOC	G	_	_	_	_	_	_			_	_	_	_	100		_	_	_	_		20	_	_
FESU	G	100	_	100		—	_	67	20	100	10		_	100	_	—	_	—	—	50			_
GLEL	G	100	6	100	3	_	_	67	16	100	19	33	5	100	5	_	_		_	50	10	22	1
MESU	G G	_	_	_	_	_	_	33	3	_	_	_	_	_	_	_	_	50	1	_	_		40
PHAR3		_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	_	_	_	_	_	11	40
PHPR3	G	_	—	_	—	_	_	—	—	—	—		5	—	—	_	—	—	—	_	—	11	I
POA POPA2	G G	_	_	_	_	_	_	33	20	_	_	33	Э	100	3	_	_	_	_	_	_	_	_
POPR	G	_	_	_	_	_	_		20	_	_	_	_	100	10	100	1	_	_	_	_	11	1
PUPA3	G	_	_	_	_	_	_	_	_	_	_	_	_	100	3	100	I	_	_	_	_	11	I
TRW03	G	 50	1		_		_	_				_	_	100	5	_	_		_		_	_	
CAAM10	GL	50	I	_	_	_	—	33	5	50	1	—	—	_	—	_	—	_	—	50	5	_	_
CAANITO	GL	_	_	 50	3	_	—		5	50	1	—	—	_	—	_	—	_	—	50	5	_	_
CAAR2	GL	_	_	50		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
CADE9	GL		_	50	3	13	1	100	30	50	1	67	12	_		100	75	100	8	100	14	33	2
CAGE2	GL		_		_	13	1	100		- 50	_		12			100	15	100	_	100		11	2
CAHO5	GL	_	_	50	1	10	_	_	_		_	_	_	_	_	_	_	_	_	_	_		
CAJO	GL	_	_		<u> </u>	_	_	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_
CALA13	GL	50	15	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
CALU7	GL		15	50	1	_	_	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_
CAMI7	GL	_	_	100	1	_	_	_	_		_	_	_	_	_	100	1	_	_	_	_	_	
CANU5	GL	_	_		_	_	_	_	_	_	_	_	_	_	_	100	_	_	_	_	_	11	3
CAPR7	GL					_	_	_	_	_	_		_					50	1			11	5

Appendix B-4—Constancy and average cover of all species present in the following types: (continued)

Appendix B-4—Constanc	y and average o	cover of all sp	pecies pre	esent in the	following t	vpes: (
						J \

Туре		ALS	13/AT	ALS	13/CI	ALS	13/FO	ALIN	2/AT	ALIN	2/GL	ALIN	2-CO	ALIN	l2/EQ	ALIN	2-SY	ALIN	2/CA	COS	T4/AT	CO	ST4
N			2		2		8		3	2	2		3		1			2	2		2	ę	9
Species	LF	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	cov	CON	cov	CON	COV	CON	COV
CAREX	GL	50	5	_	_	13	3	_	_	_	_	_	_	100	3	_	_	_	_	_	_	11	1
CARO5	GL	_	_	_	_	13	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CARU	GL	_	_	_	_	13	10	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
CASH	GL	_	_	_	_	_	_	_	_	_	_	33	8	_	_	_	_	_	_	_	_	_	_
CASU6	GL	_	_	_	_	_	_	33	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CAUT	GL	_	_	50	5	_	_	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_
CAVE6	GL	_	_	_	_	_	_		_	_	_	33	1	_	_	_	_	_	_		_	_	_
ELPA3	GL	_	_	_	_	_	_		_	_	_	_	_	100	10	_	_	_	_		_	_	_
JUBA	GL	_	_	_	_	_	_		_	_	_	_	_	100	10	_	_	_	_		_	_	_
JUEN	GL	_	_	50	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
JUNCU	GL	_	_	_	_	13	1	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	_
LUCA2	GL	_	_	_	_	_	_	_	_	_	_	_	_	100	3	_	_	_	_	_	_	_	_
LUPA4	GL	_	_	_	_	25	1	_	_	_	_	_	_	_	_	_	_	50	3	50	3	_	_
SCMI2	GL	_	_	_	_	_	_	_	_	50	5	33	1	100	5	100	1	_	_	_	_	_	_
ADPE	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	10	_	_
ATFI	FH	100	8	50	1	13	4	100	17	_	_	33	1	_	_	_	_	100	3	100	40	22	12
CYFR2	FH	—	—	—	_	13	1	33	3	—	—	33	1	_	—	100	1	50	1	50	10	33	1
DRFI2	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	50	3	11	1
EQAR	FH	_	_	50	10	_	_	100	5	100	6	100	6	100	25	100	1	_	_	_	_	22	30
EQHY	FH	_	_	_	_	_	_	33	3	_	_	33	1	_	_	_	_	50	3	_	_	66	3
EQLA	FH	—	_	—	_	—	—	—	—	_	_	_	_	100	1	_	—	—	—	—	—	_	—
EQPA	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	10	_	_	_	_
GYDR	FH	50	5	_	_	_	_	33	5	_	_	_	_	_	_	_	_	_	_	_	_	_	—
POMU	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	3	11	3
PTAQ	FH	_	_	_	_	_	_	33	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_

GENERAL TECHNICAL REPORT PNW-GTR-682

Appendix B-5—Constancy and average cover of all species present in the following types:

- Water Birch/Wet Sedge Plant Community Type (BEOC/WS)
 Water Birch/Reed Canarygrass Plant Community (BEOC/PH)
 Water Birch/Mesic Forb Plant Community Type (BEOC/FO)
 Black Hawthorn/Mesic Forb Plant Community Type (CRDO/FO)
 Common Snowberry Plant Community Type (SYAL)

- Rocky Mountain Maple Plant Community Type (ACGL)
 Pacific Ninebark Plant Community (PHCA11)
 Mallow Ninebark-Common Snowberry Plant Community Type (PHMA5)
 Netleaf Hackberry/Brome Plant Community Type (CERE/BR)
 Lewis' Mock Orange/Mesic Forb Plant Community Type (PHLE/FO)

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRE	00/F0	SY	AL	AC	GL	PHC	CA11	PH	MA5	CER	E/BR	PHL	E/FO
Ν		2	2	1		1	3		17	(3		8		1		2	1	4		9
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	cov	CON	cov	CON	COV	CON	COV
ALRH2	PO	_	—	—	_	_	_	6	2	_	_	_	—	_	_	_	—	7	40	11	2
ALRU2	PO	—	—	100	10	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
PSME	PO	—	—	—	—	—	—	6	5	17	10	—	—	—	—	—	—	—	—	—	—
ALRH2	SO	_	—	_	_	8	15	_	_	_	_	13	20	_	_	_	_	_	_	_	_
JUNI	SO	—	—	—	—	8	3	—	—	—	—	_	—	—	—	—	—	—	—	—	—
PIPO	SO	_	—	_	_	_	_	6	2	_	_	_	_	_	_	_	_	_	_	_	_
POTR15	SO	_	—	_	_	8	6	_	_	_	_	_	—	—	_	_	—	_	_	—	_
PRAM	SO	_	—	_	—	8	3	_	_	_	_	—	_	_	_	_	—	_	—	_	_
PSME	SO	_	—	—	—	—	_	_	—	17	1	—	_	_	—	_	—	—	—	_	_
TABR2	SO	—	—	—	—	—	—	6	2	—	—	13	1	—	—	—	—	—	—	—	—
ABGR	U	—	—	—	—	—	—	6	1	17	1	13	5	100	3	—	—	—	—	—	—
ALRH2	U	_	_	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	22	2
LAOC	U	_	_	_	_	8	2	—	_	_	_	_	_	_	_	_	_	_	_	_	—
PIEN	U	_	_	_	_	8	1	—	_	_	_	_	_	_	_	_	_	_	_	_	—
POTR15	U	_	_	_	_	8	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PSME	U	_	_	_		8	3	12	3	_	_	_	_	_	_	_	_	_	_	_	_
ROPS	U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
ACGL	S	50	3	_		46	14	23	6	33	9	100	74	100	20	50	5	14	21	22	3
ALIN2	S	100	9	_		7	13	_	_	16	10	_	_	_	_	_	_	_	_	_	_
AMAL2	S	50	5	_		38	6	35	7	33	8	25	6	100	10	100	9	28	6	33	6
BEOC2	S	100	38	100	80	100	72	_	_	16	10	_	_	_	_	_	_	7	20	_	_
BERE	S	_	_	_	_	7	3	17	4	_	_	_	_	_	_	_	_	_	_	_	_
CERE2	S	_	_	_	_	46	11	17	9	33	8	12	3	_	_	_	_	100	72	66	16
CLCO2	S	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	14	4	_	_
CLLI2	S	_	_	_	_	23	2	_	_	_	_	_	_	_	_	_	_	7	1	_	_
COST4	S	_	_	100	3	38	5	5	4	16	20	25	6	100	10	_	_	7	50	11	30
CRDO2	S	50	10	_	_	46	13	100	86	50	9	25	20	_	_	50	10	21	17	33	11
HODI	S	50	5	100	1	23	37	35	14	50	22	37	18	_	_	50	10	28	22	11	15
LIBO3	S	_	_	_	_	_	_	_	_	_	_	12	3	_	_	_	_	_	_	_	
PAMY	S	_	_	_	_	_	_	_	_	_	_	12	5	100	3	_	—	_	_	_	_
PHCA11	S	_	_	_	_	_	_	_	_	_	_	_	_	100	95	_	_	_	_	_	_
PHLE4	S	_	_	100	10	92	16	70	11	50	28	87	23	100	15	_	_	78	23	100	55
PHMA5	S	50	3	_	_	7	2	23	6	33	14	12	6	_	_	100	42	_	_	11	25
POFR4	S	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PREM	Š	_	_	_	_	7	2	5	10	_	_	_	_	_	_	_	_	_	_	_	_
PRVI	S	_	_	_	_	53	9	23	10	_	_	12	1	_	_	_	_	28	22	33	3
RHGL	S	_	_	_	_	7	1		_	16	1		_	_	_	_	_	7	1	11	2
RHPU	Š	_	_	_	_	38	11	5	3	16	2	25	5	100	20	_	_	7	20	22	1

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRE	O/FO	SY	AL	AC	GL	PHC	CA11	PH	MA5	CER	E/BR	PHL	E/FO
Ν			2	1	1	1	3		17	(6	1	8		1		2	1	4		9
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV
RHRA6	S	_	_	_	_	76	13	35	8	16	10	37	4	_	_	_	_	64	13	44	7
RIBES	S	50	3	_	_	7	1	29	4	_	_	_	_	_	_	_	_	7	1	11	3
RICE	S	_	_	_	_	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_
RIHU	S	_	_	100	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RIIN2	S	_	_	_	_	_	_	5	3	_	_	_	_	_	_	_	_	_	_	11	10
RIIR	S	_	_	_	_	7	1	5	3	16	1	_	_	_	_	_	_	_	_	11	1
RILA	S	_	_	_	_	15	2	5	3	16	15	12	20	_	_	_	_	_	_	11	5
RIMO2	S	_	_	_	_	7	3	_	_	_	_	12	3	_	_	_	_	7	5	_	_
RINI2	S	_	_	_	_	15	1	_	_	_	_	_	_	_	_	_	_	21	6	_	_
ROGY	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	35
RONU	S	_	_	_	_	_	_	11	10	16	5	_	_	_	_	_	_	14	2	11	4
ROSA5	Š	_	_	_	_	_	_	11	6	_	_	12	1	_	_	_	_	7	1		
ROWO	Š	50	15	_	_	23	15	17	2	50	27	12	3	_	_	_	_	7	1	11	1
RUDI2	Š	_		_	_		1	5	5	_			_	_	_	_	_	7	50	_	
RUID	Š	_	_	_	_	7	3	5	10	16	3	_	_	_	_	50	5	_	_	11	3
RULA	Š	50	10	_	_	_	_	_		_	_	12	10	_	_	_	_	_	_		_
RULE	Š	50	3	_	_	7	1	_	_	_	_		_	_	_	_	_	7	5	_	_
RUPA	S	_	_	_	_	23	21	11	10	16	5	37	15	100	3	50	25	14	6	_	_
SACE3	Š	_	_	_	_	38	5	35	8	33	11	25	10		_	_		42	10	33	15
SALE	S	_	_	_	_		_	5	3					_	_	_	_				
SARA2	S	_	_	_	_	_	_	5	5	_	_	_	_	_	_	_	_	_	_	_	_
SARI2	Š	_	_	_	_	7	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SHCA	Š	_	_	_	_	7	5	_	_	_	_	_	_	_	_	_	_	_	_	_	
SPBE2	S	_	_	_	_	15	2	5	5	_	_	25	7	_	_	100	20	_	_	_	_
SYAL	Š	50	5	_	_	46	9	94	20	100	64	50	10	100	40	50	15	28	36	11	3
ACCO4	F		_	_	_		_		20		_	12	1	100	-		_	20			_
ACMI2	F	_	_		_	38	8	11	2	16	3	12	1			50	3	7	1	22	1
ACRU2	F		_		_	- 50	_	5	1	16	3	12	3		_	- 50			_		_
ADBI	F		_	_	_	_	_	5	1	16	5	12	3	_	_	_		_	_	11	5
AGUR	F					_		5	3	16	5	12	1			50	1	14	2	33	4
ALAC4	F		_	_	_	_		5	1	10	_	12	_			50	_'	7	3		_
AMRE2	F					_			_									_		22	1
ANAR3	F	50	5					5	1												
ANPI	F	50	1				_	5	1	_	_		_	_		_		_		_	_
ANSC8	F	50				69	18	64	44	33	65	50	30		_			92	47	77	27
APAN2			_		_	03	10					12	1		_	 50	3	52	41	11	21
AQFO		_	_				_	_	_	16	3	12			_	50	5	_	_		_
AQFO ARCO9	F	_		_		_	_	17	16	16	3 1	25	16	_	_	100	28	_		_	_
ARGL	г С	_	_	_	_	_	—	17	10		5	20	10	_	_	100	20	_	_	_	_
ARGL	г С	_	_	_	_	7	1	_	_	16	5	12	2	_	_	_	_	14	2	22	2
ARLU ARMA18		_	_	_	_	1	I	_	—		_	12		_	_		3	14	2	22	Z
		_	_	_	_				-	16		10		_	_	50	3				_
ARMI2		_	_	_	_	23	2	29	I	16	5	12	5	_	_	_	_	28	4	22	6
ARSE2	F			_	_	_	_	_	_	_		40	10	400	10	_	_	7	I	11	25
ASCA2	F	50	3	_	—	_	_	—		_	_	12	10	100	10	_	_	—	—	_	_

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRD	0/F0	SY	AL	AC	GL	PHC	CA11	PH	MA5	CER	E/BR	PHL	LE/FO
N			2	1		1	3		17	6	6	8	3		1		2	1	4		9
Species	LF	CON	COV	CON	cov	CON	COV	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov
ASCO3	F	_	_	_	_	7	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ASFO	F	50	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ASTER	F	_	_	_	_	7	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ASTERF	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_
BASA3	F	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	5
BRDO	F	_	—	—	_	—	_	5	1	—	_	—	—	—	—	—	_	7	1	_	—
BRGR	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
BRHY2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	11	1
CABU2	F	_	_	_	_	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_
CAOL	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CARDA	F	_	_	_	_	7	6	_	_	_	_	_	_	_	_	_	_	_	_	11	1
CEAR4	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	3	14	1	33	10
CERAS	F	_	_	100	1	_	_	5	1	_	_	_	_	_	_	_	_			11	1
CEVI3	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	5
CHLE80	F	_	_	100	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
CHTE2	F	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	1
CIAL	F	_	_	100	5	30	12	64	9	66	12	50	2	_	_	50	5	7	3	11	10
CIAR4	F	50	1		_	7	3	_	_	50	2		_	_	_		_	7	1	_	
CIRSI	F		<u>'</u>	_	_	15	1		_	16	1	_	_	_	_	_	_	<u>'</u>		22	1
CIUN	F	_	_	_	_	7	1	_	_		_	_	_	_	_	_	_	_	_		_
CIVU	F				_	7	3						_								
CLUN2	F			_	_		_		_	_	_	12	10		_		_		_	_	
COPA3	, E	_	_	_	_	_	_	_	_	16	1	12		_	_	_	_	_	_	_	_
CYOF		_	_	_	—	30	2	11	1	16	1	12	1	_	—	_	_	28	2	33	1
DICU		_	—	_	—	50	2	5	3	16	1	12	_	100	15	_	—	20	2		1
DIHO3		_	_	_	_	_	_	5	3	10	I	12	35	100	10	_	_	_	_		_
DISY	г г	_	_	_	_	23	2	5	1	_	_	12	1	100	10	_	_	_	_	33	2
DIST DITR2		_	_	100	1	23 7	2 1	5 5	1	_	_	12	1	_	—	_	_	_	_	33	Z
EPAN2	r r	_	_	100		7	1	Э	I	16	1	IZ	I	_	—	_	_	_	_	_	_
EPANZ	г г		5	_	_	1	I	_	_	10	I	_	_	_	_	_	_	_	_	_	_
EPGL EPGL4	r r	50 50	э 3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	г г	50	3	_	_	_	_	_	_	16		_	_	_	_	_	_	_	_	_	_
EPILO	F	_	—	—	—	_	—	_	—	10	3	—	—	_	_	_	—	7	1	_	_
ERAS2		_	_	_	_		_	_	_	16	3	_	_	_	_	100		1	Ĩ	_	_
ERGR9		_	_	400	_	7	5		_		3	_	_	_	_	100	6	_	_		_
ERIGE2		_	_	100	3	7	1		-	-	_	_	_	_	_	_	_	_	_	11	1
FRVE		_	_	400	_	7	3	5	10	16	3		40	_	_		40				_
GAAP2		_	_	100	3	69	16	82	21	100	9	75	16	_	_	50	10	85	25	77	6
GALIU	F -	_	—			_	_	5	1	-	_		_	_	_			_	_	_	_
GATR2	F	—	—	100	10		_	17	9	16	3	12	3	—	—	50	5	—	—	_	—
GATR3	F	—	—		_	7	1	_	_	—	—	—	—	—	—	—	—	—	—	—	_
GEAL3	F	_	_	100	1	_	—	5	1	—	—	—	—	—	_	—	—	_		_	—
GEBI2	F			_	—	—	—	11	1		_	—	—	—	—	_	—	7	1	_	_
GEMA4 GEPU2	F	100	12	—	—	—	—	_	—	16	1	—	—	_	—	—	_	7	1	 11	3

Appendix B-5—Constancy and average cover of all species present in the following types: (continued)

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRE	O/FO	SY	AL	AC	GL	PHO	CA11	PH	MA5	CER	E/BR	PHL	E/FO
Ν			2	1	1	1	3		17	6	6		8		1		2	1	4		9
Species	LF	CON	cov	CON	COV	CON	COV	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	COV
GOOB2	F	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_	_	_
HADI7	F	50	15	100	5	_	_	5	5	_	_	_	_	_	_	_	_	_	_	_	_
HAMI	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	7	1	11	1
HEBO	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HELA4	F	_	—	100	10	7	2	5	3	33	6	_	_	_	_	_	_	_	_	11	30
HIERA	F	_	—	_	_	_	_	5	1	16	1	_	_	_	_	50	5	_	_	_	_
HYCA4	F	—	—	_	—	15	1	5	5	—	—	_	—	_	—	50	3	_	_	_	_
HYFE	F	_	—	_	_	7	3	29	9	_	_	25	10	100	40	_	_	14	1	_	_
HYPE	F	_	_	_	_	_	_	11	1	_	_	12	1	_	_	_	_	_	_	33	4
HYPER	F	_	_	100	3	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ILRI	F	_	_	100	3	_	_	_	_	16	1	_	_	_	_	_	_	_	_	_	_
LABI	F	50	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LAPA5	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	5	_	_	_	_
LASE	F	_	_	_	_	15	1	11	1	_	_	12	1	_	_	_	_	14	1	_	_
LATHY	F	_	_	_	_	_	_	5	3	_	_	12	1	_	_	50	3	_	_	_	_
LIGR	F	_	_	_	_	_	_	5	1	_	_			_	_	_	_	_	_	_	_
LILIAF	F	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_	_	_
LODI	F	_	_	_	_	_	_	_		_	_	12	1	_	_	_	_	7	1	_	_
LYAL	F	_	_	_	_	15	3	_	_	_	_		_	_	_	_	_	7	3	11	5
LYCO	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_		_
MAVU	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	11	1
MEAR4	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_		_
MECI3	F	_	_	_	_	_	·	5	3	33	3	12	1	_	_	_	_	_	_		_
MEOF	F	_	_	_	_	7	5	_	_		_	12	_	_	_	_	_	_	_		_
MEPI	F	_	_		_	7	1				_				_		_		_		
MIGR	F		_		_		_									50	3				_
MIGU	F	50	10			23	1	5	3							50	5			11	1
MIMUL	F	50	10			20		5	5	_	_		_							11	5
MIST3	F	_		_	_	_	_	_	_	16	3	_	_	_	_	_	_	_	_	11	J
MOCO4	F	—	—	100	10	_	_	_	_			12	3	_	—	_	_	_	—	_	_
MOPE3	F	—	—	100	10	46	15	82	16	50	9	87	10	_	—	 50	15	50	14	44	12
MOPES MOSI2	F	_	_	100	1	40	1	02	10	16	3	07	10	_	—	50	15	50	14	44	12
MYMI	Г	_	_	_	_	1	I		_			_	_	_	_	_	_	7	1	_	
NEPA		_	—	_	_	_	_	5	 15	16	3	_	_	_	_	_	_	1	I	—	_
	Г	_	_	_	_	38	11	52			8	75		_	_	 50	5	21	3	22	6
OSCH OSMOR	г г	_	_	_	_	38 7	1		11	50	0	75	8	_	_	50	Э	21	ა	22	0
OSIVIUK		_	_	100	5	7			1	_	_	_	_	_	_	_	_	_	_	_	_
OSOC PAPE5		_	_	100	э	/ 7	10 1	5	I	_	_	_	_	_	_	_	_	7	10	_	_
		_	_	_	_	1	1	_	_	_	_	40	1	_	_	_	_	(10	_	_
PENST		_	_	_	_	1	Т	_	—	_	_	12	1	_	_	_	_	_	_		-
PLSC2	F	_	_	_	_	_	_	_	—	_	_	_	_	_	—			_	_	11	1
POAR7	F	_	_	_	_	_	—	_	_	_	_		_	_	_	50	1	_	_	_	_
POGR9	F	—	_	400	_	—	_	_	—	—	_	12	1	_	—		—	—	—	—	_
PRVU	F _	_	—	100	3	_	_	—	—		_	—	_	_	_	—	—	_	_	_	_
RANUN	F	_	—	_	_	7	1	_	_	16	1	_	_		—	_	_	_	_	_	_

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRD	O/FO	SY	AL	AC	GL	PHC	CA11	PH	MA5	CER	E/BR	PHL	E/FO
Ν			2	1		1	3		17		6	8	8		1		2	1	4		9
Species	LF	CON	COV	CON	cov	CON	COV	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	COV
RAUN	F	50	3	100	10	_	_	5	5	16	1	_	_	_	_	_	_	_	_	_	_
RONA2	F	_	_	_	_	7	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RUAC2	F	_	_	_	_	_	_	_	_	16	3	_	_	_	_	_	_	_	_	_	_
RUCR	F	_	—	—	—	—	—	_	—	_	—	—	—	—	—	_	_	—	—	11	10
RUMEX	F	_	—	—	—	7	2	_	—	_	—	—	—	—	—	_	_	—	—	—	_
RUOC2	F	_	—	100	5	7	1	_	—	_	—	—	—	—	—	_	_	—	—	_	_
SAIN4	F	_	—	_	—	_	—	_	—	16	5	_	_	—	—	—	_	—	—	_	_
SAXIF	F	_	_	_	_	_	_	_	_	16	1	_	_	_	_	_	_	_	_	_	—
SESE2	F	_	_	_	_	_	_	_	_	16	5	_	_	_	_	_	_	_	_	_	_
SIAL2	F	_	_	_	_	7	1	_	_	_	_	12	1	_	_	_	_	_	_	11	1
SIME	F	_	_	_	_	_	_	_	_	16	1	_	_	_	_	_	_	_	_	_	_
SINO	F	_	_	_	_	_	_	_	—	_	—	_	_	_	_	_	_	7	1	_	_
SIOR	F	_	—	—	—	7	1	_	—	_	—	—	_	_	_	—	_	_	_	_	_
SMILA	F	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_	_	_
SMRA	F	_	_	_	_	38	1	23	3	16	1	25	4	_	_	50	10	7	1	_	_
SMST	F	_	_	_	_	_	_	5	3	66	11	12	10	100	5	_	_	_	_	_	_
SODU	F	50	5	_	_	30	2	5	3	_	_	_	_	_	_	_	_	_	_	11	1
SOMU	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
STAM2	F	_	_	_	_	_	_	_	_	33	3	_	_	_	_	_	_	_	_	_	_
STCA	F	50	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
STME2	F	_	_	_	_	23	19	17	8	16	5	25	2	_	_	_	_	21	5	22	3
SYMI	F	_	_	_	_		_		_	16	3		_	_	_	_	_		_	_	_
TAOF	F	_	_	100	1	46	1	29	2	33	3	12	1	_	_	_	_	14	6	33	1
THALI2	F	_	_		_		_		_	16	1		_	_	_	_	_		_	_	
THOC	F	_	_	_	_	7	1	17	6		_	12	3	_	_	_	_	_	_	_	_
TOFL	F	_	_	_	_	15	10	29	7	16	3	25	5	_	_	100	12	14	4	11	2
TRCA	F	_	_	_	_				<u> </u>	_	_	12	1	_	_			_			_
TRDU	F	_	_	_	_	_	_	5	1	16	1	12	_	_	_	_	_	7	1	11	1
TRIFO	F	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	11	30
TROV2	F	_	_	_	_	_	_	11	8	16	3	_	_	_	_	50	5	_	_		
TRPE3	F	_	_	_	_	_	_	5	15	16	10	_	_	_	_		_	_	_	_	_
TRPR2	F		_	_	_	_	_	_				_	_	_	_		_	7	1	_	_
TRRE3	F		_	100	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
UMBELF	F			100	·			5	2	_	_			_	_			_		_	
URDI	, E			100	1	38	1	29	3	33	8							21	2	44	4
VALO	, E			100		50		25	5	55	0							21	2	11	1
VASI	F		_		_	7	1	_	_		_		_		_				_		_
VEAM2	F	50	3	_	_	15	1	5	5	_	_	_	_	_	_	_	_	_	_	11	1
VEAN2	F	50			_	7	1	5		_	_	_	_		_		_		_	11	5
VEANZ	F		_		_	1			_		_	_	_	_	_		_		_	11	5
VERON	Г С	_		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	11	5
VERON	г с	_	_	_	_	7	1	5	1	_	—	_	_	_	_	_	_	_	_	22	2
VEIN	г с	_	_	_	_	I	_	5	1	_	_	_	_	_	_	100	8	_	_		2
VICA4	г с	_	_	100	5	 15	18	41	11	_	—	12	5	_	_	100	0	7	 25	 11	1
VICA4	Г		_	100	5	15	10	41	11	_		12	5	_	_	_	_	1	25	11	

Appendix B-5—Constancy and average cover of all species present in the following types: (continued)

Appendix B-5—Constancy and average cover of all species present in the following types: (continued)

Туре		BEO	C/WS	BEO	C/PH	BEO	C/FO	CRE	O/FO	SY	AL	AC	GL	PHC	A11	PH	MA5	CER	E/BR	PHL	LE/FO
Ν			2		1	1	3		17		6		8		1		2	1	4		9
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov
VICIA	F	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VIOLA	F	50	1	_	_	15	14	11	3	_	_	_	_	_	_	_	_	_	_	_	_
AGCA2	G	_	—	_	—	_	_	—	_	_	—	12	2	_	—	—	—	—	_	—	—
AGSC5	G	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
AGSP	G	_	_	_	_	_	_	_	_	_	_	12	5	_	_	_	_	7	1	44	6
BRCA5	G	_	_	_	_	_	_	17	3	_	_	25	3	_	_	_	_	_	_	_	_
BROMU	G	_	_	_	_	_	_	5	10	16	10	_	_	_	_	_	_	_	_	_	_
BROR2	G	_	_	_	_	_	_	_	_	_	_	12	5	_	_	_	_	_	_	_	_
BRRI8	G	_	_	_	_	23	13	11	12	_	_	25	8	_	_	_	_	42	38	33	27
BRSE	G	_	_	_	_	7	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
BRST2	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11	45
BRTE	G	_	_	_	_	30	14	11	12	16	30	12	5	_	_	_	_	35	46	44	35
BRVU	G	_	—	_	_	7	10	17	2	—	—	_	_	_	_	_	_	_	—	11	1
CARU	G	_	_	_	_	_	_	5	25	_	_	_	_	_	_	_	_	_	_	_	_
DAGL	G	_	_	_	_	15	3	11	2	33	3	_	_	_	_	_	_	_	_	_	_
ELCI2	G	_	_	_	_	7	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ELGL	G	50	5	_	_	46	8	58	18	16	5	62	3	_	_	_	_	28	2	33	3
FEID	G	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	11	1
FEOC	G	_	_	_	_	_	_	_	_	16	15	12	1	_	_	_	_	_	_	_	_
FEPR	G	_	_	_	_	_	_	5	2	_	_	_	_	_	_	_	_	_	_	_	_
FESU	G	50	5	_	_	15	5	5	5	_	_	_	_	_	_	_	_	_	_	_	_
GLEL	G	50	20	_	_	7	5	5	5	—	—	_	—	—	—	—	_	—	—	_	_
MESU	G	_	_	_	_	_	_	11	12	16	15	50	5	_	_	_	_	_	_	_	_
PHAR3	G			100	40	_	_	5	5	_	_	_	_	_	_	_	_	_	_	_	_
PHPR3	G			_	_	7	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
POA	G	_	_	_	_	7	1	5	10	_	_	_	_	_	_	_	_	_	_	_	_
POBU	G			_	_	_	_	_	_	_	_	12	3	_	_	_	_	_	_	_	_
POCO	G			_	_	_	_	5	5	_		_	_	_	_	_	_	7	5	_	_
POPR	G	100	1	_	_	38	11	17	5	50	6	25	8	_	_	_	_	7	1	55	7
POSC	G	_	_	_	_	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_
TRCA21	G	_	_	_	_	_	_	11	8	16	1	12	1	_	_	_	_	_	_	_	_
TRCE2	G	_	_	_	_	_	_	5	15	_	_	_	_	_	_	_	_	_	_	_	_
CAAM10	GL	100	75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CABA3	GL	_	_	_	_	7	3	5	5	_	_	12	3	_	_	_	_	_	_	_	_
CACO11	GL	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_	_	_
CADE9	GL	100	18	100	15	30	21	41	10	33	6	37	2	_	_	_	_	_	_	22	1
CAGE2	GL	_	—	100	1	7	20	5	1	16	15	12	6	—	_	—	_	_	_	_	_
CALA13	GL	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_	_	_
CAREX	GL	50	3	_	_	7	1	5	5	_	_	_	_	_	_	_	_	7	1	_	_
CARO5	GL	_	_	_	_	_	_	5	1	16	5	_	_	_	_	50	20	_	_	_	_
JUBA	GL	50	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SCCY	GL	50	3	_	_	_	—	_	—	_	_		_	_	_	_	_	_	—	_	_
SCMI2	GL	50	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ATFI	FH	100	16					5	1												

Туре		BEOO	C/WS	BEO	C/PH	BEO	C/FO	CRD	O/FO	SY	'AL	AC	GL	PHC	CA11	PH	MA5	CER	E/BR	PHL	LE/FO
Ν		2	2		1	1	3		17		6		8		1		2	1	14		9
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov
BOVI	FH	_	_	_	_	7	3	_	_	_	_	_	_	_	_	_	_	_	_	_	
CYFR2	FH	_	_	_	_	7	1	11	2	50	5	37	1	_	_	50	20	_	_	11	3
DRFI2	FH	—	_	100	5	7	5	_		_	_	_	_	_	_	_	_	_	_	_	_
EQAR	FH	50	60	100	3	7	1	5	1	—	—	_	_	—	—	—	—	_	—	_	_
EQHY	FH	—	_	100	3	46	8	23	5	_	_	50	2	_	_	_	_	_	_	22	4
EQLA	FH	—	_	_	_	15	4	_		_	_	_	_	_	_	_	_	_	_	_	_
EQPA	FH	50	5	_	—	_	—	_	—	—	_	—	—	—	—	_	—	_	—	—	_
EQUIS	FH	_	—	_	_	_	—	5	1	_	_	_	_	_	_	_	_	_	_	_	_
POMU	FH	50	1	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PTAQ	FH	_	_	_	_	7	3	17	6	_	_	12	1	_	_	50	15	_	_	_	_
WOOR	FH	_	_	_	_	_	—	_	_	_	_	12	1	_	_	_	_	_	_	22	1

Appendix B-5—Constancy	/ and average cover of a	Il species present in th	e following types: (continued)

Appendix B-6—Constancy and average cover of all species present in the following types:

- Twinberry Honeysuckle/Ladyfern Plant Community (LOIN/AT) ٠
- Thimbleberry Plant Community Type (RUPA) ٠
- Bartonberry Plant Community (RUBA) •
- Himalayan Blackberry Plant Community (RUDI2)
 Alpine Laurel/Black Alpine Sedge Plant Association Plant Association (KAMI/CA)
 Pink Mountainheath Mounds Plant Association (PHEM)
- Labrador Tea/Holm's Rocky Mountain Sedge Plant Community (LEGL/CA)
- Shrubby Cinquefoil–Bog Birch Plant Community Type (POFR-BE)

Туре		LOI	N/AT	RL	IPA	RL	IBA	RU	DI2	KAN	II/CA	PH	EM	LEG	L/CA	POF	R-BE
Ν			1		3		1		1		4		5	1			2
SPECIES	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
PICO	PO	100	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PIEN	PO			_	—	_	_	_	_	_	_	_	—	_	_	50	3
PSME	PO	100	10	_	—	_	—	_	—	_	—	_	—	—	_		_
PIEN	SO	_	_	_	_	_	_	_	_					_	_	50	1
ABLA PICO	U U	_	_	_	_	_	_	_	_	25 50	1 4	20	3	_	_	50	1
PIEN	Ŭ	_	_	_	_	_	_	_	_	25	1	_	_	_	_	100	4
PSME	Ŭ	100	3	_	_	_	_	_	_		_	_	_	_	_	_	
ACGL	S	_	_	66	8	_	_	_	_	_	_	_	_	_	_	_	_
AMAL2	S	_	_	33	3	_	_	_	_	_	_	_	_	_	_	_	
BEGL	S	_	_	—	—	—	—	—	—		_			_	_	100	55
CAME7	S	_	_	_	_	_	_	100		25	5	60	10	_	_	_	_
CERE2 CLCO2	S S	_	_	_	_	_	_	100 100	3 3	_	_	_	_	_	_	_	
COST4	S	_	_	_	_	_	_	100	15	_	_	_	_	_	_	_	_
CRDO2	Š	_	_	33	20	_	_	_	_	_	_	_	_	_	_	_	_
GAHU	S	_	_	_	_	_	—	_	_	50	20	40	3	100	3	_	_
GLNE	S	—	_	_	_	—	_	100	1	_	—	_	_	—	_	_	—
HODI	S			33	1	—	—	—	—	—	—	_	_	—	_	_	—
HODU	S	100	1		—	—	—	_	—	100		100	_	—	_	_	—
KAMI LEGL	S S	_	_		_	_	_	_	_	25	29 7	100	8	100	48	_	_
LOIN5	S	100	15	_	_	_	_	_	_	25	_	_	_	100	40	50	1
PHEM	Š			_	_	_	_	_	_	75	2	100	46	100	22	_	
PHLE4	S	—	—	66	9	—	—	100	5	—	—	_	—	—	_	—	—
PHMA5	S	—	—	33	5	—	—	—	—	—	—	—	—	—	_	_	_
POFR4	S	—	—			—	—	400	_	—	—	—	_	—	—	100	62
RHRA6 RILA	S S	100	10	33	5	_	_	100	5	_	_	_	_	_	_	_	_
RUBA	S	100		_	_	100		_	_	_	_	_	_	_	_	_	_
RUDI2	Š	_	_	_	_		_	100	90	_	_	_	_	_	_	_	_
RUID	S	_	_	33	1	_	_	_	_	_	_	—	_	—	_	_	_
RUPA	S	100	1	100	93	_	—	_	—	—	—	—	—	—	—	_	_
SAAR27	S	—	—	—	—	—	—	—	—	25	3	—	—	—	—	—	—
SABO2	S	_	_			_	_	_	_	50	4	_	—	_	_	_	—
SACE3 SACO2	S S	_	_	33	20	_		_	_	25	5	_	_	_	_	_	_
SALIX	S	_	_	_	_	_	_	_	_	25	5	_	_	_	_	50	3
SOSC2	Š	100	5	_	_	_	_	_	_		_	_	_	_	_	_	_
SYAL	S	_	_	33	15	_	_	_	_	_	_	_	_	_	_	_	—
VACA13	S	—	—	—	—	_	—	—	_	50	12	20	20	100	1	—	—
VASC	S	100	3	—	—	_	—	—	—	50	1	80	10	100	2	—	—
ACCO4	F	100	5	_	—	_	—	_		_	_	_	_	100			
ACMI2 ACRU2	F F	100	1	_	_	_	_	_	_	_	_	_	_	100	1	50	1
ALVA	F	100	1	_	_	_	_	_	_	 50	9	40	22	100	30	_	_
ANAL4	F			_	_		_	_	_		_	60	22		_	_	_
ANMA	F	100	1	_	_	_	_	_	_	25	1	_	_	_	_	_	_
ANSC8	F	—	—	66	32	_	—	—	—	—	—	—	—	—	—	—	—
ANTEN	F	—	—	—	—	_	—	—	—	25	1	20	20		_	—	—
ANUM	F	100		—	_	_	_	—	_	_	_	—	_	100	4	—	_
AQFO	F	100	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Appendix B-6—Constancy and average cover of all species present in the following types: (continued)	
---	--

Туре		LOI	N/AT	RL	JPA	RU	IBA	RU	DI2	KAN	/II/CA		EM	LEG	L/CA		R-BE
N			1		3	-	1		1		4		5		1		2
SPECIES	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON		CON	COV	CON	COV
ARCH3 ARLO6	F F	100	5	_	_	_	_	_	_	_	_	_	_	100	1	_	Ξ
ARMO4	F	100	10	—	—	_	_	_	—	25	3	_	_	_	_	_	—
ASAL2	F	—	—	—	—		_	—	—	25	1	—	—		_	—	—
ASOC ASTER	F	_	_	_	_	_	_	_	_	 25	4	_	_	100	1	100	3
ASTRA	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1
CACH16	F	—	—	—	—	—	—	—	—	50	1	20	1	—	—		_
CAMI12 CAMPA	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50 50	1 1
CASTI2	F	_	_	_	_	_	_	_	_	_	_	20	1	_	_		_
CIAL	F	_	_	100	8	_	—		—	_	_	_	_			—	_
DOAL EPAL	F F	_	_	_	_	_	_	_	_	25	5	60 20	8 3	100	1	_	_
EPAN2	F	100	10	33	1	_	_	_	_	_	_	20	_	_	_	 50	1
EPILO	F	_	—	_	—	—	—	—	—	25	1	40	3	—	—	—	—
ERGR9 ERPE3	F F	—	—	33	5	—	—	—	—	100	1	60	— 15	—	—	 50	5
FRASE	F	_	_	_	_	_	_	_	_	100			15	_	_	50 50	5 1
FRSP	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1
FRVI	F	—	—					—	—	-	—	—	—	—	—	50	5
GAAP2 GABO2	F F	100	5	100	8	100	1	_	_	_	_	_	_	_	_	_	_
GECA	F		_	_	_	_	_	_	—	100	6	100	10	100	5	_	_
HYFE	F	—	—	66	9	—	—	—	—	—	—	—	—	—	—		_
HYFON LATHY	F F	_	_	33	3	_	_	_	_	_	_	_	_	_	_	50	1
LEPY2	F	_	_	_	_	_	_	_	_	_	_	60	6	_	_	_	_
LICA2	F	—	—	—	—	—	—	—	—		_	40	6	—	—		_
LITE2 MECI3	F F	_	_	_	_	_	_	_	_	100	2	20	1	_	_	50 50	1 1
MIST3	F	100	1	_	_	_	_	_	_	_	_	_	_	_	_		_
MOPE3	F	—	—	100	13	—	—	—	—	_	—	—	—	_	—	—	—
OSCH OSMOR	F F	100	1	66	4	_	_	_	_	_	_	_	_	_	_	_	_
PAFI3	F	100	5	_	_	_	_	_	_	25	1	_	_	_	_	50	1
PAPE5	F	_	_	_	—	100	1	_	_	_	—	_	—	_	_	—	—
PEGL5 PEGR2	F	_	_	_	_	_	_	_	_	 50	1	20	3	100	2		_
POBI6	F	_	_	_	_	_	_	_	_		_	20	5	_	_	_	_
POFL3	F	—	—	—	—	_	—	—	—	100	4	100	11	100	10	_	
POLYG4 RAPO	F F	_	-	_	_	_	_	—	_	—	_	40	2	—	_	50	1
SAAR13	F	100	1	_	_	_	_	_	_	_	_	40		_	_	_	_
SASI10	F	100	25	_	—	_	—	—	—	—	—	—	—	—	—	—	—
SECY SEPS2	F F	—	—	_	—	_	_	—	—	100	4	20	1	_	—	50 50	20
SEPSZ	F	100	1	_	_	_	_	_	_	_	_	_	_	_	_	50	5
SIPR	F	_	_	_	—	_	_	_	—	25	1	100	17	_	—	_	_
SMST	F	_	—	—	_	_	—	_	—	_	—	_	—	_	—	50	3
SOLID SOMU	F F	_	_	_	_	_	_	_	_	_	_	_	_	100	1	50	40
SPRO	F	_	_	_	_	_	_	_	—	50	1	_	_		_	_	_
STAM2	F	100	3	—	—	_	—	—	—	—	—	—	—	—	_	—	—
STOC TAOF	F F	100 100	1 5	33	3	_	_	_	_	_	_	_	_	_	_	 50	1
THAL	F		_		_	_	_	_	_	_	_	_	_	_	_	50	30
THOC	F	—	—					—	—	—	—	—	—	—	—	50	3
TOFL URDI	F F	_	_	33 33	3 15	100	1	_	_	_	_	_	_	_	_	_	_

Туре		LOI	N/AT	RU	IPA	RU	IBA	RU	DI2	KAN	/II/CA	PH	IEM	LEG	L/CA	POF	R-BE
Ν			1		3		1		1		4		5	-	1		2
SPECIES	LF	CON	cov	CON	COV	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov	CON	COV
VERON	F	_	_	_	_	_	_	_	_	25	1	_	_	_	_	_	_
VEWO2	F	—	—	—	—	—	—	—	—	—	—	20	1	—	—	—	—
VIAM	F	—	—	33	1	—	—	—	—	—	—	—	—	—	—	—	—
VIPA4	F	—	—	—	—	—	—	—	—	—	—	80	8	—	—	—	—
AGCA2	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	50	1
AGHU	G	—	—	—	—	—	—	—	—	50	2	40	15	—	—	—	—
AGSP	G	—	—	_	—	—	—	100	1	—	—	—	—	_	—	—	—
BRRI8	G	—	_	_	—	—	—	100	5	—	—	—	—	—	—	—	—
BRTE	G	_	_	_	_	100	1	_	_	_	_	_	_	_	_	_	_
BRVU	G	100	15	33	3	_	_	_	_	_	_	_	_	_	_	_	_
CACA4	G	_	_	_	_	_	_	_	_	_	_	_	_	100	15	_	_
CALAM	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1
CARU	G	—	_	33	1	—	_	_	_	—	—	—	—	_	—	—	—
DAIN	G	—	_	_	—	—	_	_	_	75	1	40	12	_	—	100	3
DECE	G	_	_	_	_	_	_	_	_	75	3	20	20	100	2	100	2
ELGL	G	_	_	33	1	_	_	_	_	_	_	_	_	_	_	_	_
FEVI	G	_	_	_	_	_	_	_	_	_	_	40	6	_	_	_	_
MUFI2	G	_	_	_	_	_	_	_	_	25	20	_	_	100	5	50	3
PHAL2	G	_	_	_	_	_	_	_	_	25	1	20	1	100	1	_	_
POA	Ğ	_	_	_	_	_	_	_	_	25	1	_	_	_	_	50	1
POACF	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1
TRW03	Ğ	_	_	_	_	_	_	_	_	25	1	_	_	_	_	_	_
STIPA	Ğ	_	_	_	_	_	_	_	_	_		_	_	_	_	50	1
CAAU3	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1
CADE9	GL	_	_	66	12	_	_	_	_	_	_	_	_	_	_	_	
CAIL	GL	_	_	_		_	_	_	_	50	3	_	_	_	_	_	_
CALU7	GL	_	_	_	_	_	_	_	_	50	6	_	_	_	_	_	_
CAMI7	GL	_	_	_	_	_	_		_		_	20	5	_	_	_	_
CANI2	GL	_	_	_	_	_	_	_	_	100	34	80	18	_	_	_	_
CAREX	GL	_	_	_	_	_	_	100	1		_	20	3	_	_	_	_
CASC10	GL	_	_		_	_	_	100	_	_	_		_		_	50	10
CASC12	GL	_	_		_	_	_		_	100	18	20	5	100	25	50	1
CASU7	GL				_	_	_	_	_			20	_	100	20	50	10
ELPA6	GL						_		_	50	2	_	_	100	5	50	3
JUDR	GL							_	_	75	1	80	8	100	5		5
JUME3	GL	_		_	_	_	_	_	_	25	1	00	0		_	_	_
JUNCU	GL	_	—	_	_	_	_	_	_			20	1	—		_	_
KOSI2	GL	_	_	_	_	_	_	_	_	_	_	20	I	_	_	50	20
LUCA2	GL	_	_	_	_	_	_	_	_	 50	1	20	5	_	_	50	20
		_	_	—	_	_	_	_	_	50	I		5 5	_	_	_	_
LUPA4	GL	100	25	_	_	_	_	_	_	_	_	20	Э	_	_	_	_
ATFI	FH	100	25	33		_	_	_	_	_	_	_	—	_	_	_	_
DRFI2	FH	_	_		5	_	_	_	_	_	_	_	_	_	_	—	_
EQHY	FH	_	_	33	10	_	_	_	_	_	_	_	_	_	_		
EQLA	FH	_	_	_	_	_	—	_	_	_	_	_	_	_	_	50	3
EQVA	FH	—	—		_	—	—	—	—	—	—	—	—	—	—	50	5
PTAQ	FH	_	_	33	3		_	_	_	_	—	_	_	_	_	_	_
WOOR	FH	_	—	_	_	100	1	_		_	_	_	—	_	—	_	_

Appendix B-6—Constancy and average cover of all species present in the following types: (continued)

Appendix B-7—Constancy and average cover of all species present in the following types:

- Aquatic Sedge Plant Association (CAAQ)
 Widefruit Sedge Plant Association (CAEU2)
 Bladder Sedge Plant Association (CAUT)
 Inflated Sedge Plant Association (CAVE6)
 Mud Sedge Plant Association (CALI7)
 Sierra Hare Sedge Plant Association (CALE9)

- Few-Flowered Spikerush Plant Association (ELPA6)
 Lakeshore Sedge Plant Association (CALE8)
 Small-Fruit Bullrush Plant Association (SCMI2)
 Big-Leaved Sedge Plant Association (CAAM10)
 Holm's Rocky Mountain Sedge Plant Association (CASC12)

Туре		CA	AQ	CA	EU2	C	AUT	CA	VE6	CA	LI7	CAL	_E9	EL	PA6	CA	LE8	SC	MI2	CAA	M10	CAS	SC12
Ν			7		1		7		5		1	4	Ļ		14	1	1		4		2	3	88
Species	LF	CON	COV	CON	COV																		
ABLA	U	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_	_	_	_	_	10	2
PIEN	U	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	7	1
GAHU	S	_	_	_	_	_	_	_	_	_	_	_	_	7	7	_	_	_	_	_	_	5	1
KAMI	S	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_	_	_	_	_	5	9
LEGL	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
PHEM	S	—	—	_	_	—	—	—	—	_	—	—	—	7	1	—	—	—	_	—	_	5	4
SABO2	S	_	_	_	_	14	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	4
SACO2	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SALIX	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SAMY	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	2
VACA13	Š	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	5
VASC	S	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_	_	_	_	_	5	2
ACCO4	F	_	_	_	_	14	3	_	_	_	_	_	_		_	_	_	_	_	50	1	15	5
ACMI2	F	_	_	_	_		_	_	_	_	_	_	_	_	_	100	1	_	_	_	_		_
ALVA	F	_	_	_	_	_	_	_	_	_	_	_	_	21	1	_	_	_	_	50	25	34	29
ANAL4	F	14	5	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_		5	1
ANAR3	F		_	_	_	_	_	_	_	_	_	_	_	_	_	100	2	_	_	_	_	_	<u> </u>
ARCH3	F	_	_	_	_	_	_	_	_	_	_	_	_	7	1	100	1	_	_	_	_	10	1
ARMO4	F	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	7	7
ASAL2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	, 15
ASCA2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1		
ASFO	F			_			_		_		_	_	_				_	25	3	50		13	4
ASOC	F	28	6		_	14	10				_	_						25		_	_	13	10
ASTER	Ē	20	0			17	10									100	1					5	1
CABI2	F															100	1					5	1
CACH16	Ē																					2	1
CALE4	F	14	1											7	3							5	5
CALLI6	F	14	I	_	_	_	_	_	—	_	—	_	_	1	5	_	_	25	1	_	_	5	5
CALLIO	E	_	—	_	_	_	—	_	—	_	—	_	_	14	6	_	—	25	1	_	_	_	_
CARYOF	Г	_	_	_	_	_	_	_	_	_	_	_	_	14	0	_	_	_	_	_	_		
CARTUR		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2 1
CASTI2 CERAS		_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	_		_	2 2	
CERAS	г г			_	_	_	—	_	—	_	_	_	_	_	_	_	—	_	_		_	-	15
CEVU		14	I	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	5	4
CIDO	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			2	1
CIVU	F	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_		_	50	1		_
DEDE2	F	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	5	1
DEOC	F	—	—	—		—	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—	2	1

Туре		CA	AQ	CA	EU2	C	AUT	CA	VE6	CA	LI7	CAI	.E9	EL	.PA6	CA	LE8	SCI	MI2	CAA	M10	CAS	SC12
Ν		· · ·	7		1		7		5		1	4	•		14		1	4	Ļ	2	2	3	8
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
DITR2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
DOAL	F	28	12	—	—	—	—	—	—	—	—	—	—	71	8	—	—	—	—	—	—	47	16
DOJE	F	_	_	_	_	_	—	_	_	_	_	_	_	14	3	_	_	_	_	_	_	18	15
DOPU	F	—	—	—	—	_	—	—	—	_	—	25	5	—	—	—	—	—	—	_	_	2	1
EPAL	F	14	3	100	5	—	—	—	—	—	—	—	—	7	20	—	—	—	—	—	—	—	—
EPAN2	F	—	—	100	1			—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	1
EPGL	F			_	—	28	10	—	_	—	—	—	_	_	—	_	—	—	_			_	—
EPGL4	F	14	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	75	2	100	15	15	5
EPILO	F	14	1	—	—	—	—	—	—	—	—	—	—	28	2	100	2	25	1	—	—	21	3
EPMI	F	_	_	_	_	—	_	_	_	—	_	—	_	_	_	—	—	—	_	—	—	2	1
ERGR9	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	1
ERPE3	F	—	—	100	3	—	—	—	—	—	—	—	—	—	—	—	—	_	_			18	8
FRVE	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	25	1	50	1	—	—
GABO2	F	14	3	—	—	—	—	20	25	—	—	—	—	—	—	—	—	—	—	50	5	7	6
GATR2	F	—	—	100	15	—	—	20	5	—	—	—	—	—	—	—	—	—	—	100	2	—	_
GECA	F	—	—	—	—	—	—	—	—	—	—	—	—	21	1	—	—	—	—	—	—	28	6
GEMA4	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	25	15	—	—	5	6
GENTI	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	1
HADI7	F	—	—	—	—	14	3	—	—	—	—	—	—	—	—	100	2	25	3	100	6	2	1
HASA	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	10	3
HAUN	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	1
HYAN2	F	—	—	—	—	—	—	—	—	—	—	—	—	14	26	100	50	—	—	50	1	2	5
HYFON	F	—	—	—	—	14	3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	1
LICA2	F	—	—	—	—	14	5	—	—	—	—	—	—	7	3	—	—	—	—	—	—	21	14
LIGR	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	10	3
LITE2	F	—	—	100	1	—	—	—	—	—	—	—	—	21	2	—	—	—	—	—	—	28	1
LUPO2	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5	1
MEPI	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	25	3	—	—	—	—
MIGU	F	14	1	—	—	28	8	—	—	—	—	—	—	—	—	100	3	—	—	50	3	5	1
MILE2	F	—	—	—	—		—	—	—	—	—	—	—	—	—			_	_		_	2	3
MIMO3	F	—	—	—	—	14	5	—	—	—	—	—	—	—	—	100	20	50	3	100	8	10	6
MIPE	F	14	3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	50	1	5	1
MIPR	F	—	—	—	—	—	—	—	—	—	—	—	—	7	3	—	—	_	—	—	_	18	7
MIST3	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	2
MITEL	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_		2	10
MOCO4	F	—	—	—	—	—	—	—	—		_	_	—	—	—	—	—	—	—	50	4	5	3
NUPO2	F	—	—	—	—	—	—	—	—	100	25	—	—	—	—	—	—	—	—	—	—		—
PAFI3	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	13	5
PEBR	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2	3
PEGL5	F			—	—		_	—	—	—	—	—	—	_	_	—	—	—	—	—	—	2	1
PEGR2	F	14	1	—	—	14	3	—	—	—	—	—	—	21	4	—	—	—	—	—	—	26	7
POBI6	F	14	1	—	—	—	—	—	—	—	—	—	—	7	1	—	—	_	—	_	_	18	9

Туре		CA	AQ	CA	EU2	CA	U T	CA	VE6	CA	LI7	CAL	.E9	EL	PA6	CAL	_E8	SCI	MI2	CAA	M10	CAS	SC12
Ν			7		1		7		5		1	4			14	1		4	ļ	2		3	8
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
POFL3	F	28	8	100	10	_	_	_	—	_	—	_	_	21	2	—	_	_	—	_	_	60	10
POLEM POOC2	F	_	_	_	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	50	10	_	—
POOC2	F	_	_	_	_	_	_		_	_	_	_	_	_	_	100	1	_	_	_	_	_	—
RAAL	F	14	15	_	_	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_	10	15
RAPO	F	—	—	—	_	—	_	—	_	—	_	—	_	—	_	—	—	—	—	—	_	10	3
RAUN	F	_	—	—	_	—	_	—	_	—	_	—	_	—	_	—	—	25	1	—	_	—	—
ROCU	F	—	—	—	—	—	—	20	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
RONA2	F	28	1	_	—	—	—	—	—	—	_	—	—	—	—	—	—	—	_	—	—	_	_
RUCR	F	14	3	_	_	—	_	—	_	_	_	_	_	_	_	_	_	_	_	—	_	_	—
RUOC2	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	25	1	—	_	_	—
RUOC3	F	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	50	10	_	_
SAAR13	F	_	_	_	_	14	10	_	_	_	_	_	_	_	_	100	8	_	_	_	_	13	8
SASA	F	—	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	2	3
SASI10	F	_	_	_	_	_	_	_	_	_	_	_	_	7	1	_	_	_	_	_	_	5	13
SECY	F	14	1	_	_	_	_	_	_	_	_	_	_	21	11	_	_	_	_	_	_	63	10
SEFO	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SENEC	F	_	_	_	_	14	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SETR	F	_	_	_	_	14	5	_	_	_	_	_	_	_	_	100	7	_	_	50	10	7	16
SIPR	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SOSP	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SPAN2	Ē	14	1	_	_	_	_	20	10	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SPCA5	F		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
SPRO	Ē	_	_	_	_	_	_	_	_	_	_	_	_	28	1	_	_	_	_	_	_	5	1
STCA	F	_	_	_	_	_	_	_	_	_	_	_	_		<u> </u>	_	_	25	1	_	_	_	_
STCR2	F	_	_	100	3	_	_	_	_	_	_	_	_	_	_	_	_	20	_	50	2	2	1
STELL	F	_	_	100	_	_	_		_	_	_	_	_	_	_	_	_	_	_			2	1
STELL SWPE	F		_		_				_		_		_				_		_		_	2	1
TAOF	F	14	1	_	_		_		_	_	_	_	_	_	_	100	1	_	_	_	_		_
TRCA	F	17														100		25	3				
TRIFO	F	_	_						_				_	_	_			25	5			2	1
TRLA14	F													_								2	1
TRLO		_	_	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	2	1
VEAM2		14	1	_	—	14	3	_	—	_	_	_	—	_	—	_	—	_	—	100	4	5	2
VEAN2		14	I	_	_	14	3	_	_	_	_	_	_	_	_	_	_	25	5	100	4	5	2
		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	20	Э	_	_		1
VECU VERAT		_	_	_	_	_	—	_	—	_	—	_	—	_	_	_	—	_	_	_		5	5
	г г	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	12	
VESE		—	—	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	—	13	3
VEWO2	F			_	—	_	_	_	_	_	_	_	—	_	_	_	_	—	_			2	1
VIGL	F	14	1	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	
VIMA2	F	—	—			—	—	—	—	—	—	—	—	_	—	—	—	—	—		_	2	20 8
VIOLA	F			100	10	—	—	—	—	_	_	—	—	—	—	—	—	—	—	50	5	28	
VIPA4	F	14	15	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	2	3
ZIEL2	F	—	_	_	—	_	_	_	_	_	—	_	—	_	—	—	_	_	_	—	—	2	1
AGCA2	G	_	—	—	_	—	—	—	—	_	—	_	—	—	—	—	—	—	_	—	—	2	1

Appendix B-7—Constancy and average cover of all species present in the following types: (continued)

Туре		CA	AQ	CA	EU2	C	AUT	CA	VE6	CA	LI7	CA	LE9	EL	PA6	CA	LE8	SC	MI2	CAA	M10	CAS	SC12
Ν			7		1		7		5		1		1		14	1	1	4	4		2	3	8
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
AGHU	G	_	_	_	_	_	_	20	5	_	_	_	_	7	2	_	_	_	_	_	_	15	5
AGROS2	G	_	_	_	_	14	5	_	_	_	_	_	_	_	_	100	5	_	_	_	_	5	2
AGSC5	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
AGTH2	G	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	—	_	—	_	13	5
AGVA	G	—	—	—	_	28	3		_	—	—	—	—	—	—	—	—	—	—	—	—	_	—
ALAE	G	—	—	—	—	—	—	20	1	—	—	—	—	—	—	—	—	_		—	—	—	—
CAAQ3	G	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	25	45	—	—	—	—
CACA4	G	14	10	—	—	14	5	20	1	—	—	—	—	14	11	100	1	25	15	50	10	23	8
DAIN	G		_	_	_	—	_			_	_	_	_	_		_	—	_	—	_	_	2	3
DECE	G	42	7	_	_	—	_	20	1	_	_	_	_	21	12	_	—	_	_	_	_	36	6
DEEL	G		_	_	—	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	_	5	38
FEAR3	G	14	3	—	—	—	_	_	—	_	_	_	_	_	_	_	—	_	_	_	_	—	_
FESU	G	—	—	—	—	—	—	_	_	_	—	_	_	_	—		_		_	50	2	_	_
GLEL	G	—	—	—	—	—	—	20	1	_	—	_	_	_	—	100	40	25	3	100	52	7	7
GLGR	G	—	—	—	—	—	—	_	—	_	—	_	_	_	—	—	—	—	—	_	—	2	3
MESP	G		_	—	—	—	—	—	—	—	—	—	—		_	—	—	—	—	—	—	2	1
MUFI2	G	14	1	—	—		_	—	—	—	—	—	—	14	22	—	—	—	—	—	—	18	14
PHAL2	G	_	—	_	—	14	1	_	—	_	—	_	—	_	_	—	—	—	_	—	—	13	1
POLE2	G	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_		_	_	—	2	1
POPA2	G	_	_	_	_		_	_	_	_	—	—	_	—	—	_	_	25	3	_	_	_	_
POPR	G	_	_	400	_	_	_	_	_	_	_	_	_	_	_	_	_	25	1	_	_		_
PUPA3	G	_	_	100	5	_	_	_	_	_	_	_	_	_	_	_	_	50	15	_	_	7	2
STOC2	G	_	_	_	_		_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
TRSP2	G	—	—	_	_	14	3	_	—	_	—	_	—	_	_	_	_	—	—	_	—	5	1
TRWO3	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		1	400		5	1
CAAM10	GL GL	100	 74	_	_	14	3	_	_	_	—		 15	25	20	_	_	25 50	-	100	30	7	9
CAAQ CACA11	GL	100	74	_	_	14	3	_	_	_	_	25	15	35	20	_	_	50	14	_	_	2	9 5
CACATI CADE9	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 50	5	2	5
CADE9 CAEU2	GL	_	_	100	<u> </u>	_	_	40	4	_	_	_	_	_	_	_	_	_	_	50	0 1	_	_
CALUZ	GL	14	20	100	10			40	4					14	8					50	-	23	26
CAJO	GL	14	20	100	10									21	2	100	8			_		18	20
CALA13	GL		_	_	_	_	_	_	_	_	_	_	_	<u> </u>		100	0	25	1	_		10	
CALE8	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	40	20	_	_	_		_
CALE9	GL	14	70	_	_	_	_	_	_	_	_	100	86	7	10			_	_	_	_	2	2
CALI7	GL			_	_	_	_	_	_	100	60			_		_	_	_	_	_	_		_
CALU7	GL	_	_	_	_	_	_	_	_			_	_	7	3	100	10	_	_	_	_	18	5
CAMI7	GL	_	_	_	_	14	5	_	_	_	_	_	_		_	100	2	_	_	50	10	2	5
CAMU7	GL	_	_	_	_		_	_	_	_	_	_	_	_	_			_	_	_		5	2
CANE2	GL	_	_	_	_	_	_	_	_	_	_	_	_	7	3	_	_	_	_	_	_	10	10
CANI2	GL	_	_	_	_	_	_	_	_	_	_	_	_	14	10	_	_	_	_	_	_	15	10
CAPR4	GL	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	2	5
CAPR7	GL	_	_	100	1	_	_	20	1	_	_	_	_	_	_	_	_		_	_	_	_	_
CAREX		_	_			_	_			_	_	_	_	_	_	_	_	_	_	50	30	2	1
CAREX	GL	_	—	_	—	_	_	_	—	—	_	—	—	—	—	_	_	—	—	50	30		2

Туре		CA	AQ	CA	EU2	C	AUT	CA	VE6	CA	LI7	CA	_E9	EL	PA6	CAL	.E8	SC	MI2	CAA	M10	CAS	SC12
Ν		7			1		7		5		1		l –		14	1		4			2	3	38
Species	LF	CON	COV																				
CASC12	GL	28	3	_	_	_	_	20	3	_	_	75	5	71	19	_	_	_	_	_	_	100	65
CAST5	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_	_	_
CASU6	GL	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	50	15	_	_
CAUT	GL	28	22	—	_	100	86	_	—	_	—	—	_	14	2	_	_	25	15	_	—	5	6
CAVE6	GL	_	_	_	_	_	_	100	81	_	_	_	_	_	_	_	_	_	—	_	_	_	
ELEOC	GL	—	_	—	_	—	_	_	—	_	—	25	10	—	—	—	—	25	1	—	—	_	_
ELPA3	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	25	5	_	_	_	_
ELPA6	GL	14	1	100	5	_	_	_	_	_	_	_	_	100	70	100	10	_	_	_	_	50	25
JUBA	GL	_	_	_	_	14	15	_	_	_	_	_	_	—	—	—	_	25	5	_	_	_	_
JUBR3	GL	14	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
JUDR	GL	_	_	100	3	_	_	_	_	_	_	_	_	7	10	_	_	_	_	_	_	15	2
JUEF	GL	—	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	50	2	_	_
JUEN	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1	50	2	100	1	2	1
JUME3	GL	_	_	100	1	_	_	_	_	_	_	_	_	7	1	_	_	_	_	_	_	13	2
JUNCU	GL	_	_	—	_	_	_	—	_	—	_	_	—	_	_	_	_	_	—	_	_	2	10
JUPA	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	1
LUCA2	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	2	_	_	_	_	13	8
SCMI2	GL	_	_	_	_	_	_	—	_	_	_	_	—	_	_	_	_	100	66	50	8	_	_
ATFI	FH	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	50	10	_	_
CYFR2	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_
EQAR	FH	42	2	_	_	28	20	_	_	—	_	_	—	_	_	_	_	75	20	50	4	15	6
EQUIS	FH	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	2	1
GYDR	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_
POMU	FH	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_

Appendix B-7—Constancy and average cover of all species present in the following types: (continued)

Appendix B-8—Constancy and average cover of all species present in the following types:

- Northern Singlespike Sedge-Brook Saxifrage-Spring Plant Association (CASC-SA)
 Woodrush Sedge Plant Association (CALU7)
 Black Alpine Sedge Plant Association (CANI2)
 Bluejoint Reedgrass Plant Association (CACA4)
 Tufted Hairgrass Plant Association (DECE)
 Basin Wildrye Plant Community Type (ELCI2)

- Star Sedge Plant Community Type (CAMU7)
 Jones' Sedge Plant Community (CAJO)
 Nebraska Sedge Plant Community Type (CANE2)
 Smallwing Sedge Plant Community (CAMI7)
 Brown Sedge Plant Community (CASU6)

Туре		CASC-SA		CALU7		CANI2		CA	CA4	DE	CE	EL	CI2	CA	MU7	CA	JO	CANE2		CAMI7		CASU6	
Ν			4	10		11			8	;	3		1		3		1		1		1		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
ABLA	PO	25	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PICO	PO	25	3	—	—	_	_	_	_	_	_	—	—	—	—	_	_	—	_	—	_	_	—
PSME	SO	25	5	—	—	_	—	—	—	—		—	—	_	—	_	—	—	—	—	—	—	_
ABGR	U	25	3	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_
ABLA	U	25	3		1	_		12	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PICO	U	25	3	10		9	12		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PIEN	U	25	3	10	4	9	1	12	1	_	_	_	_		_	_	_	_	_	_	_	_	_
CAME7	S	25	1	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
GAHU	S			_	_	9	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
KAMI	S	50	3	_	_	18	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
PHEM	S	_	_	_	_	9	1	_	_	_	_	100	_	_	_	_	_	_	_	_	_	_	_
ROWO	S	—	—	—	—	_	—	—	—	—	—	100 100	1	_	—	_	—	—	—	_	—	_	_
SYAL	S		_	_	_	_	_	_	_	_	_	100	1	_	_	_	_	_	_	_	_	_	_
VAMY2 VASC	S	50	2	_	_	_	_	40	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	S F		_	—	_	_	—	12	•	—	—	_	_	_	—	_	—	100	_	_	—	_	—
ACCO4	F	25	5	_	_	_	_	37	15	_	_	100	1	_	_	_	_	100	5	100	15	_	_
ACMI2 ALVA	F	100	 11	 50	4	 27	9	25 12	3 3	—	—	100	I	_	—	_	—	100	1	100	15	—	_
ALVA ANAL4	F	100	11	50	4	36	9 6		3	33	3	_	_	_	_	_	_	100	I	_	_	_	_
ANAL4 ANAR3	F	25	1	10	1	30	0	12	3	33	3	_	_	_	_	_	_	_	_	_	_	_	_
ANARS	F	25 25	3	10	I	_	_	12	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ANTEN		25	5	_	_	9	1	12	5	_	—	_	_	_	—	_	—	_	—	—	_	_	_
ANUM	F	_	_	_	_	9	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ARAM2	F	25	5	_	_	9	I	_	_	_	—	_	_	—	_	_	_	_	_	_	_	_	_
ARCO9	F	25	5	_				12	30					_	_						_		_
ARLU	F		_	_				12	50						_					100	3		_
ARMO4	F	25	5	_	_	_	_	25	2		_	_	_	_	_	_	_	_	_	100		_	_
ASAL2	F	25	1				_	25		33	10							_					
ASFO	Ē	25	1	10	1	9	10	25	8	33	20					100	10						
ASMO3	F		_	10	1		10	25	_		20					100	10	_	_				
ASOC	F		_	10	8	36	5	12	3	33	1		_		_		_		_				
ASTER	F	_	_	20	5	9	40	12	_		_	_	_		_	_	_	_	_	_	_		_
CABI2	F	_	_	30	1		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CACH16	F	_	_		_	54	1	12	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CACO6	F	_	_	_	_		_	12	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CACU7	F	_	_	_	_	_	_			33	3	_	_	_	_	_	_	_	_	_	_	_	_
CALTH	F	_	_	20	3	18	37	_	_		_	_	_	_	_	100	2	_	_	_	_	_	_
UALIII		_	_	20	5	10	51		_		_	_	_		—	100	2		_		_		

Туре		CAS	C-SA	CA	LU7	CA	ANI2	CA	CA4	DE	CE	ELC	CI2	CA	MU7	CA	JO	CAN	NE2	CAI	MI7	CASU6 1	
Ν			4		10		11		8	3	5	1			3	1	1	1	I	1			
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	C0\
CENU2	F	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
CIAR4	F	_	_	_	_	—	_	_	_	—	_	_	_	_	_	_	_	_	_	100	5	_	—
CIRSI	F	_	_	_	—	_	_	_	_	_	_	100	1	_	_	_	_	_	_	_	_	_	—
DISY	F	_	_	_	—	_	_	_	_	_	_	100	1	_	_	_	_	_	_	_	_	_	—
DOAL	F	50	4	60	10	18	1	12	3	—	—	—	—	66	9	—	—	—	—	—	—	—	—
DOJE	F	25	3	40	1	_	—	—	—	—	—	—	—	33	1	—	_	—	—	—	_	_	_
EPAL	F	—	—	—	—	18	5	25	3	—	—	—	—	—	—	—	—	—	—	—	—	—	—
EPGL	F	—	—	—	—	—	—	12	3	—	—	—	—	—	—	—	—	—	—	100	20	—	—
EPGL4	F	25	1	—	—	—	—	37	4	_	—	—	—	—	—	—	—	—	—	_	—	100	15
EPILO	F	_	_	20	1	18	1	_	_	33	1	_	_	33	1	100	1	100	5	_	_	_	—
EPMI	F	_	_	10	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
EPPA2	F	_	_	20	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ERPE3	F	100	10	10	5	27	9	12	20	—	_	—	—	—	—	_	—	—	—	—	—	—	_
ERSP4	F	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
FRVI	F	_	_	10	1	_	_	12	3	_	_	_	_	_	_	_	_	_	_	100	10	_	_
GABI	F	_	_	20	1	_	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_
GABO2	F	_	_	_	_	_	_	12	3	_	_	_	_	_	_	_	_	100	20	_	_	_	_
GATR2	F	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_	_	_	_	_	100	5
GECA	F	75	5	40	1	72	4	25	4	33	5	_	_	_	_	_	_	_	_	_	_	_	_
GEMA4	F	_	_	_	_	_	_	25	2	_	_	_	_	_	_	_	_	100	3	100	3	_	_
HADI7	F	100	4	40	1	_	_	_	_	_	_	_	_	66	1	_	_	_	_		_	_	_
HELA4	F	_	_	_	_	_	_	12	1	_	_	_	_	_		_	_	_	_	_	_	100	1
HYAN2	F	_		30	2	9	1	_	_	_	_	_	_	_	_	100	3	_	_	_	_		
HYFON	F	_			_	_	_	12	3	_	_	_	_	_	_		_	_	_	_	_	_	_
LASE	F	_	_	_	_	_	_		_	_	_	100	1	_	_	_	_	_	_	_	_	_	_
	F	75	3	_	_	_	_	12	3		_		_	_	_		_		_	_	_	_	
LICA2 LIGUS	F	- 15	_	10	1	_	_				_		_	_			_		_		_	_	
LITE2	F	_	_	40	10	72	12	25	13	33	10	_	_	_	_		_		_	_	_	_	_
LUPO2	Ē	_		-0	10	12	12	25	10	55	10							100	1				
MIGU	F	50	6	_	_								_				_	100	_		_	100	5
MILE2	F	- 50	_					12	3				_						_		_	100	
MIMO3	F							25	12													100	15
MIMUL	F							12	3				_									100	15
MIPR	5	_	_	30	14	9	1		5	_	_	_	_	_	_		_	_	_	_	_	_	_
MITEL	Г С	_	_	50	14	9	I	 12	5	_	—	_	_	_	_	_	—	_	—	_	—	_	_
MOCO4		_	_	_	_	_	_	12	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	12	5	_	_	_	_	_	_	_	_	_	_	_	_	_	
MONTI				_	_	_	—	IZ	5	_	—	_	_	_	_	_	_	_	_	_	—	_	
MOSI2		25	3 8	_	_	_	_	_	_	_	_	_	_		1	_	_	_	_	_	_	_	_
PAFI3		100	ŏ	_	_	_	_		_			_	_	33	Т	_	_	_	_	_	—	—	_
PEGL5	F	400	_		_		_	25	1	33	20	—	_			_	_	_	_	_	_	_	_
PEGR2	F	100	5	50	2	18	1	_	_	33	20	_	_	66	1	_	_	_	_	_	_	_	_
POBI6	F	25	3	40	2	9	1	_	_	33	1	_	_		_	_	_	_	_	_	_	_	_
PODI2	F	_	—		_					33	1	_	_	_	_		_		_	—	_	_	_
POFL3	F	—	—	40	4	81	22	75	12	33	1	_	—	—	—	100	2	100	1	_	—	—	_

Appendix B-8—Constancy and average cover of all species present in the following types: (continued)

Туре		CAS	C-SA	CA	LU7	CA	NI2	CA	CA4	DE	CE	ELO	C12	CA	MU7	CA	JO	CAI	NE2	CAMI7		CASU6	
Ν			4		10		11		8	3	}	1			3	1	1		1	1			
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
POGR9	F	_	—	_	—	9	1	_	_	_	_	_	_	_	_	—	_	_	_	100	15	_	_
POOV2	F	25	3	—	—	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
RAAL	F	_	—	—	—	9	20	—	_				_	—		—	—		—	—	_	_	_
RAES RANUN		_		_	_	_	_	12	1	33	1	_	_	_		_	—		—	—	_		_
RAPO	F	_	_	_	_	9	5	12	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RAUN	F	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_	_	_	100	1	_	_
RUOC2	F	25	1	_		_	_	_	_	_	_	100	1	_	_	_	_	_	_	_	_	100	1
SAAR13	F	100	4	10	1	_	_	12	3	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SASA	F	25	1	—	—	—	_	_	_	_	_	—	—	—	—	—	_	—	—	_	—	—	_
SASI10	F	100	8	50	5	9	1	_	_	_	_	—	—	33	1	—	—		_	—	—	—	_
SECY	F	50	10	70	4	72	9	25	2	66	28	_	_	66	2	_	_	100	1	—		—	_
SEIN2 SEPS2	F F	_	_	—	_	_	_	_	_	33	5	_	_	_	_	_	_	_	—	100	20	_	_
SETR	F	100	4	_	_	_	_	25	12	_	_	_	_	_	_	_	_	_	_	100	20	100	1
SIOR	F		_	_	_	_	_		<u> </u>	_	_	_	_	_	_	_	_	_	_	100	3		_
SIPR	F	_	_	_	_	18	16	_	_	33	1	_	_	_	_	_	_	_	_	_	_	_	_
SOSP	F	_	_	_	_	_	—	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_
SPRO	F	—	—	40	1	27	1	—	—	—	—	—	—	—	—	_	—	—	—	—	—	_	—
STLO	F		_	_	_	_	_	12	1	_	—	_	_	_	_	_	_	_	_	—	—	100	5
STOC SWPE	F F	100 75	3 4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TAOF	Г Г	75	4	10	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	3	_	_
TITR	F	_	_		- -	_	_	12	3	_	_	_	_	_	_	_	_	_	_		_	_	_
TRCA	F	_	_	_	_	_	_	12	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TRPR2	F	_	_	_	_	_	—	_	_	_	_	100	1	_	_	_	—	_	_	_	_	—	_
VASI	F	—	—	—	—	—	—	12	1	—	—	—	—	—	—	—	—	—	—	—	—	—	—
VEAM2	F	25	3		_	—	—	—	—	—	—	_	—	—	—	—	—	—	—	100	5	100	15
VECU	F	_	—	10	1	_	_	—	—	_	—	—	_	—	_	—	—	_	—	—	_	—	—
VERAT	F	—	_	_	_	9	1	_	_	_	_	_	_	_	_	_	_	_	_	100	1	_	_
VERON VESE	F	_		_	_	18	6	_	_	_	_	_	_	_	_	100	1	_	_	100	1	_	_
VEWO2	F	_	_	_	_	9	1	12	5	_	_	_	_	_	_		_ 	_	_	_	_	_	_
VIOLA	F	_	_	10	1	9	5	50	6	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VIPA4	F	_	_	_	_	_	_	12	3	_	_	_	_	_	_	_	_	_	—	_	—	_	_
ZIEL2	F	—	_	—	—	—	—	_	—	—	—	—	—	33	1	—	—	—	—	—	—	—	—
AGCA2	G	—	—	—	—			—	—		_	—	—	—	—		_	—	—	100	5		—
AGHU	G	—	—		_	18	12	—	—	33	3	—	—	_	—	100	2	—	—	_	—	100	5
AGROS2	G	_	—	20	2	_	—	_	_	_	—	100	5	_	_	_	_	_	_	_	_	_	—
AGST2 AGTH2	G G	 50	3	 10	1	_	_	_	_	_	_	100	5	_	_	_	_	_	_	_	_	_	_
AGVA	G				_	9	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
BRCA5	G	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	10	_	_
BROMU	Ğ		_	_	_	_	—	_	_	_	_	100	20	_	_	_	_	_	_	_	_	_	_

Туре		CAS	C-SA	CA	LU7	CA	NI2	CA	CA4	DE	CE	ELC	CI2	CA	MU7	CA	JO	CAI	NE2	CAN	/17	CAS	SU6
N			4		10		11		8	3	}	1			3	1		1	I	1		1	1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	CO
BRVU	G	25	5	_	_	_	_	_	—	_	_	_	—	_	_	_	_	_	—	_	—	_	_
CACA4	G	_	_	20	2	9	1	100	72	—	_	—	_	_	_	_	_	_	_	_	_	100	1
DAIN	G	—	—	—	—	36	3	—	—	33	35	—	—	—	—	—	—	—	—	—	—	—	—
DECE	G	75	8	70	17	45	4	12	5	100	42	—	—	66	1	—	—	100	15	—	—	—	—
DEEL	G	—	—	—	—	9	20	_	—	—	—			—	—	—	_	—	—	—	—	—	—
ELCI2	G	_	—	—	_	_	_		_		—	100	40	_	—	—	—	—	_	—	_	—	_
ELGL	G	_	_	—	_	_	_	12	25		—	_	—	_	—	—	—	—	_	_	_		_
GLEL	G	50	3	_		_	_		_	—	—	_	—	_			_	—	_	_	_	100	20
MUFI2	G	—	_	90	18	27	8	12	5	—	—	_	—	33	1	100	2			—	—	—	—
PHAL2	G	—	_	40	1	27	1	12	3	—	—			_	_	100	2	100	1	—	_	_	_
PHPR3	G	_	—	—	—	_	_		_	—	—	100	1	_	_	—	_	_	_	—	_	_	—
POCO	G	—	—	—	—	_	—	12	3	—	—	_		_	—	—	—	—	—			—	_
POPR	G	—	—	—	—	—	—	—	_	—	—	100	10	—	—	—	—		_	100	15	—	—
PUPA3	G	_	—	—	—	—	—	—	—	—	—		_	—	—	—	—	100	3		_	_	_
STOC2	G	_	_		_	_	_	_	_	—	_	100	2	_	_	_	_	_	_	100	5	_	
TRWO3	G	_	—	20	1	9	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CAAB2	GL	_	_	40		9	1	_	_			_	_		10	_	_	_	_	_	_	_	_
CAAQ	GL	_	_	40	25	_	_	_	_	33	3	_	_	66	10	_	_	_	_	_	_	_	_
CAAU3	GL		5	—	—	_	_	—	_	_	—	_	—	33	I	—	—	—	—	—	—	—	_
CABI10 CAEU2	GL GL	25	э	_	_		_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	100	30
CAE02 CAHO5	GL	_	_	_	_	_	_	_	_	33	20	_	_	_	_	_	_	_	_	_	_	100	30
CAIL	GL	_	_	10	5	 54	7	12	 15	33	20	_	_	_	_	_	_	_	_	_	_	_	_
CAIL	GL	_	_	40	2	27	11	12	15	_	_	_	_	_	_	100	60	_	_	_	_	_	_
CALE9	GL	_	_	40	2	9	5	_	_	—	—	_	—	_	—	100	00	_	_	_	_	_	_
CALU7	GL	 75	8	100	61	9	3	_	_	—	—	_	—	33	25	100	3	_	_	_	_	100	3
CALO7 CAMI7	GL			20	1			25	8		_	_	_	- 55	25	100			_	100	65	100	
CAMU7	GL	_	_	20	1	_	_	20	_		_		_	100	68	_	_	_	_			_	_
CANE2	GL	_	_	20	_	_	_	12	15	_	_	_	_	33	1	_	_	100	75	_	_	_	_
CANI2	GL	_	_	_	_	100	48	12	3	_	_	_	_		_	_	_		_	_	_	_	_
CAPA14	GL	_	_	_	_	_	_		_	33	5	_	_	_	_	_	_	_	_	_	_	_	_
CAREX	GL	_	_	10	5	_	_	37	9	_	_	_	_	_	_		_	_	_	_	_	_	_
CASC10	ĞĹ	100	40	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
CASC12	GL	25	3	90	7	90	12	62	18	33	15	_	_	66	6	100	25	100	20	_	_	_	_
CASI2	GL	_	_	_	_	_	_	_	_	33	1	_	_	_	_	_	_	_	_	_	—	_	_
CASU6	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	60
CAUT	GL	_	_	30	4	_	_	12	5	33	10	_	_	_	_	_	_	_	_	_	_	_	_
ELEOC	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	20
ELPA6	GL	50	15	90	18	27	20	25	1	—	_	_	—	100	23	100	30	_	—	_	_	—	_
JUBA	GL	_	_	—	_	_	—	—	_	—	_	_	—	_	—	—	_	_	—	_	_	100	10
JUBR3	GL	—	—	—	—	9	10	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_
JUDR	GL	—	—	10	1	63	2	12	2	—	—	—	—	—	—	—	—	—	—	—	—	—	_
JUEN	GL	25	1	10	1	_	_	_	_	—	_	_	_	33	1	_	_	_	_	_	_	_	_
JUME3	GL	50	2	20	1	9	1	12	1	33	1												

Appendix B-8—Constancy and average cover of all species present in the following types: (continued)

Appendix E

Appendix B-8—Constancy and average cover of all species present in the following types: (continued)

Туре		CAS	C-SA	CA	LU7	CA	ANI2	CA	CA4	DE	CE	EL	CI2	CA	MU7	CA	JO	CAI	NE2	CA	MI7	CAS	SU6
Ν			1		10		11		8		3	1			3	1		1			1		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
JUNCU	GL	_	_	10	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
JUPA	GL	—	—	—	_	9	1	—	_	—	_	—	—	—	—	—	_	_	—	—	—	—	—
LUCA2	GL	—	—	50	2	27	1	12	3	—	_	—	—	33	1	—	_	_	—	—	—	—	—
SCMI2	GL	_	_	_	_	_	_	12	20	_	_	_	_	_	_	_	_	_	_	_	_	_	_
EQAR	FH	_	_	30	1	_	_	25	2	_	_	_	_	33	1	_	_	_	_	_	_	_	_
EQLA	FH	_	_	10	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Appendix B-9—Constancy and average cover of all species present in the following types:

- Baltic Rush Plant Community Type (JUBA)
 Narrowleaf Bur-Reed Plant Association (SPAN2)
 Rocky Mountain Pond-Lily Plant Association (NUPO2)
 Common Cattail Plant Community Type (TYLA)
 Pacific Onion–Holm's Rocky Mountain Sedge Plant Association (ALVA-CA)
- Arrowleaf Groundsel–Purple Monkeyflower Plant Association (SETR-MI)
 Common Cowparsnip–Blue Wildrye Plant Community (HELA4-EL)
 False Hellebore Plant Community Type (VERAT)
 Western Coneflower Plant Community Type (RUOC2)
 White Sagebrush Plant Community (ARLU)

Туре		JU	BA	SPA	AN2	NUF	PO2	יד	YLA	ALV	A-CA	SET	R-MI	HELA	4-EL	VE	RAT	RUC	DC2	AF	RLU
Ν		1	1		3	2	2		1	2	0	1	11	1			3	2	2		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov	CON	cov	CON	cov	CON	cov
PIEN	PO	_	_	_	_	_	_	_	_	_	_	9	3	_	_	_	_	_	_	_	_
PIEN	SO	_	_	_	_	_	_	_	_	_	_	9	4	100	5	_	_	_	_	_	_
ABGR	U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	2
ABLA	U	_	_	_	_	_	_	_	_	20	2	27	2	_	_	_	_	50	2	_	_
PICO	U	_	_	_	_	_	_	_	_	_	_	9	2	_	_	_	_	_	_	_	_
PIEN	U	_	_	_	_	_	_	_	_	15	1	9	3	_	_	_	_	_	_	_	_
ACGL	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1
GAHU	S	_	_	_	_	_	—	_	_	5	1	_	_	_	_	_	_	_	_	_	_
KAMI	S	_	_	_	_	_	_	_	_	15	1	_	_	_	_	_	_	_	_	_	_
LEGL	S	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	—	_	_	_	_
LOIN5	S	_	_	_	_	_	_	_	_	_	_	9	1	100	2	_	_	_	_	_	_
PHEM	S	_	_	_	_	_	_	_	_	15	2	_	_	_	_	_	_	_	_	_	_
RILA	S	_	_	_	_	_	_	_	_	5	1	9	3	_	_	_	—	_	_	_	_
SABO2	S	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_
VASC	S	_	_	_	_	_	_	_	_	10	2	9	2	_	_	_	_	_	_	_	_
ABCA	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	3
ACCO4	F	100	1	_	_	_	_	_	_	15	8	27	7	_	_	66	6	_	_	_	_
ACMI2	F	100	5	_	_	_	_	_	_	_	_	9	1	_	_	33	5	100	1	100	1
AGOSE	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_
AGUR	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1
ALVA	F	_	_	_	_	_		_	_	100	69	_	_	_	_	_	_	50	1	_	_
ANAL4	F	_	_	_	_	_	_	_	_	5	3	_	_	_	_	_	_	_	_	_	_
ANAR3	F	_	_	_	_	_		_	_	5	2	18	9	100	1	_	_	_	_	_	_
ANMA	F	_	_	_	_	_	_	_	_	5	1	18	1	_	_	_	_	50	1	_	_
AQUIL	F	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	100	1
ARCH3	F	_	_	_	_	_	_	_	_	10	3	18	8	_	_	_	_	_	_	_	_
ARFU3	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	1	_	_	_	_
ARLU	F	_	_	_	_	_	_	_	_	_	_	9	1	_	_	_	_	100	23	100	80
ARMA18	F	_	_	_	_	_	_	_	_	_	_	9	1	_	_	_	_	50	3	_	_
ARMO4	F	_	_	_	_	_	_	_	_	15	12	9	3	_	_	33	10	_	_	_	_
ARNIC	F	100	5	_	_	_	_	_	_	10	3	9	8	_	_	_	_	_	_	_	_
ARPA13	F		_	_	_	_	_	_	_	5	10	_	_	_	_	_	_	_	_	_	_
ASFO	F	_	_	_	_	_	_	_	_	5	3	_	_	_	_	100	22	_	_	_	_
ASOC	F	_	_	_	_	_	_	_	_	15	9	9	3	100	1			_	_	_	_
ASTER	F	_	_	_	_	_	_	_	_	25	24	36	3		<u> </u>	_	_	100	16	_	_
ASTRA	F	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	50	1	_	
BICE	, F	_	_	_	_	_	_	100	5	_	_	_	_	_	_	_	_		_	_	
BRGR	, F	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	100	1

Туре		JU	BA	SPA	AN2	NUF	PO2	T١	YLA	ALV	A-CA	SET	R-MI	HELA	\4-EL	VE	RAT	RUO	DC2	AF	RLU
Ν		1		3	3	2	2		1	2	0	1	1		1		3		2		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	cov	CON	cov	CON	COV
CABI2	F	_	_	_	_	_	_	_	_	5	12	_	_	_	_	_	_	_	_	_	_
CACH16	F	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	50	1	_	_
CACO6	F	_	_	_	_	_	_	100	5	5	1	_	_	100	2	_	_	_	_	_	_
CALOC	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_
CALTH	F	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_		_	_
CAMI12	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	50	1	_	_
CARH4	F	_	_	_	_	_	_	_	_	5	10	_	_	_	_	_	_		<u> </u>	_	_
CARYOF	F									10	3	27	11								
CASTI2		_	_	_	_	_	_	_	_	5	1			_	_	_	_	_	_	_	_
CASTIZ		_	_	_	_	_	_	100	5	5	I	9	7	_	_	_	_	_	_	_	_
CIAL	F	400		_	_	_	_	100	5	_	_	9	1	_	_	_	_	_	_	_	_
CIAR4		100	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	400	_
CIRSI	F		—	_	—	_	_		_	_	_	_	_	_	—	_	—	_	_	100	1
CIVU	F		—	_	—	_	—	100	3	_	_	_	_	_	—	_	—	_	_	_	_
CRUCIF	F	_	—	_	—	—	—	_	—	—	—	9	1	—	—	—	—	_	—	_	—
DEDE2	F	_	—	_	—	_	_	_	_	—	_	9	1	_	—	_	_	_	_	_	_
DELPH	F	—	—	—	—	—	—	—	—	5	3	27	14	—	—	—	—	50	5	—	—
DEOC	F	—	—	—	—	—	—	—	—	—	—	—	—	—	—	33	20	—	—	—	_
DERI2	F	_	—	—	—	_	_	_	_	—	_	—		_	—	33	10	_	_	_	—
DISY	F	—	—	—	—	—	—	100	5	—	—	—	—	—	—	—	—	—	—	—	—
DOAL	F	_	_	_	_	_	_	_	_	55	5	_	_	_	_	_	_	_	_	_	_
DOJE DRCR2	F	_	_	_	_	_	_		_	5	5	_	_	_	_	33	1	_	_	_	_
DRCR2	F	_	_	_	_	_	—	_	_	_	—	_	_	—	_	_	_	_	_	100	1
DRST2	F	_	_	_	_	_	_	_	_	5	3	_	_	_	_	_	_	_	_	_	_
EPAL	F	_	_	_	_		_	_	_	10	8	9	1	_	_	_	_	_	_	_	_
EPAN2	F	_	_	_	_	_	_	_	_	_	_	18	3	_	_	_	_	_	_	_	_
EPGL	F	_	_	_	_	_	_	_	_	_	_	9	1	_	_	_	_	_	_	_	_
EPGL4	F	_	_	_	_	_	_	100	3	_	_	27	12	_	_	_	_	_	_	_	_
EPHA	F	_	_	_	_	_	_	100	_	5	3			_	_	_	_	_	_	_	_
EPILO	F	_	_	_	_	_	_	_	_	30	5	36	15	_	_	33	7	50	3	_	
EPPA2	F									10	1	50	15			55	_	50	5		
EPWA3	, E	_	_	_	_	_	_	_	_		1	9	5	_	_	_	_		_	_	_
ERCO6	F	_	—	_	—	_	_	_	—	_	_	9		_	—	33	10	_	—	_	_
	Г	_	_	_	_	_	_	_	_		1			_	_	33			3	_	_
ERIGE2 ERPE3		—	_	_	_	_	_	_	_	5 45		9 19	5 22	_	_	_	—	50	3	_	_
	F -	—	_	_	_	_	_	_	_		12	18		_	_	_	_	50	1	_	_
FRVE	F _	_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	_	50	1	_	_
GABI	F	—	—	—	_	_	—	—	—	5	1	—	—	_	—	_	—	—	—	—	—
GAHU2	F	—	—	—	_	_	—	—	—	5	3	—	—			_	—	—	—	—	—
GATR3	F	_	—	_	—	—	_	—	—	5	1	—	—	100	10	—	—	—	—	—	_
GECA	F		_	—	—	—	—	—	—	50	12		_	_				—	—	—	_
GEMA4	F	100	3	—	_	_	—	_	—	5	1	18	2	100	1	33	10	_	—	—	_
HADI7	F	_	_	_	_	_	—	_	_	_	_	9	1	_	_	_	_	_	_	_	—
HASA	F	—	_	_	—	_	—	_	—	10	2	_	—	_	_	_	—	_	—	—	_
HEBO	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	100	1
HELA4	F	100	1	_	_	_	_	_	_	_	_	27	13	100	60	66	45	_	_	_	_

248

Туре		JU	BA	SPA	N2	NUF	PO2	T١	(LA	ALVA	A-CA	SET	R-MI	HELA	4-EL	VE	RAT	RUC	DC2	A	RLU
Ν			1	3	}	2	2		1	2	0	1	1		1		3	2	2		1
Species	LF	CON	COV	CON	cov	CON	COV	CON	cov	CON	COV	CON	COV	CON	cov	CON	cov	CON	cov	CON	CO
HYAN2 HYFE HYFON	F	_	_	_	_	_	_	_	_	5	3	_	_	_	_	_	_	_	_	_	_
HYFE	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	3	_	_	_	_
HYFON	F	_	_	_	_	_	_	_	_	5	10	_	_	_	_	_	_	_	_	_	
HYPE	F	_	_	_	_	_	_	100	5	_	_	_	_	_	_	_	_	_	_	_	_
ISBO	F	_	_	66	32	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
LICA2 LIGUS LITE2	F	_	_	_	_	_	_	_	_	20	7	_	_	_	_	_	_	_	_	_	
LIGUS	F	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	50	1	_	
LITE2	F	_	_	_	_	_	_	_	_	45	1	18	2	_	_	_	_	_	_	_	
LUPIN	F	_	_	_	_	_	_	_	_	_	_		_	_	_	33	3	_	_	_	_
LUPO2	F	_	_	_	_	_	_	_	_	_	_	9	10	_	_	_	_	_	_	_	_
MECI3	F	100	3	_	_	_	_	_	_	_	_	9	20	100	10	_	_	_	_	100	2
MEPA	F		_	_	_	_	_	_	_	_	_	_				33	50	_	_		_
MIGU	F	100	3	_	_	_	_	_	_	10	1	27	10	_	_			_	_	_	_
MILE2	F		_	_	_	_	_	_	_	5	1	90	18	_	_	_	_	_	_	_	_
MIMO3	F	100	3	_	_	_	_	_	_	10	3	36	8	_	_	_	_	_	_	_	_
MIPE	F	100	_	_	_	_	_		_	10	2	36	1	_	_	_	_	_	_		_
MIPR	F									20	17	- 50	_		_						
MIST3	F									20 5	1	9	1				_				
MOCO4	F									15	5	27	9			66	18				
MONTI	I E	_	_	_	_	_	_	_	_	5	1	21	3	_	_	00	10	_	_	_	_
MOOD	F	_	—	_	_	_	—	_	—	5	I	_	—	_	_	_	—	_	—	100	1
NUPO2	Г	_	_	_	_	100	 45	_	_	_	_	_	_	_	_	_	_	_	_	100	
OSOC	Г	_	_	_	_	100	40	_	_	_	_	18	4	_	_	_	_	 50	1	_	
PAFI3		_	_	_	_	_	_	_	_	30	7		4	_	_	_	_	50	I	_	_
PEBR		_	_	_	_	_	_	_	_		1	27 9	2 1	_	_	22	1	_	_	_	_
PEDR		_	_	_	_	_	_	_	_		4	9	I	_	_	33	I	_	_	_	_
PEGR2	F	—	—	—	—	_	—	—	—	65	4	—	—	—	_	_	—		_	_	_
PENST		_	_	_	_	_	_	_	_	45	_	_	_	_	_		_	50	1	_	-
POBI6	F -	_	_	_	_	_	_	_	—	15	7	_	_	_	_	33	1	_	_	_	-
PODI2	F _	_	_	_	_	_	_	_	_	5	5	_	_	_	_		_	_	_	_	-
POFL3	F	_	_	_	_	_	_	_		55	12	9	3	_	_	33	2		_	_	-
POGL9	F		_	_	_	_	_	_		_	_	_	_	_	_	_	—	50	1	_	-
POGR9	F	100	5	_	—	—	—	—	—	_	—	_		—	—	—	—	50	1	—	-
POOC2	F	—	—	_	—	_	—	_	—	_	_	9	15	_	—	_	—			_	-
POPH	F	—	—	_	—	_	_	_	—	_	_	_	—	_	—	_	—	50	1	_	_
POTAM	F	_	_	_	—	50	2		_	_	_		—	—	_	_	_	_	—	_	_
RAAC3	F	—	—	—	—	—	—	100	3			—	—	—	—	—	—	—	—	—	_
RAAL	F	—	—	—	—	—	—	—	—	10	13	—	—	—	—	—	—	—	—	—	_
RAPO	F	—	—	—	—	—	—	—	—	25	9	—	—	—	—	—	—	—	—	—	_
RAUN	F	_	_	_	—	—	_	—	—	10	8	9	1	_	_	—	_	_	—	_	_
RONA2	F	_	_	_	—	—	_	100	5	_	_	_	_	—	_	_	_	_	—	_	_
RUMEX	F	_	_	_	_	_	_	100	3	_	_	_	_	_	_	_	_	_	_	_	-
RUOC2	F	—	—	—	_	_	—	—	_	—	—	18	4	—	—	—	—	100	25	100	
SAAM3	F	—	—	—	_	_	—	—	_	—	—	9	5	—	—	—	—	_	—	—	-
SAAR13	F	_	_	_	_	_	_	_	_	25	32	72	24	—	_	—	_	_	—	_	_

Appendix B-9—Constancy	y and average cover of a	Il species present in the	e following types: (continued)
	y ana average cover or a	n apecies present in th	c following types. (continued)

Туре		JU	BA	SPA	AN2	NUF	PO2	יד	YLA	ALV	A-CA	SET	R-MI	HELA	4-EL	VE	RAT	RUO	0C2	AF	RLU
Ν		1		3	3	2	2		1	2	0	1	1		1		3		2		1
Species	LF	CON	cov	CON	COV	CON	cov	CON	cov	CON	cov	CON	COV								
SAMI3	F	_	_	_	_	_	_	_	_	5	5	_	_	_	_	_	_	_	_	_	_
SAOR2	F	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_
SASI10	F	_	_	_	_	_	_	_	_	15	17	_	_	_	_	_	_	_	_	_	_
SECY	F	_	_	_	_	_	_	_	_	45	10	9	3	_	_	_	_	_	_	_	_
SEFO	F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	1	_	_	_	_
SEPS2	F	100	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
SETR	F		_	_	_	_	_	_	_	30	18	100	41	_	_	66	2	_	_	_	_
SIPR	F	_	_	_	_	_	_	_	_	10	1			_	_		_	_	_	_	_
SODU	L L						_	100	15								_				
SOGI	L L					_	_	100	3	_							_			_	
SOMU		_	_	_	_	_		100	5	_	_	_	_	_	_	_	_	_	_	100	1
SPAN2		_	_	100	72	_	_	_		_	_	_	_	_	_	_		_	_	100	I
STCR2		_	—	100	12	_	_	_	—	_	—	9	3	_	—	_	_	_	—	_	_
STELL		_	—	_	—	_	—	_	—	_	—	18	18	_	—	_	—	_	—	_	_
STOB	Г	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_
SWPE		_	_	_	_	_	_	_	_	5	8	9	3	_	_	_	_	_	_	_	_
		100	-	_	_	_	_	_	_	Э	0	_	_	_	_	_	_		1	_	_
TAOF		100	1	_	—	_	—	_	—	_	—	—	—	_	—	—	—	50	•	_	_
THOC		_	_	_	_	_	_	_	_		30	40		_	_		1	50	1	_	_
TRIFO	F	_	—	_	—	—	_	—	—	5	30	18	35	—	—	33		—	—	_	_
TRLA14		_	_	_	_	_	_	400		_	—	_	—	_	_	33	5	_	_	_	_
TYLA		_	_	_	_	_	—	100	25	_	—		_	400					_	_	_
URDI		_	_	_	_	_	_	_	_	_	_	36	2	100	10	33	15	50	1	_	—
VASI	F	_	_	_	_	_	_	_	_	5	1	_	_	—	—	_	—	50	1	_	_
VEAM2	F	—	—	—	—	—	—	—	—	10	1	9	3	—	—	—	—	—	—	—	—
VECU	F	_	_	_	_	_	_	_	_	10	1	9	1	—	—				_	_	_
VERAT	F	—	—	—	—	—	—	—	—	5	1	—	—	—	—	100	30	50	5	—	—
VERON	F	_	—	_	—	_	—	—	—	5	1	—	—	_	—	_	_	50	1	—	_
VESE	F	_	—	_	—	_	—	—	—	15	4	—	—	_	—	33	1	—	—	—	_
VEWO2	F	_	_	_	_	_	—	_	—	15	1	—	_	—	—	_	—	_	—	_	_
VIAD	F	_	_	_	_	_	—	_	—	5	1	—	_	—	—	_	—	_	—	_	_
VIMA2	F	_	_	_	_	_	—	_	—	5	5		_	_	—	_		_	_	—	_
VIOLA	F	—	—	—	—	—	—	—	—	15	6	18	1	—	—	66	10	50	2	—	—
ZIEL2	F	—	—	—	—	—	_	—	—	5	1	_	_	—	—	—	—	50	10	—	—
AGEX	G	—	—	—	—	—	—	—	—		—	9	3	—	—	—	—	—	—	—	—
AGHU	G	—	—	—	—	—	—	—	—	10	6	—	—	—	—	—	—	—	—	—	—
AGROS2	G	_	_	_	_	_	_	_	_	5	2	9	2	_	—	_	_	50	1	—	_
AGSC5	G	_	—	—	_	—	—	—	—	—	—	9	1	—	—	_	—	—	_	—	_
AGTH2	G	_	_	_	_	_	_	_	_	10	1	_	_	_	—	33	5	—	_	—	_
BRCA5	G	100	10	—	—	—	_	_	—	—	—	9	1	_	—	33	3	100	2	—	—
BROR2	G	_	—	—	_	—	_	_	—	—	_	—	—	—	—	33	8	_	—	—	_
CACA4	G	_	—	—	_	—	_	_	—	—	_	—	—	100	4	33	15	50	10	—	_
CALAM	G	_	_	_	_	_	_	_	_	_	_	9	5	_	_	_	_	_	_	_	_
CILA2	G	_	_	_	_	_	_	_	_	_	_	54	5	100	1	_	_	_	_	_	_
DAIN	G	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_

250

Туре		JU	BA	SPA	AN2	NUF	PO2	יד	YLA	ALV	A-CA	SET	R-MI	HELA	4-EL	VE	RAT	RU	OC2	A	RLU
Ν		1		3	3	2	2		1	2	0	1	1		1		3		2		1
Species	LF	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV	CON	COV
DECE	G	_	_	_	_	_	_	_	_	45	18	_	_	_	_	_	_	_	_	_	_
DEEL	G	_	_	_	_	_	_	_	_	20	3	9	2	_	_	33	1	50	1	_	_
ELGL	Ğ										Ŭ	9	1	100	60	33	5	100	1		
FESTU	G		_				_					5	1	100	00	00	_	50	3		
	-	_	_	_	_	_	_	_	_	_	_		_	_	_	_		50	3	_	_
GLEL	G	_	_	_	—	_	_	_	—	5	1	36	4	—	_	_	—	_	_	_	
MUFI2	G	—	—	—	—	—	—	—	—	25	6	9	1	—	—	—	—	—	—	—	—
PHAL2	G	—	—	—	—	—	—	—	—	30	2	—	—	—	—	—	—	50	1	—	—
POLE2	G	_	_	_	_	_	_	_	_	_	_	9	1	_	_	_	_	_	_	_	_
POPR	G	100	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
POTR2	Ğ	100	_				_	100	10			_	_	_	_	_	_		_	_	_
STOC2	G	100	3	—		_		100	10	_		—		_		_		_		100	-
51002		100	3	_	—	_	_	_	—		_	_	_	_	_	_	_		_		1
TRWO3	G	—	—	_	—	—	—		_	10	1	—	—	_	—	—	—	100	1	—	_
CAAM10	GL	—	—	—	—	—	—	100	5	—	—	—	—	—	—	—	—	—	—	—	—
CAAT3	GL	_	—	_	—	_	_	_	_	5	1	_	_	_	_	_	_	—	_	_	_
CAHO5	GL	_	_	_	_	_	_	_	_	_	_	9	1	_	_	33	1	100	3	_	_
CAIL	GL	_	_	_	_	_	_	_	_	20	4	_	_	_	_	_	_	_	_	_	_
CAJO	GL									10	6	9	2								
	GL	_	_	_	_	_	_		_		3	5	2	_	_	_		_	_	_	_
CALE9		_	_	_	_	—	—	_	_	5	-	_	_	_	—	—	_	_	_	—	_
CALU7	GL		—	—	—	_	—			35	4	_	—		_			_		—	_
CAMI7	GL	100	5	_	—	—	—	100	3	5	15	9	5	100	2	66	4	50	1	—	_
CANE2	GL	_	_	_	_	_	_	_	_	_	_	_	—	_	_	33	1	_	—	_	_
CANI2	GL	_	_	_	_	_	_	_	_	40	7	_	_	_	_	_	_	_	_	_	_
CAPA14	GL	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	50	1	_	_
CARA6	GL									_							_	50	1		
CAREX		_	_	33	1	_	_	_	_	10	2	9	-	_	_	66	2	50	1		_
	GL	—	—	33	I	_	—	_	_			9	I	_	—	00		50	I	—	_
CARO5	GL	—	—	—	—	—	—	—	—	5	5	_	—	—	_		_	_	_	—	_
CASC12	GL	—	—	—	—	_	—	_	—	75	7	9	5	_	—	33	2	—	—	_	_
CAST5	GL	—	—	—	—	—	—	100	5	—	—	_	—	—	_	—	—	—	_	—	_
CASU6	GL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	33	3	_	_		_
CAUT	GL	100	5	33	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ELPA6	GL	100	_		_	50	3	_	_	30	4		_	_	_		_	_	_		
		100	90			50	5				т			_							
JUBA	GL	100	90	_	—	_	—	—	—		_	_	_	—	—		_		_	—	_
JUDR	GL	_	—	_	—	_	—	—	—	35	1	_	<u> </u>	—	—	33	1	50	1	_	_
JUEN	GL	—	—	—	—	—	—	—	—	—	—	9	1	—	—	—	—	—	—	—	_
JUME3	GL	—	—	_	—	_	—	_	—	20	1	27	1	_	—	—	—	_	—	_	_
JUNCU	GL	_	_	_	_	_	_	_	_	15	12	_	_	_	_	_	_	_	_	_	_
JUPA	GL	_	_	_	_	_	_	_	_	5	1	_	_	_	_	_	_	_	_	_	_
LUCA2	GL							_		10	2						_	50	1	_	_
		_	_	_	_	_	—	_	_			_	_	_	_	_		50	I	_	_
LUHI4	GL	—	—	—	—	—	—	—	—	5	10	_		—	—	—	—	—	—	—	—
LUPA4	GL	—	—	—	—	—	—	—	—	—	—	9	1	—	—	—	—	—	—	—	_
CYFR2	FH	—	—	—	—	—	—	—	—	—	—	9	1	—	—	—	—	—	—	—	—
EQAR	FH	100	3	_	_	_	_	100	100	40	8	18	4	_	_	_	_	_	_	_	_

Appendix B-9—Constancy and average cover of all species present in the following types: (continued)

Appendix C: Snag Attributes of Forested Vegetation Types

Snags sampled were at least 3 m in height and 8 cm in diameter. Snag condition classes are as follows: 1 = recent dead; 2 = fine branches gone, bark intact; 3 = bark loose, large branch stubs; 4 = solid buckskin snag; 5 = broken and rotten (following Thomas 1979).

	Condition		Tree dia	meter at breast	height	
Vegetation type	class	8–24.9 cm	25–29.9 cm	30–37.9 cm	38–52.9 cm	≥53 cm
		40.4	Ti	rees per hectare	4.0	0.5
ABLA-PIEN/LEGL	1 2	10.1	10.9	3.2	4.0	0.5 2.7
	2	_	_	J.2 —	5.2	Z.1 —
	4	20.3	_	_	_	_
	5	_	_	_	_	_
ABLA-PIEN/MEFE	1	_	_	_	_	_
	2	54.6	—	—	—	—
	3	162.8			_	—
	4 5	_	12.6	18.3	5.2	_
		150.0	6.0	5.2	2.0	
ABLA/VAME	1 2	152.9 145.7	6.2 13.8	5.2 5.2	2.0	_
	3	32.9	7.6		_	_
	4	_	_	_	_	_
	5	—	—	—	—	—
PIEN-ABLA/CASC12	1	_	_	_	_	1.7
	2	9.4	41.4	—	_	—
	3 4	—	—	—	4.2	_
	4 5	_	_	_	_	_
PIEN-ABLA/SETR	1	_	_	_	_	_
	2	37.8	18.5	36.6	18.3	1.2
	3	20.7	18.5	_	20.0	4.4
	4	_	_	—	_	—
	5	_	—	—	—	_
PIEN/EQAR	1	—	—	77.1	_	4.4
	2 3	—	—	—	—	—
	3 4	_	_	_	_	_
	5	_	_	_	_	—
PICO/CASC12	1	_	_	_	_	_
	2	126.7	_	_	_	_
	3	_	_	_	_	_
	4 5	_	_	—	_	—
	J 1	—	—	—	—	_
ABGR/TABR2/LIBO3	2	14.3	_	_	_	10.1
	3	—	25.2	_	_	_
	4	—	—	—	—	—
	5	104.0	—	—	—	1.2
ABGR/CRDO2/CADE9	1	_	_	—	—	—
	2	—	—	—	—	—
	3 4					_
	5	_	_	_	_	_
ABGR/ACGL	1	13.8	_	5.4	_	2.0
	2	22.7	_	J.4 —	3.2	2.0 3.7
	3		_	_	2.2	0.5
	4	<u> </u>	3.5	_	_	0.5
	5	1.5	—	—	1.5	—

	Condition		Tree dia	meter at breast	height	
Vegetation type	class	8–24.9 cm	25–29.9 cm	30–37.9 cm	38–52.9 cm	≥53 cm
	4	F0.0	Tr	rees per hectare		
PSME/ACGL-PHMA5	1 2	53.6 6.2	 1.2	4.4	_	2.0
	3			—	_	0.5
	4	—	—	—	—	—
	5	_	—	1.5	—	_
PSME/SYAL	1		_	—	—	—
	2	9.1	_	—	_	—
	3 4	_	_	_	0.7	_
	5	_	_	_		_
PIPO/SYAL	1	161.8	6.4	_	_	_
	2			_	_	_
	3	—	—	—	—	—
	4	—	—	—	—	—
	5	—	—	—	—	—
PIPO/CRDO2	1	—	—	—	—	—
	2 3	_	_	_	_	
	4	_	_	_	_	_
	5	—	—	—	—	_
POTR15/ALIN2-COST4	1	_	_	_	_	_
	2	_	_	_	_	_
	3	—	_	—	—	0.7
	4 5	_		_	—	0.7
		_	_	_		
POTR15/SYAL	1 2	—	—	—	—	0.2
	3	_	_	_	_	_
	4	_	_	_	_	_
	5	_	_	—	_	—
POTR15/ACGL	1	_	_	_	_	—
	2	_	_	_	_	—
	3 4	—	—	—	—	0.2
	5	_	_	_	2.2	0.2
ALRU2/SYAL/CADE9	1					
ALRUZ/STAL/GADES	2	_	_	5.2	_	_
	3	51.4	_	5.2	_	_
	4	—	—	—	—	—
	5	—	_	—	—	_
ALRH2/RUBUS	1	—	—	—	5.2	—
	2 3	_	_	_	_	
	4	_	_	_	_	_
	5	_	_	—	_	—
ALRH2/SHRUB	1	_	_	_	_	_
	2	10.1	_	_	_	_
	3	52.4	—	_	0.5	0.2
	4 5	20.7 3.5	_	1.2		
	5	5.5	_	_	_	

Appendix C—Snag Attributes of Forested Vegetation Types (continued)

Appendix D: Down Log Attributes of Forested Vegetation Types

As was the case in Crowe and Clausnitzer (1997), the below data do not necessarily represent the historical range of variability of downed log amounts and distributions. In some cases the number of plots sampled was small and therefore inadequate for reasonable generalizations regarding downed log attributes of particular forested vegetation types.

Methods

Downed log data were organized by forested vegetation type. Huber's cubic volume (Avery and Burkhart 2002) was calculated for each log as $(B_{1/2})L$ or cross-sectional area at midpoint (m^2) times length (m). Volumes of each piece within the 2.4- by 9.1-m (21.8 m²) transect were scaled up to 1 ha (10 000 m²). Within each forested vegetation type, logs were organized by decay condition class (see below) and further organized by size class (see below). Volumes were then summed for each size class within a specific decay condition class for each type.

Huber's cubic volume (HCV) was selected as the most appropriate statistic for describing the down log attributes owing to the incorporation of all available measures (diameter, length, number of pieces) of down logs into one value that is easy to calculate and interpret. For example, an 11.4-cm-diameter log, 6 m in length, would have an HCV of 28 m³/ha, and a 46-cm-diameter log, 6 m in length, would have an HCV of 449 m³/ha. Similarly, an 11.4-cm-diameter log, 2.7 m in length, would have an HCV of 13 m³/ha, and an 11.4-cm-diameter log, 14 m in length, would have a HCV of 63 m³/ha.

Condition Classes:

- 1—Bark intact, twigs present, hard, round, original color, log elevated and retains original shape
- 2-Bark intact, twigs absent, partly soft, round, original color, slightly sagging
- 3-Bark trace, few large hard pieces, round, colors faded, sagging
- 4-Bark absent, soft blocky pieces, round to oval, light brown to yellowish, entire log on ground
- 5-Soft to powdery, oval to flattened, light yellow to gray, entire log on ground

Size Classes:

1—The log does not contain a segment that is at least 15 cm in diameter for a length of at least 1.5 m. 6—The log does contain a segment that is \geq 15 and <30 cm in diameter for a length of at least 1.5 m. 12—The log does contain a segment that is \geq 30 and <51cm in diameter for a length of at least 1.5 m. 20—The log does contain a segment that is \geq 51 cm in diameter for a length of at least 1.5 m.

Vegetation type	Condition class	HCV SC 1	HCV SC 6	HCV SC 12	HCV SC20
			Cubic meters	per hectare	
ABLA-PIEN/LEGL	1	143(3 ^{<i>a</i>})	1011(2)	1077(1)	_
	2		573(2)		_
	3	—	177(1)	_	_
	4	—	156(2)	_	_
	5	_	—	815(1)	_
PIEN-ABLA/CASC12	1	_	_	_	_
	2	125(2)	—	_	—
	3	47(4)	303(2)	—	—
	4	24(2)	288(2)	—	—
	5	_	255(2)	_	_
PIEN-ABLA/SETR	1	69(4)	_	_	_
	2	89(4)	149(2)	627(2)	_
	3	130(3)	838(5)	3101(5)	—
	4	74(3)	437(10)	299(1)	—
	5	11(1)	_	_	_
ABLA/VAME	1	14(1)	_	_	_
	2	95(2)	_	_	_
	3	35(2)	182(1)	1186(2)	_
	4	59(2)	113(1)	_	—
	5	_	_	_	—

Huber's cubic volume (HCV) by condition and size class (SC)

Vegetation type	Condition class	HCV SC 1	HCV SC 6	HCV SC 12	HCV SC20
			Cubic meters	s per hectare	
ABLA-PIEN/MEFE	1	61(1)	_	_	_
	2 3	_	477(2)	2029(1)	_
	4	_			_
	5	_	_	_	_
PIEN/EQAR	1	—	126(1)	582(1)	—
	2 3	_	_	_	_
	4	_	_	_	_
	5	_	_	_	_
PICO/CASC12	1 2	_	_	_	_
	3	_	_	_	_
	4 5	—	—	—	—
ABGR/TABR2/LIBO3	5 1	—	—	—	—
ABGR/ IABRZ/LIBUS	2	95(1)	109(1)	_	_
	3		109(1) 527(2)	470.4(0)	
	4 5	_	340(2)	1734(3) 1321(2)	399(1) 1006(1)
ABGR/CRDO2/CADE		8(1)			
	2	8(1) 3(1)	_	_	_
	3 4	_	_	404(1)	_
	5	_	_		_
ABGR/ACGL	1	28(1)	_	_	_
	2	86(3)	238(2)	290(1)	1240(2)
	3 4	61(6) 9(2)	583(2)	280(1) 2758(2)	1249(2)
	5	9(2) 3(1)		_()	—
PSME/ACGL-PHMA5	1		89(1)	_	—
	2 3	38(1)	51(1) 	675(1)	3764(2)
	4	—	524(2)	1739(4)	4998(5)
	5	—	378(3)	344(12)	—
PSME/SYAL	1	_	76(1)	_	_
	2 3	_			76(1)
	4 5	13(1)	_	446(1)	—
PIPO/SYAL	5 1	13(1)	—	—	—
		_	_	_	_
	2 3 4 5	17(1)	—	—	—
	4 5	····	_	_	_
PIPO/CRDO2	1	_	_	_	_
	2 3	6(1)	—	716(1)	—
	3 4	_	_	716(1)	_
	5	_	_	100(1)	—
POTR15/ALIN2-COST	4 1			_	_
	2 3	62(3) 207(11)	75(1) 74(2)	659(2)	_
	4	18(3)	75(1) 74(2) 462(3)	659(2) 235(1)	861(1)
	5	—	—	—	—
POTR15/SYAL	1 2	35(1)	_	_	_
	2 3 4	35(1) 67(2)	80(1) 45(1)	_	_
	4 5		45(1)	643(1)	_
POTR15/ACGL	5 1	_	_	<u> </u>	
TOTRUAUGE	2	14(1) 22(1)	_	_	_
	3	22(1)	<u> </u>	171(1)	—
	4 5	_	51(1)	_	_

Huber's cubic volume (HCV) by condition and size class (SC) (continued)

Vegetation type	Condition class	HCV SC 1	HCV SC 6	HCV SC 12	HCV SC20
			Cubic meters	s per hectare	
ALRU2/SYAL/CADE9	1	_	_	_	_
	2	_	_	_	_
	3	38(3)	—	799(2)	_
	4	_	_	_	
	5	—	—	—	—
ALRH2/SHRUB	1	82(5)	250(3)	148(1)	_
	2	143(8)			
	3	239(Ì4́)	422(6)	175(1)	_
	4	214(12)	63(Ì)	892(3)	_
	5	_ /	45(1)		_
ALRH2/RUBUS	1	_	_	_	_
	2	_	_	—	_
	3	_	_	_	_
	4	134(2)	156(1)	_	_
	5			_	_

Huber's cubic volume (HCV) by condition and size class (SC) (continued)

 a Values in parentheses indicate the number of individual logs of each size and condition class that were summed to obtain the cumulative value of HCV.

Appendix E: Available Water Capacity of Mineral Soils By Texture

U.S. Department of Agriculture, Soil Conservation Service, California Technical Note 15

General term	Texture	Probable range on basis of texture ^a	Total permissible range
		Inches p	oer inch
Fine	Clay	0.12-0.15	0.12-0.17
	Silty clay	.13–.16	.12–.17
	Sandy clay	.13–.16	.12–.17
Moderately fine	Silty clay loam	.18–.19	.17–.19
	Clay loam	.17–.18	.17–.19
	Sandy clay loam	.17–.18	.17–.19
Medium	Silt loam	.15–.17	.12–.17
	Loam	.14–.16	.12–.17
	Very fine sandy loam	.14–.16	.12–.17
Moderately coarse	Fine sandy loam	.10–.12	.08–.12
	Sandy loam	.09–.11	.08–.12
	Loamy very fine sand	.09–.11	.08–.12
	Loamy fine sand	.08–.10	.08–.12
Coarse	Loamy sand	.06–.08	.06–.08
	Very fine sand	.06–.08	.06–.08
	Fine sand	.06–.08	.06–.08
	Sand	.06–.08	.06–.08
Very coarse	Coarse sand and gravel	.03–.06	.03–.06

Available water capacity related t	to soil texture
------------------------------------	-----------------

Available water capacity values for each textural class should not span more than 0.03 in/in on SCS-SOILS-5 forms.

Where gravel or other coarse fragments are present, values for textures shown above should be reduced by the percentage of coarse fragments in the soil mass.

^{*a*} These figures represent the probable ranges for each textural class based only on texture. Soil structure, organic matter content, stratification, etc. may alter these figures but only within the total permissible range shown above.

Appendix F: Species Traits

A listing of species traits for all species encountered during the field sampling effort. The Wetland column reports U.S. Department of Agriculture, Forest Service Pacific Northwest Region (Region 6) wetland indicator status. All information from the USDA Plants Database (USDA NRCS 2002b).

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
ABGR	TREE	Abies grandis	Perennial	Native to U.S.	_	_
ABLA	TREE	Abies lasiocarpa	Perennial	Native to U.S.	_	FACU
ACNE2	TREE	Acer negundo	Perennial		—	FAC+
ALRH2	TREE	Alnus rhombifolia	Perennial	Native to U.S.	_	FACW
ALRU2	TREE	Alnus rubra	Perennial	Native to U.S.	—	FAC
BEPAS	TREE	Betula papyrifera var. subcordata	Perennial	Native to U.S.	—	_
JUNI	TREE	Juglans nigra	Perennial	Native and introduced to U.S	. —	_
JUOC	TREE	Juniperus occidentalis	Perennial	Native to U.S.	_	_
LAOC	TREE	Larix occidentalis	Perennial	Native to U.S.	_	FACU+
PIAL	TREE	Pinus albicaulis	Perennial	Native to U.S.	—	_
PICO	TREE	Pinus contorta	Perennial	Native to U.S.	—	FAC-
PIEN	TREE	Picea engelmannii	Perennial	Native to U.S.	—	FAC
PIPO	TREE	Pinus ponderosa	Perennial	Native to U.S.	_	FACU-
POTR15	TREE	Populus trichocarpa	Perennial	Native to U.S.	_	_
PRAM	TREE	Prunus americana	Perennial	Native and introduced to U.S	. —	FACU
PRAV	TREE	Prunus avium	Perennial	Introduced to U.S.	_	_
PSME	TREE	Pseudotsuga menziesii	Perennial	Native to U.S.	_	_
ROPS	TREE	Robinia pseudoacacia	Perennial	Native and introduced to U.S	. —	FACU-
TSME	TREE	Tsuga mertensiana	Perennial	Native to U.S.	_	FACU
ACER	S	Acer			_	_
ACGL	S	Acer glabrum	Perennial	Native to U.S.	_	FAC
ACGLD4	S	Acer glabrum var. douglasii	Perennial	Native to U.S.	_	FAC
ALIN2	S	Alnus incana	Perennial	Native to U.S.	_	FACW
ALSI3	S	Alnus sinuata	Perennial	Native to U.S.	_	FACW
AMAL2	S	Amus sinuata Amelanchier alnifolia	Perennial	Native to U.S.	—	FACU
ARCA13	S	Artemisia cana	Perennial	Native to U.S.	_	FACO
ARTRV	S				—	
	3	Artemisia tridentata ssp. vaseyana	Perennial	Native to U.S.	—	
ARUV	S	Arctostaphylos uva-ursi	Perennial	Native to U.S.	_	FACU-
BEAQ	S	Berberis aquifolium	Perennial	Native to U.S.	—	
BEGL	S	Betula glandulosa	Perennial	Native to U.S.	—	OBL
BEOC2	S	Betula occidentalis	Perennial	Native to U.S.	—	FACW
BERE	S	Berberis repens	Perennial	Native to U.S.	—	_
BETUL	S	Betula	_	—	—	
CAME7	S	Cassiope mertensiana	Perennial	Native to U.S.	—	FACU+
CASSI3	S	Cassiope	_	—	—	—
CELE3	S	Cercocarpus ledifolius	Perennial	Native to U.S.	—	_
CERE2	S	Celtis reticulata	Perennial	Native to U.S.	—	FAC-
CESA	S	Ceanothus sanguineus	Perennial	Native to U.S.	—	NI
CHME	S	Chimaphila menziesii	Perennial	Native to U.S.	—	—
CHUM	S	Chimaphila umbellata	Perennial	Native to U.S.	—	_
CLCO2	S	Clematis columbiana	Perennial	Native to U.S.	—	—
CLEMA	S	Clematis	—	_	—	—
CLLI2	S	Clematis ligusticifolia	Perennial	Native to U.S.	—	FACU
COST4	S	Cornus stolonifera	Perennial	Native to U.S.	—	FACW
CRDO2	S	Crataegus douglasii	Perennial	Native to U.S.	_	FAC
EMNI	S	Empetrum nigrum	Perennial	Native to U.S.	_	FAC
GAHU	S	Gaultheria humifusa	Perennial	Native to U.S.	_	FAC+
GLNE	S	Glossopetalon nevadense	Perennial	Native to U.S.	_	_
HODI	S	Holodiscus discolor	Perennial	Native to U.S.	_	_
HODU	S	Holodiscus dumosus	Perennial	Native to U.S.	_	_
KAMI	S	Kalmia microphylla	Perennial	Native to U.S.	_	FACW+
KAOC	S	Kalmia occidentalis	Perennial	Native to U.S.	_	FACW+
LEDE5	S	Ledum decumbens	Perennial	Native to U.S.	_	_
LEGL	S	Ledum glandulosum	Perennial	Native to U.S.	_	FACW+
LIBO3	S	Linnaea borealis	Perennial	Native to U.S.	_	FACU-
LOCI3	S	Lonicera ciliosa	Perennial	Native to U.S.		1 400-
LOUIS LOIN5	S	Lonicera cinosa Lonicera involucrata				FAC
	S		Perennial	Native to U.S.	—	
LOUT2 MEFE	S	Lonicera utahensis Monziosia forruginoa	Perennial Perennial	Native to U.S. Native to U.S.	_	FACU+ FACU+
	S S	Menziesia ferruginea			_	
MYGA	3	Myrica gale	Perennial	Native to U.S.	—	OBL

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
OPHO	S	Oplopanax horridus	Perennial	Native to U.S.	_	FAC
PAMY	S	Paxistima myrsinites	Perennial	Native to U.S.	—	_
PHCA11	S	Physocarpus capitatus	Perennial	Native to U.S.	—	FAC+
PHEM	S	Phyllodoce empetriformis	Perennial	Native to U.S.	—	FAC
PHLE4	S	Philadelphus lewisii	Perennial	Native to U.S.	—	—
PHMA5	S	Physocarpus malvaceus	Perennial	Native to U.S.	—	_
POBA2	S	Populus balsamifera	Perennial	Native to U.S.	—	FAC
POFR4	S	Potentilla fruticosa	Perennial	Native to U.S.	—	FAC-
PRAR3	S	Prunus armeniaca	Perennial	Introduced to U.S.	—	_
PRCE	S	Prunus cerasus	Perennial	Introduced to U.S.	—	—
PRDO	S	Prunus domestica	Perennial	Introduced to U.S.	—	_
PREM	S	Prunus emarginata	Perennial	Native to U.S.	—	_
PRUNU	S	Prunus	_	_	—	_
PRVI	S	Prunus virginiana	Perennial	Native to U.S.	—	FACU
QUGA4	S	Quercus garryana	Perennial	Native to U.S.	—	—
RHAL2	S	Rhododendron albiflorum	Perennial	Native to U.S.	—	FAC
RHGL	S	Rhus glabra	Perennial	Native to U.S.	—	—
RHPU	S	Rhamnus purshiana	Perennial	Native to U.S.	_	NI
RHRA6	S	Rhus radicans	Perennial	Native to U.S.	_	_
RIBES	S	Ribes	_	_	_	_
RICE	S	Ribes cereum	Perennial	Native to U.S.	_	NI
RICO	S	Ribes cognatum	Perennial	Native to U.S.	_	_
RIHU	S	Ribes hudsonianum	Perennial	Native to U.S.	_	OBL
RIIN2	S	Ribes inerme	Perennial	Native to U.S.	_	FAC
RIIR	Š	Ribes irriguum	Perennial	Native to U.S.	_	_
RILA	Š	Ribes lacustre	Perennial	Native to U.S.	_	FAC+
RIMO2	S	Ribes montigenum	Perennial	Native to U.S.	_	_
RINI2	Š	Ribes niveum	Perennial	Native to U.S.	_	_
RIWO	S	Ribes wolfii	Perennial	Native to U.S.	_	NI
ROGY	S	Rosa gymnocarpa	Perennial	Native to U.S.	_	NI
RONU	S	Rosa nutkana	Perennial	Native to U.S.		NI
ROSA5	S	Rosa	rerennia	Native to 0.5.	—	INI
ROWO	S	Rosa woodsii	— Perennial	— Native to U.S.	_	FACU
RUBA	S	Rubus bartonianus	Perennial	Native to U.S.		NI
	S	Rubus banonianus Rubus	Fereninai	Nalive to 0.5.	—	
RUBUS RUDI2			— Descensiol	—	—	
	S	Rubus discolor	Perennial	Introduced to U.S.	_	FACU-
RUID	S	Rubus idaeus	Perennial	Native to U.S.	_	FACU
RULA	S	Rubus laciniatus	Perennial	Introduced to U.S.	—	FACU+
RULE	S	Rubus leucodermis	Perennial	Native to U.S.	—	
RUPA	S	Rubus parviflorus	Perennial	Native to U.S.	—	FACU+
SAEA	S	Salix eastwoodiea	Perennial	Native to U.S.	—	FACW
SATW	S	Salix tweedyi	Perennial	Native to U.S.	—	FACW+
SAGE2	S	Salix geyeriana	Perennial	Native to U.S.	—	_
SABE2	S	Salix bebbiana	Perennial	Native to U.S.	—	FACW
SAAR27	S	Salix arctica	Perennial	Native to U.S.	—	_
SABA3	S	Salix barclayi	Perennial	Native to U.S.	—	FACW
SABO2	S	Salix boothii	Perennial	Native to U.S.	—	OBL
SACE3	S	Sambucus cerulea	Perennial	Native to U.S.	—	FAC-
SACO2	S	Salix commutata	Perennial	Native to U.S.	_	OBL
SADR	S	Salix drummondiana	Perennial	Native to U.S.	_	FACW
SAEX	S	Salix exigua	Perennial	Native to U.S.	_	OBL
SAFA	S	Salix farriae	Perennial	Native to U.S.	—	OBL
SALA5	S	Salix lasiandra	Perennial	Native to U.S.	_	FACW+
SALA6	S	Salix lasiolepis	Perennial	Native to U.S.	_	FACW
SALE	Š	Salix lemmonii	Perennial	Native to U.S.	_	FACW+
SALIX	S	Salix	_	_	_	_
SAMBU	S	Sambucus	_	_	_	_
SAMY	S	Salix myrtillifolia	Perennial	Native to U.S.	_	FACW+
SAPL2	S	Salix planifolia	Perennial	Native to U.S.	_	OBL
SAFLZ SARA2	S	Sambucus racemosa	Perennial	Native to U.S.	_	FACU
	S					
SARI2		Salix rigida	Perennial	Native to U.S.	—	
SASC SASI2	S	Salix scouleriana	Perennial	Native to U.S.	—	FAC
3451/	S	Salix sitchensis	Perennial	Native to U.S.	—	FACW
SAWO	S	Salix wolfii	Perennial	Native to U.S.		FACW+

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
SHCA	S	Shepherdia canadensis	Perennial	Native to U.S.	_	NI
SOAU	S	Sorbus aucuparia	Perennial	Introduced to U.S.	_	_
SOSC2	S	Sorbus scopulina	Perennial	Native to U.S.	_	NI
SPBE2	S	Spiraea betulifolia	Perennial	Native to U.S.	—	NI
SPDE	S	Spiraea densiflora	Perennial	Native to U.S.	—	—
SPDO	S	Spiraea douglasii	Perennial	Native to U.S.	—	FACW
SPIRA	S	Spiraea	—	—	—	_
SYAL	S	Symphoricarpos albus	Perennial	Native to U.S.	_	FACU
SYOR2	S	Symphoricarpos oreophilus	Perennial	Native to U.S.	_	UPL
TABR2	S	Taxus brevifolia	Perennial	Native to U.S.	_	FACU-
VACA13	S	Vaccinium caespitosum	Perennial	Native to U.S.	_	FACU
VACCI	S	Vaccinium	_	_	_	_
VAME	S	Vaccinium membranaceum	Perennial	Native to U.S.	—	FACU+
VAMY2	S	Vaccinium myrtillus	Perennial	Native to U.S.	_	NI
VASC	S	Vaccinium scoparium	Perennial	Native to U.S.	_	FACU-
VAUL	S	Vaccinium uliginosum	Perennial	Native to U.S.	_	FACW+
ABCA	F	Abronia carletonii	Perennial	Native to U.S.	_	_
ACCO4	F	Aconitum columbianum	Perennial	Native to U.S.	_	FACW
ACMI2	F	Achillea millefolium	Perennial	Native and introduced to U.S.	_	FACU
ACRU2	F	Actaea rubra	Perennial	Native to U.S.	_	_
ADBI	F	Adenocaulon bicolor	Perennial	Native to U.S.	_	_
AGAST	F	Agastache	_	_	_	_
AGAU2	F	Agoseris aurantiaca	Perennial	Native to U.S.	_	FAC
AGOSE	F	Agoseris	_	_	_	_
AGUR	F	Agastache urticifolia	Perennial	Native to U.S.	_	_
ALAC4	F	Allium acuminatum	Perennial	Native to U.S.	_	_
ALVA	F	Allium validum	Perennial	Native to U.S.	_	OBL
AMLY	F	Amsinckia lycopsoides	Annual	Native to U.S.	_	_
AMRE2	F	Amsinckia retrorsa	Annual	Native to U.S.	_	_
ANAL4	F	Antennaria alpina	Perennial	Native to U.S.	_	_
ANAR3	F	Angelica arguta	Perennial	Native to U.S.	_	FACW
ANEMO	F	Anemone	_	_	_	_
ANMA	F	Anaphalis margaritacea	Perennial	Native to U.S.	_	_
ANMI3	F	Antennaria microphylla	Perennial	Native to U.S.	_	_
ANPI	F	Anemone piperi	Perennial	Native to U.S.	_	FACU-
ANRA	F	Antennaria racemosa	Perennial	Native to U.S.	_	_
ANSC8	F	Anthriscus scandicina	Annual	Introduced to U.S.	_	_
ANTEN	F	Antennaria	_	_	_	_
ANUM	F	Antennaria umbrinella	Perennial	Native to U.S.	_	FACU
APAN2	F	Apocynum androsaemifolium	Perennial	Native to U.S.	_	_
APIACF	F	Apiaceae	_	_	_	_
AQFL	F	Aquilegia flavescens	Perennial	Native to U.S.	_	_
AQFO	F	Aquilegia formosa	Perennial	Native to U.S.	_	FAC
AQUIL	F	Aquilegia	_	_	_	_
ARAM2	F	Arnica amplexicaulis	Perennial	Native to U.S.	_	FACW
ARCH3	F	Arnica chamissonis	Perennial	Native to U.S.	_	FACW
ARCO9	F	Arnica cordifolia	Perennial	Natve to U.S.	_	NI
ARCTI	F	Arctium	_	_	_	_
ARDI2	F	Arabis ×divaricarpa	Biennial, perennial	Native to U.S.	_	FACU
ARFU3	F	Arnica fulgens	Perennial	Natve to U.S.	_	NI
ARGL	F	Arabis glabra	Annual, biennial, perennial	Native to U.S.	_	NI
ARLA8	F	Arnica latifolia	Perennial	Native to U.S.	_	FAC-
ARLO6	F	Arnica longifolia	Perennial	Native to U.S.		FACW
ARLU	F	Artemisia ludoviciana	Perennial	Native to U.S.		UPL
ARMA18	F	Arenaria macrophylla	Perennial	Native to U.S.		NI
ARMI2	F	Arctium minus	Biennial	Introduced to U.S.	WY	NI
ARMO4	F	Arnica mollis	Perennial	Native to U.S.	_	FAC
ARNIC	F	Arnica			_	-
	F	Arnica Arnica parryi	Perennial	Mative to U.S.		NI
ARPAT	F	Arenaria serpyllifolia	Annual	Introduced to U.S.	_	FACU
ARPA13	1		Perennial	Native to U.S.	_	UPL
ARSE2						UFL
ARSE2 ASAL2	F	Aster alpigenus Astragalus alpinus				
ARSE2 ASAL2 ASAL7	F F	Astragalus alpinus	Perennial	Native to U.S.	_	FAC-
ARSE2 ASAL2	F				_	

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
ASCH2	F	Aster chilensis	Perennial	Native to U.S.	_	FAC
ASCO3	F	Aster conspicuus	Perennial	Native to U.S.	_	NI
ASCU5	F	Astragalus cusickii	Perennial	Native to U.S.	—	_
ASEA	F	Aster eatonii	Perennial	Native to U.S.	_	FAC+
ASFO	F	Aster foliaceus	Perennial	Native to U.S.	_	FACW-
ASMO3	F	Aster modestus	Perennial	Native to U.S.	_	FAC+
ASOC	F	Aster occidentalis	Perennial	Native to U.S.	_	FAC
ASPR	F	Asperugo procumbens	Annual	Introduced to U.S.	—	—
ASRO	F	Astragalus robbinsii	Perennial	Native to U.S.	—	FAC+
ASTER	F	Aster	_	—	—	—
ASTERF	F	Asteraceae	_	—	—	—
ASTRA	F	Astragalus	—	_	—	—
BASA3	F	Balsamorhiza sagittata	Perennial	Native to U.S.	—	NI
BICE	F	Bidens cernua	Annual	Native to U.S.	_	FACW+
BRDO	F	Brodiaea douglasii	Perennial	Native to U.S.	_	NI
BRGR	F	Brickellia grandiflora	Perennial	Native to U.S.	_	NI
BRHO	F	Brodiaea howellii	Perennial	Native to U.S.	_	NI
BRHY2	F	Brodiaea hyacinthina	Perennial	Native to U.S.	_	FACU
BRODI	F	Brodiaea	_	_	_	_
CABI2	F	Caltha biflora	Perennial	Native to U.S.	_	NI
CABU2	F	Capsella bursa-pastoris	Annual	Introduced to U.S.	_	FAC-
CACH16	F	Castilleja chrysantha	Perennial	Native to U.S.	_	N
CACO6	F	Cardamine cordifolia	Perennial	Native to U.S.	_	FACW
CACU7	F	Castilleja cusickii	Perennial	Native to U.S.	_	NI
CALE4	F	Caltha leptosepala	Perennial	Native to U.S.	_	OBL
CALLI6	F	Callitriche	_	_	_	_
CALOC	F	Calochortus	_	_	_	_
CALTH	F	Caltha	_	_	_	_
CAMI12	F	Castilleja miniata	Perennial	Native to U.S.	_	FAC
CAMPA	F	Campanula	_	_	_	_
CAOL	F	Cardamine oligosperma	Annual, biennial, perennial	Native to U.S.	_	FACW
CARDA	F	Cardamine		_	_	_
CARDU	F	Carduus	_	_	_	_
CARH4	F	Castilleja rhexiifolia	Perennial	Native to U.S.	_	FAC
CARO2	F	Campanula rotundifolia	Perennial	Native to U.S.	_	FACU+
CARYOF	F	Caryophyllaceae	_	_	_	_
CASTI2	F	Castilleja	_	_	_	_
CEAR4	F	Cerastium arvense	Perennial	Native to U.S.	_	FACU
CENU2	F	Cerastium nutans	Annual, perennial	Native to U.S.	_	FACU
CERAS	F	Cerastium			_	
CEVI3	F	Cerastium viscosum	Annual	Introduced to U.S.	_	UPL
CEVU	F	Cerastium vulgatum	Biennial, perennial	Introduced to U.S.		FACU
CHHY	F	Chenopodium hybridum	Annual	Native to U.S.	_	NI
CHLE80	F	Chrysanthemum leucanthemum	Perennial	Introduced to U.S.	WA, WY	NI
CHTE2	F	Chorispora tenella	Annual	Introduced to U.S.	····, ···	NI
CIAL	F	Circaea alpina	Perennial	Native to U.S.		FACW
CIAR4	F	Circium arvense	Perennial	Introduced to U.S.	ID, MO, OR, WA, WY	FACU+
CICA6	F	Cirsium canovirens	Biennial, perennial	Native to U.S.		NI
CIDO	F	Cicuta douglasii	Perennial	Native to U.S.	—	OBL
CIRSI	F	Cirsium	rerenniai		—	- UDL
CIUN	F	Cirsium undulatum	 Biennial, perennial	Native to U.S.	—	FACU+
CIVU	F	Cirsium vulgare	Biennial	Introduced to U.S.	OR	FACU
	-		Perennial	Native to U.S.	UK	FACU
CLME	F F	Claytonia megarhiza			_	
CLUN2 COAR4	F	Clintonia uniflora	Perennial Perennial	Native to U.S.	ID, MT, OR, WA, WY	NI NI
		Convolvulus arvensis		Introduced to U.S.	ID, WIT, OK, WA, WY	
COCA13	F	Cornus canadensis	Perennial Appual bioppial	Native to U.S.	—	FAC-
COCA5	F	Conyza canadensis	Annual, biennial	Native to U.S.	—	FACU
COGR4	F	Collomia grandiflora	Annual	Native to U.S.	_	NI
COLI2	F	Collomia linearis	Annual	Native to U.S.	—	FACU
COMA4	F	Corallorrhiza maculata	Perennial	Native to U.S.	—	FAC-
COOR	F	Conringia orientalis	Annual	Introduced to U.S.	—	NI
COPA3	F	Collinsia parviflora	Annual	Native to U.S.	—	NI
CRFR2	F	Cryptantha fragilis Cruciferae	Annual	Native to U.S.	—	NI
CRUCIF	F		_			_

DEEP CANYON AND SUBALPINE RIPARIAN AND WETLAND PLANT ASSOCIATIONS OF THE MALHEUR, UMATILLA, AND WALLOWA-WHITMAN NATIONAL FORESTS 261

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
CYOF	F	Cynoglossum officinale	Annual	Introduced to U.S.	MT, OR, WA, WY	NI
DEDE2	F	Delphinium depauperatum	Perennial	Native to U.S.	_	NI
DELPH	F	Delphinium	—	_	—	—
DEOC	F	Delphinium ×occidentale	Perennial	Native to U.S.	—	FACU-
DERI2	F	Descurainia richardsonii	Annual, biennial	Native to U.S.	—	NI
DICU	F	Dicentra cucullaria	Perennial	Native to U.S.	—	NI
DIHO3	F	Disporum hookeri	Perennial	Native to U.S.	_	NI
DISM2	F	Disporum smithii	Perennial	Native to U.S.	—	NI
DISPO	F	Disporum	_	_	_	_
DISY	F	Dipsacus sylvestris	Biennial	Introduced to U.S.	—	NI
DITR2	F	Disporum trachycarpum	Perennial	Native to U.S.	_	NI
DOAL	F	Dodecatheon alpinum	Perennial	Native to U.S.	_	FACW+
DODEC	F	Dodecatheon	—	—	—	—
DOJE	F	Dodecatheon jeffreyi	Perennial	Native to U.S.	—	FACW
DOPU	F	Dodecatheon pulchellum	Perennial	Native to U.S.	—	FACW
DRCR2	F	Draba crassifolia	Annual, biennial, perennial	Native to U.S.	—	NI
DRST2	F	Draba stenoloba	Annual, biennial, perennial	Native to U.S.	—	NI
EPAL	F	Epilobium alpinum	Perennial	Native to U.S.	—	FACU-
EPAN2	F	Epilobium angustifolium	Perennial	Native to U.S.	—	FACU+
EPGI	F	Epipactis gigantea	Perennial	Native to U.S.	—	FACW+
EPGL	F	Epilobium glaberrimum	Perennial	Native to U.S.	—	FACW
EPGL4	F	Epilobium glandulosum	Perennial	Native to U.S.	—	NI
EPHA	F	Epilobium halleanum	Perennial	Native to U.S.	_	FACW
EPILO	F	Epilobium	_	_	_	_
EPLA	F	Epilobium latifolium	Perennial	Native to U.S.	—	FACW-
EPMI	F	Epilobium minutum	Annual	Native to U.S.	—	NI
EPPA2	F	Epilobium paniculatum	Annual	Native to U.S.	—	UPL
EPWA3	F	Epilobium watsonii	Perennial	Native to U.S.	—	NI
ERAS2	F	Erysimum asperum	Biennial, perennial	Native to U.S.	—	NI
ERCO6	F	Erigeron coulteri	Perennial	Native to U.S.	—	FACW
ERGR9	F	Erythronium grandiflorum	Perennial	Native to U.S.	—	FAC-
ERIGE2	F	Erigeron	—	—	—	_
ERPE3	F	Erigeron peregrinus	Perennial	Native to U.S.	—	FACW
ERPH	F	Erigeron philadelphicus	Biennial, perennial	Native to U.S.	—	FACU
ERSP4	F	Erigeron speciosus	Perennial	Native to U.S.	—	NI
FRASE	F	Frasera		—	—	_
FRSP	F	Frasera speciosa	Perennial	Native to U.S.	_	UPL
FRVE	F	Fragaria vesca	Perennial	Native to U.S.	_	NI
FRVI	F	Fragaria virginiana	Perennial	Native to U.S.	—	UPL
GAAP2	F	Galium aparine	Annual	Native to U.S.	—	FACU
GAAS3	F	Galium asperrimum	Perennial	Native to U.S.	_	NI
GABI	F	Galium bifolium	Annual	Native to U.S.	_	NI
GABO2	F	Galium boreale	Perennial	Native to U.S.	—	FACU
GAHU2	F	Gayophytum humile	Annual	Native to U.S.	_	NI
GALIU	F	Galium		— —	—	
GAMU2	F	Galium multiflorum	Perennial	Native to U.S.	—	NI
GATR2	F	Galium trifidum	Perennial	Native to U.S.	—	FACW+
GATR3	F	Galium triflorum	Perennial	Native to U.S.	—	FACU
GEAL3	F	Geum aleppicum	Perennial	Native to U.S.	—	FACW-
GEBI2	F	Geranium bicknellii	Annual, biennial	Native to U.S.	—	NI
GECA	F	Gentiana calycosa	Perennial	Native to U.S.	—	FACW-
GEMA4	F	Geum macrophyllum	Perennial	Native to U.S.	—	FACW+
GENTI	F	Gentiana	. —	—	—	
GEPU2	F	Geranium pusillum	Annual, biennial	Introduced to U.S.	—	NI
GERAN	F	Geranium	—	—	—	_
GEUM	F	Geum			—	
GEVI2	F	Geranium viscosissimum	Annual, perennial	Native to U.S.	—	FACU+
GIAG	F	Gilia aggregata	Biennial, perennial	Native to U.S.	_	NI
GICO2	F	Gilia congesta	Perennial	Native to U.S.	_	NI
	F	Gilia		— —	_	
GILIA						
GILIA GOOB2	F	Goodyera oblongifolia	Perennial	Native to U.S.	—	FACU-
GILIA GOOB2 HABEN	F F	Habenaria	Perenniai —		—	
GILIA GOOB2	F		Perenniai — — Perennial	Native to U.S. — — Native to U.S.		

HASA F Habbarair asccala Perennial Native to U.S. — FAC HEBO F Habbarair unbesele Perennial Native to U.S. — NAtive to U.S. …	Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
ARA F Haberairie saccala Perennial Native to U.S. — FAA HEBO F Haborairie unalosconsis Perennial Native to U.S. — FAA HEBO F Hardszum borosałe Perennial Native to U.S. — FAA HEMT F Hearcharm and manu Perennial Native to U.S. — FAA HEMT F Hearcharm and manu Perennial Native to U.S. — NA HERA F Heracium angellididis Annual, perennial Native to U.S. — NA HYAR2 F Hydrophyllum copitatum Perennial Native to U.S. — NA HYAR2 F Hydrophyllum copitatum Perennial Native to U.S. — NA YPCNA F Hydrophyllum copitatum Perennial Native to U.S. — FAA YPCS F Hydrophyllum copitatum Perennial Native to U.S. — FAA YPCS F Hydrophyllum copitatum Perennial Native to U.S. … FAA	IAMI		Hackelia micrantha	Perennial	Native to U.S.	_	NI
EEO F Heighsamm boreale Perennial Native to U.S. — NAtive to U.S. …	IASA	F	Habenaria saccata	Perennial	Native to U.S.	—	FACW
HELAA F Herzberamicrantha Perennial Native to U.S. — FA HEUCH F Heuchera — — Mattive to U.S. — NI HEUCH F Heiraclum albitroum Perennial Native to U.S. — NI HERA F Horaclum gracile Perennial Native to U.S. — ON HYCRA F Hydrophyllum capitatum Perennial Native to U.S. — ON HYCRA F Hydrophyllum capitatum capitatum Perennial Native to U.S. — FA HYCRA F Hydrophyllum cocilebratize Perennial Native to U.S. — FA HYCRA F Hydrophyllum cocilebratize Perennial Native to U.S. — FA HYCOS F Hydrophyllum cocilebratize Perennial Native to U.S. — FA HYCOS F Hydrophyllum cocilebratize Perennial Native to U.S. … FA HYCOS F Hydrophyllum cocilebratize Perennial Native to U.S. … FA <td>IAUN</td> <td></td> <td>Habenaria unalascensis</td> <td>Perennial</td> <td>Native to U.S.</td> <td>_</td> <td>FAC</td>	IAUN		Habenaria unalascensis	Perennial	Native to U.S.	_	FAC
EMIR F Houchara micrantha Perennial Native to U.S. — N.I. IRLRA F Hieracium Perennial Native to U.S. — N.I. IRRA F Hieracium grazile Perennial Native to U.S. — N.I. HOR F Hieracium grazile Perennial Native to U.S. — N.I. V1704 F Hydrophyllum capitalum Perennial Native to U.S. — FM V170504 F Hydrophyllum fendleri Perennial Native to U.S. — FAA V17050 F Hydrophyllum capitalum Perennial Native to U.S. — FAA V17050 F Hydrophyllum capitalum Perennial Native to U.S. — FAA V17050 F Hydrophyllum capitalum Perennial Native to U.S. — FAA V17050 F Hydrophyllum capitalum Perennial Native to U.S. — FAA V17050 F Hyd	IEBO		Hedysarum boreale	Perennial	Native to U.S.	—	NI
HEUCH F Heichera	HELA4	F		Perennial	Native to U.S.	_	FAC
IIIAL2 F Histocium abilitorum Perennial Native to U.S. — NI HIGR F Hiraccium gracile Perennial Native to U.S. — ON HYRAU E Hypericum angalloides Annual, perennial Native to U.S. — ON HYRC4 F Hydrophyllum capitatum Perennial Native to U.S. — FAI HYRC5 F Hydrophyllum fondori Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC6 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFE7 F Hydrophyllum cicidentale Perennial Native to U.S. — OB LR1 F Labora Annual, biennial Introduced to U.S. — NN <tr< td=""><td>HEMI7</td><td>F</td><td>Heuchera micrantha</td><td>Perennial</td><td>Native to U.S.</td><td>_</td><td>NI</td></tr<>	HEMI7	F	Heuchera micrantha	Perennial	Native to U.S.	_	NI
IIIAL2 F Histocium abilitorum Perennial Native to U.S. — NI HIGR F Hiraccium gracile Perennial Native to U.S. — ON HYRAU E Hypericum angalloides Annual, perennial Native to U.S. — ON HYRC4 F Hydrophyllum capitatum Perennial Native to U.S. — FAI HYRC5 F Hydrophyllum fondori Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC5 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFC6 F Hydrophyllum cicidentale Perennial Native to U.S. — FAI HYFE7 F Hydrophyllum cicidentale Perennial Native to U.S. — OB LR1 F Labora Annual, biennial Introduced to U.S. — NN <tr< td=""><td>HEUCH</td><td>F</td><td>Heuchera</td><td>_</td><td>_</td><td>_</td><td>_</td></tr<>	HEUCH	F	Heuchera	_	_	_	_
IIGR F Hieracium gracile Perennial Native to U.S. — NI VYANZ F Hydrophyllum capitatum Perennial Native to U.S. — NI VYDR04 F Hydrophyllum capitatum Perennial Native to U.S. — NI VYDR04 F Hydrophyllum fendlerin Perennial Native to U.S. — FAI VYDR05 F Hydrophyllum accidentalae Perennial Native to U.S. — FAI VYCG F Hydrophyllum accidentalae Perennial Native to U.S. — FAI VYPE F Hydrophyllum accidentalae Perennial Native to U.S. — FAI SEO F Isseetes balenderi Perennial Native to U.S. — NI SEO F Isseetes balenderi Annual, biennial Introduced to U.S. — NI ARIM F Lativus accidentals Annual, biennial Introduced to U.S. — NI ARIM F Lativus accidentals Perennial Native to U.S. — NI			Hieracium albiflorum	Perennial	Native to U.S.	_	NI
HYAR2 F Hypericum anagalloites Annual, perennial Native to U.S. — OB HYCRA F Hydrophyllum capitatum Perennial Native to U.S. — NA HYRE F Hydrophyllum fondleri Perennial Native to U.S. — FA HYROS F Hypericum formosum vas. contoniae Perennial Native to U.S. — FA HYROS F Hypericum formosum vas. could Perennial Native to U.S. — FA HYROS F Hypericum formosum vas. could be the the the the the the the the the th	HIERA	F	Hieracium	_	_	_	_
HYXAZ F Hypericum anagalloides Annual, perennial Native to U.S. — NB HYCRA F Hydrophyllum capitatum Perennial Native to U.S. — FA HYCRO F Hydrophyllum fondieri Perennial Native to U.S. — FA HYFOS F Hypericum formosum var. cortoniae Perennial Native to U.S. — FA HYFOS F Hypericum formosum var. cortoniae Perennial Native to U.S. — FA HYCR F Hypericum formosum var. cortoniae Perennial Native to U.S. — FA HYCE F Hypericum formosum var. cortoniae Perennial Native to U.S. — FA HYCE F Hypericum formosum var. cortoniae Perennial Native to U.S. — NB LRI Illamon envirolations Perennial Native to U.S. — NB LSO Isoetes bolanderi Perennial Native to U.S. — NI LAM Lamoura anguesculo Annual, biennial Introducet to U.S. — NI </td <td>HIGR</td> <td>F</td> <td>Hieracium gracile</td> <td>Perennial</td> <td>Native to U.S.</td> <td>_</td> <td>NI</td>	HIGR	F	Hieracium gracile	Perennial	Native to U.S.	_	NI
HYCRA4 F Hydrophyllum capitaltum Perennial Native to U.S. — NA HYCRA4 F Hydrophyllum fendleri Perennial Native to U.S. — FAA HYCRA5 F Hypericum formosum var. notroine Perennial Native to U.S. — FAA HYCRA5 F Hypericum formosum var. notroine Perennial Native to U.S. — FAA HYCRA5 F Hypericum formosum var. soculeri Perennial Native to U.S. — FAA HYPER F Hypericum perforatum — — — — Mative to U.S. … FAA URI8 F Lamium anylaxis Perennial Native to U.S. … MA Mative to U.S. … MA LABI F Lamium anylexicaule Annual, biennial Introduced to U.S. … MA MA LABIAF Labitati … … … … … … … LABIAF Labitati … … … … … … … LABIAF Labitati … … … … … … … … … … … … <t< td=""><td>HYAN2</td><td>F</td><td></td><td>Annual, perennial</td><td>Native to U.S.</td><td>_</td><td>OBL</td></t<>	HYAN2	F		Annual, perennial	Native to U.S.	_	OBL
HYDROA F Hydrophyllum	HYCA4	F			Native to U.S.	_	NI
HYFED F Hypericum formosum var. noronia Perennial Native to U.S. — FAA HYFON F Hypericum formosum var. noronia Perennial Native to U.S. — FAA HYOC F Hypericum formosum var. noronia Perennial Native to U.S. — FAA HYPE F Hypericum perforatum Perennial Native to U.S. — FAA SBO F lizototica solarita Perennial Native to U.S. — FAA SBO F lizototics bolanderi Perennial Native to U.S. — FAA SBO F lizototics bolanderi Perennial Introduced to U.S. — NN ABIA F Labitum Annual, biennial Introduced to U.S. — NN ABIA F Labitus Annual, biennial Native to U.S. — NN APA5 F Labityus perufforus Perennial Native to U.S. — NN APA5 F Labityus perufforus Perennial Native to U.S. — NN LAC03 F Labityus perufforus				_	_	_	_
HYFON F Hypericum formosum var. nortoniae Perennial Native to U.S. — FAX HYFOS F Hypericum formosum var. soculei Perennial Native to U.S. — FAX HYOE F Hypericum perforatum Perennial Introduced to U.S. — FAX HYPER F Hypericum perforatum Perennial Native to U.S. — FAX HYPER F Hypericum perforatum Perennial Native to U.S. — FAX SISO F Isoetes bolanderi Perennial Native to U.S. — MAX LRI F Labuta biennis Annual, biennial Introduced to U.S. — NIX LAC03 F Labitai — — — — — — — — — — — — — — — — MX NIX _ _ MX _ _ _ _ _<				Perennial	Native to U.S.	_	FAC
HYPOC F Hydroptyllum occidentale Perennial Native to U.S. — FAC HYPC F Hydroptyllum occidentale Perennial Introduced to U.S. — FAC HYPER F Hypericum perforatum Perennial Native to U.S. — FAC LRI F Illiama rivularis Perennial Native to U.S. — FAC SBO F Lactive antipexicaule Annual, biennial Introduced to U.S. — NNI LABIA F Lactive antipexicaule Annual, biennial Introduced to U.S. — NNI LACO3 F Lapsana communis Annual, biennial Introduced to U.S. — NNI LACO3 F Lapsana communis Perennial Native to U.S. — NNI LACO3 F Laphycus pauciflorus Perennial Native to U.S. — NNI LACO4 F Lathycus pauciflorus Perennial Native to U.S. — NNI LACO3 F Laphycus pauciflorus Perennial Native to U.S. — <t< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>FAC</td></t<>						_	FAC
HYDE F Hydrophyllum occidentale Perennial Native to U.S. — FAC HYPER F Hypericum Perennial Introduced to U.S. — FAC ILRI F Illiama rivularis Perennial Native to U.S. — FAC ISBO F Lasotes bionderi Perennial Native to U.S. — NBI LAAM F Lanium amplexicoule Annual, biennial Introduced to U.S. — NI LABIS F Labiata — — — — — — LACO3 F Labiata — — — — — — — — — — — — … MIX LACO3 F Lathyrus navadensis Perennial Native to U.S. — NI NI LACO3 — MIX LACO3 — — MIX LACO3 — — MIX LAC						_	FAC
HYPER F Hypericum perforatum Perennial Introduced to U.S. MT, OR, WA NII ILRI F Iliama rivularis Perennial Native to U.S. — — ISBO F Isbeles bolanderi Perennial Native to U.S. — OB ISBO F Lamium amplexicoule Annual, biennial Introduced to U.S. — NII LABI F Labiata — — — — LACO3 F Labsana — — — — LACO3 F Labsana — — — — — LACO3 F Labras communis Annual Introduced to U.S. — NII LACO3 F Lathyrus pauciforus Perennial Native to U.S. — NII LARES F Lathyrus pauciforus Perennial Native to U.S. — NII LEQMF F Lathyrus pauciforus Perennial Native to U.S. — FAC LICA2 F Ligusticum canbyi Perennial Native to U.S. — FAC LEQUSF F Lathyrus pauciforus Perennial Native to U.S. — <						_	FACW
HYPER F Hypericum — — — — — — — — — — — — — — — — — — — AAA F Listic vication Perennial Native to U.S. — NN NA NA — — — — — — ABA F Labiota — — — …						MT OR WA	
LRI F Itiamna rivularis Perennial Native to U.S. — FAC USBO F Isodes bolanderi Perennial Native to U.S. — OB LAAM F Lamium amplexicaule Annual, biennial Introduced to U.S. — MI LABIAF F Labiaba — — — — — — — — — — — …							
ISBO F Isoeries bolanderi Perennial Native to U.S. — OB LAAM F Lanum amplexicaule Annual, biennial Introduced to U.S. — NI LABI F Labiata — … </td <td></td> <td></td> <td></td> <td>Perennial</td> <td>Native to U.S.</td> <td>_</td> <td>FAC-</td>				Perennial	Native to U.S.	_	FAC-
LAM F Lanium amplexicaule Annual, biennial Introduced to U.S. — NII LABIAF F Labiata — — — — ARIAF, F Labiata — — — — LACO3 F Lapsana communis Annual, biennial Introduced to U.S. — NII LANE3 F Lathyrus nevadensis Perennial Native to U.S. — NII LANE3 F Lathyrus nevadensis Perennial Native to U.S. — NII LASE F Lathyrus paucificous Perennial Native to U.S. — NII LATHY F Lethyrus supmacea Perennial Native to U.S. — GR LEQUAF F Ligusticum canbyi Perennial Native to U.S. — FAX LICA2 F Ligusticum grayi Perennial Native to U.S. — FAX LICA5 F Ligusticum grayi Perennial Native to U.S. — FAX LICA6 F Ligusticum grayi						_	
LABI F Lactuca biennis Annual, biennial Native to U.S. — FAA LABIAF F Labiafa — …							
LABIAF F Labiata							
LACO3 F Lapsana communis Annual Introduced to U.S. — NI LACTU F Latury and the construction of the co				Annual, Diennia	Nalive to 0.5.	—	TAC
LACTU F Lactuca — — — — — — — — — — — — — — — — — — —				Appual	Introduced to U.S.	—	 NI
LANE3 F Lathyrus nevadensis Perennial Native to U.S. MI LAPA5 F Lathyrus paucifiorus Perennial Native to U.S. MI LASE F Lathyrus paucifiorus Perennial Introduced to U.S. MI LATHY F Lathyrus - - - - LEGUMF F Legumaceae - - - - LEGUMF F Legumaceae Perennial Native to U.S. - FAQ LECA2 F Legusticum canbyi Perennial Native to U.S. - FAQ LICA2 F Ligusticum grayi Perennial Native to U.S. - FAQ LIGUS F Ligusticum grayi Perennial Native to U.S. - NI LIGUS F Ligusticum fenuifolium Perennial Native to U.S. - NI LIGUS F Ligusticum fenuifolium Perennial Native to U.S. - NI LIGUS F Ligusticum fenuifolium Perennial Native to U.S. <t< td=""><td></td><td></td><td></td><td>Annuai</td><td></td><td>—</td><td>INI</td></t<>				Annuai		—	INI
LAPAS F Lathyrus pauciflorus Perennial Native to U.S. — NN LASE F Lactuca serriola Annual, biennial Introduced to U.S. — FAC LATHY F Legumaceae — … <				 Desensiel	Netive to LLC	—	
LASE F Lacfuca serricia Annual, biennial Introduced to U.S. — FAC LATHY F Lathyrus — …						—	
LATHY F Lathyrus — — — — — — — — — — — — — — — — — — —						—	
LEGUMF F Leguímaceae — DB ELEMY3 F Lemna minor Perennial Native to U.S. — FAC LICA2 F Ligusticum canbyi Perennial Native to U.S. — FAC EAC — FAC EAC …				Annual, biennial	Introduced to U.S.	—	FAC-
LEMI3 F Lomna minor Perennial Native to U.S. — OB LEPY2 F Lewisia pygmaea Perennial Native to U.S. — FAC LICA2 F Ligusticum canbyi Perennial Native to U.S. — FAC LICA5 F Ligusticum grayi Perennial Native to U.S. — NII LIGUS F Ligusticum grayi Perennial Native to U.S. — NII LIGUS F Ligusticum grayi Perennial Native to U.S. — MII LIGUS F Ligusticum tenuifolrum Perennial Native to U.S. — MII LITE2 F Ligusticum tenuifolrum Perennial Native to U.S. — MII LOC06 F Lotus corniculatus Perennial Native to U.S. — NII LOD1 F Lomatium dissectum Perennial Native to U.S. — NII LOD203 F Lotus corniculatus Perennial Native to U.S. — NII LOP103 F				_	—	—	_
LEPY2 F Lewisia pygmaea Perennial Native to U.S. — FAC LICA2 F Ligusticum canbyi Perennial Native to U.S. — FAC LICA6 F Ligusticum canbyi Perennial Native to U.S. — FAC LICA6 F Ligusticum grayi Perennial Native to U.S. — MI LIGUS F Ligusticum grayi Perennial Native to U.S. — MI LIGUS F Ligusticum tenuifolium Perennial Native to U.S. — MI LITE2 F Ligusticum tenuifolium Perennial Native to U.S. — FAC LOC06 F Lotus corniculatus Perennial Native to U.S. — MI LOD1 F Lomatium dissectum Perennial Native to U.S. — NI LOD2 F Lopinus feucophyllus Perennial Native to U.S. — NI LUP02 F Lupinus polyphyllus Perennial Native to U.S. — NI LUP02 <td< td=""><td></td><td></td><td>0</td><td></td><td>— </td><td>—</td><td></td></td<>			0		— 	—	
LICA2 F Ligusticum canbyi Perennial Native to U.S. — FAC LICA6 F Listera cordata Perennial Native to U.S. — FAC LIGR F Ligusticum grayi Perennial Native to U.S. — NII LIGS F Ligusticum — — — — — — — — …<						—	
LICO6 F Listera cordata Perennial Native to U.S. — FAC LIGUS F Ligusticum grayi Perennial Native to U.S. — NI LIGUS F Ligusticum grayi Perennial Native to U.S. — MI LIGUS F Ligitaceae — … </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>—</td> <td></td>						—	
LIGR F Ligusticum grayi Perennial Native to U.S. — NI LIGUS F Ligusticum — — — — — — — — — — … <td></td> <td></td> <td></td> <td></td> <td></td> <td>—</td> <td></td>						—	
LIGUS F Ligusticum						—	FACW
LILIAF F Liliaceae Perennial Native to U.S NI LIPA5 F Lithophragma parviflorum Perennial Native to U.S NI LISTE F Ligusticum tenuifolium Perennial Native to U.S FAC LOC06 F Lotus corniculatus Perennial Introduced to U.S NI LODI F Lomatium dissectum Perennial Native to U.S NI LOMAT F Lomatium dissectum Perennial Native to U.S NI LOPU3 F Lotus purshianus Annual Native to U.S NI LUP23 F Lupinus pleucophyllus Perennial Native to U.S NI LUP24 F Lupinus Perennial Native to U.S NI LUP25 F Lupinus pleucophyllus Perennial Native to U.S NI LUP26 F Lupinus pleucophyllus Perennial Native to U.S NI LUP27 F Lupinus pleucophyllus Perennial Native to U.S NI LYAL F Lychnis alba Biennial, perennial Introduced to U.S NI LYAL F Lycopodium annotinum Perennial Native to U.S NI LYAN2 F Lycopodium annotinum Perennial Native to U.S NI LYAN2 F Lycopus uniforus Perennial Native to U.S NI MAVU F Marrubium vulgare Perennial Native to U.S NI MAVU F Marrubium vulgare Perennial Native to U.S NI MAVU F Mertensia ciliata Perennial Introduced to U.S FAC MEAL2 F Melitotus albus Annual Native to U.S FAC MEAL2 F Melitotus albus Annual Native to U.S FAC MEAL3 F Mentha arvensis Perennial Introduced to U.S FAC MEAL4 F Mentha arvensis Perennial Introduced to U.S FAC MEAL5 F Melitotus albus Annual, perennial Introduced to U.S FAC MEAL7 F Mentha arvensis Perennial Native to U.S FAC MEAL7 F Mentha arvensis Perennial Native to U.S FAC MENTH F Mentha Perennial Native to U.S FAC MENTH F Mentha Perennial Native to U.S FAC MEPH F Mentha ×piperita Perennial Introduced to U.S FAC MERTE F Mertensia paniculata Perennial Introduced to U.S FAC				Perennial	Native to U.S.	—	NI
LIPA5 F Lithophragma parviflorum Perennial Native to U.S. - NI LISTE F Listera - NI LOC06 F Lotus corniculatus Perennial Native to U.S. - NI NI LOMAT F Lupinus purshianus Annual Native to U.S. - NI NI LUP102 F Lupinus polyphyllus Perennial Native to U.S. - FAC NI LVAL F Lychnis coronaria Perennial Native to U.S. - FAC NI LVAL F Lychnis coronaria Perennial Native to U.S. - NI </td <td></td> <td></td> <td></td> <td>—</td> <td>—</td> <td>—</td> <td>—</td>				—	—	—	—
LISTE F Listera — — — — — — — — — — — — — — — — — — —				—	—	—	
LITE2FLigusticum tenuifoliumPerennialNative to U.SFACLOC06FLotus corniculatusPerennialIntroduced to U.SNILOD1FLomatium dissectumPerennialNative to U.SNILOMATFLomatium dissectumPerennialNative to U.SNILDPU3FLotus purshianusAnnualNative to U.SNILUP18FLupinus leucophyllusPerennialNative to U.SNILUP202FLupinus polyphyllusPerennialIntroduced to U.SFACLVP02FLychnis albaBiennial, perennialIntroduced to U.SFACLYALFLychnis coronariaPerennialNative to U.SFACLYUNFLycopus uniflorusPerennialIntroduced to U.SNILYUNFLycopus uniflorusPerennialIntroduced to U.SNIMAGR3FMadia gracilisAnnualNative to U.SNIMACL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.SFACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.SFACMEAL2FMelilotus albusAnnual, perennialIntroduced to U.SFACMEAL3FMertha arvensisPerennialIntroduced to U.SFAC		-		Perennial	Native to U.S.	—	NI
LOCO6FLotus corniculatusPerennialIntroduced to U.S.—FACLODIFLomatium dissectumPerennialNative to U.S.—NILOMATFLomatium dissectumPerennialNative to U.S.—NILOPU3FLotus purshianusAnnualNative to U.S.—NILULE3FLupinus leucophyllusPerennialNative to U.S.—NILUP02FLupinus polyphyllusPerennialNative to U.S.—FACLYALFLychnis albaBiennial, perennialIntroduced to U.S.WANILYALFLycopodium annotinumPerennialNative to U.S.—FACLYOOFLycopodium annotinumPerennialIntroduced to U.S.—MILYUNFLycopous uniflorusPerennialNative to U.S.—MIMAGR3FMadia gracilisAnnualNative to U.S.—MIMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMEC13FMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMEC13FMeltous officinalisAnnual, biennial, perennialIntroduced to U.S.—FACME				—	—	—	—
LODIFLomatium dissectumPerennialNative to U.SNILOMATFLotus purshianusAnnualNative to U.SLOPU3FLotus purshianusAnnualNative to U.SNILULE3FLupinus leucophyllusPerennialNative to U.SNILUPO2FLupinus polyphyllusPerennialNative to U.SFACLYALFLychnis albaBiennial, perennialIntroduced to U.SFACLYALFLycopodium annotinumPerennialNative to U.SFACLYCOFLycopus uniflorusPerennialIntroduced to U.SNILYUNFLycopus uniflorusPerennialNative to U.SNIMAGR3FMadia gracilisAnnualNative to U.SFACMEAL2FMelitous albusAnnual, biennial, perennialIntroduced to U.SFACMEAR4FMentha arvensisPerennialNative to U.SFACMEC13FMetronsia ciliataPerennialNative to U.SFACMEDFFMelitous officinalisAnnual, perennialIntroduced to U.SFACMEDFFMelitous officinalisAnnual, perennialIntroduced to U.SFACMEDFFMelitous officinalisAnnual, perennialIntroduced to U.SFAC <tr< td=""><td></td><td></td><td>Ligusticum tenuifolium</td><td></td><td>Native to U.S.</td><td>—</td><td>FACW</td></tr<>			Ligusticum tenuifolium		Native to U.S.	—	FACW
LOMATFLomatium			Lotus corniculatus	Perennial	Introduced to U.S.	—	FAC
LOPU3FLotus purshianusAnnualNative to U.SNILULE3FLupinus leucophyllusPerennialNative to U.SNILUP1NFLupinusLUP02FLupinus polyphyllusPerennialNative to U.SFACLYALFLycopodium annotinumPerennialIntroduced to U.S.WANILYAN2FLycopodium annotinumPerennialNative to U.SFACLYCOFLychnis coronariaPerennialIntroduced to U.SNILYUNFLycopus uniflorusPerennialNative to U.SNIMAGR3FMadia gracilisAnnualNative to U.SNIMAVUFMarrubium vulgarePerennialIntroduced to U.SFACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.SFACMEAR4FMentha arvensisPerennialNative to U.SFACMECI3FMertensia ciliataPerennialNative to U.SFACMEOFFMelilotus officinalisAnnual, perennialIntroduced to U.SFACMEOFFMelilotus officinalisAnnual, perennialIntroduced to U.SFACMEOFFMelilotus officinalisAnnual, perennialIntroduced to U.SFACMEOFFMel	lodi		Lomatium dissectum	Perennial	Native to U.S.	—	NI
LULE3FLupinus leucophyllusPerennialNative to U.SNILUPINFLupinusLUPO2FLupinus polyphyllusPerennialNative to U.SFACLYALFLycopodium annotinumPerennialIntroduced to U.S.WANILYAN2FLycopodium annotinumPerennialNative to U.SFACLYCOFLychnis coronariaPerennialIntroduced to U.SNILYUNFLycopus uniflorusPerennialNative to U.SNIMAGR3FMadia gracilisAnnualNative to U.SNIMAVUFMarubium vulgarePerennialIntroduced to U.SFACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.SFACMEAR4FMentha arvensisPerennialNative to U.SFACMEC13FMertensia ciliataPerennialNative to U.SFACMEDFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.SFACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.SFACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.SFACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U				_	_	—	_
LUPINFLupinusLUPO2FLupinus polyphyllusPerennialNative to U.SFACLYALFLychnis albaBiennial, perennialIntroduced to U.S.WANILYAN2FLycopodium annotinumPerennialNative to U.SFACLYCOFLychnis coronariaPerennialIntroduced to U.SNILYUNFLycopus uniflorusPerennialNative to U.SNIMAGR3FMadia gracilisAnnualNative to U.SNIMAVUFMarrubium vulgarePerennialIntroduced to U.SFACMEAL2FMeliotus albusAnnual, biennial, perennialIntroduced to U.SFACMECI3FMertensia ciliataPerennialNative to U.SFACMELUFMertensia ciliataPerennialIntroduced to U.SFACMEOFFMelitotus officinalisAnnual, perennialIntroduced to U.SFACMEPAFMertensia paniculataPerennialNative to U.SFACMEPIFMentha *piperitaPerennialIntroduced to U.SFACMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.SFACMERTEFMertensiaAnnualPerennialIntroduced to U.SFACMERTEF<						—	NI
LUPO2FLupinus polyphyllusPerennialNative to U.S.—FACLYALFLychnis albaBiennial, perennialIntroduced to U.S.WANILYAN2FLycopodium annotinumPerennialNative to U.S.—FACLYCOFLychnis coronariaPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—NIMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMetrosia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FAC			Lupinus leucophyllus	Perennial	Native to U.S.	—	NI
LYALFLychnis albaBiennial, perennialIntroduced to U.S.WANILYAN2FLycopodium annotinumPerennialNative to U.S.—FACLYCOFLychnis coronariaPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—NIMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia—————MERTEFMertensia—————MERTEFMertensia—— <td>LUPIN</td> <td>F</td> <td>Lupinus</td> <td>—</td> <td>—</td> <td>_</td> <td>—</td>	LUPIN	F	Lupinus	—	—	_	—
LYAN2FLycopodium annotinumPerennialNative to U.S.—FACLYCOFLychnis coronariaPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—OBMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha *piperitaPerennialIntroduced to U.S.—FACMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FACMERTEFMertensiaAnnualPerennialNative to U.S.—FACMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FACMERTEFMertensiaAnnualPerennialIntroduced to U.S.—	LUPO2	F	Lupinus polyphyllus	Perennial	Native to U.S.	_	FAC+
LYCOFLychnis coronariaPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—OBMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—NIMAVUFMerubium vulgarePerennialIntroduced to U.S.—FACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia—————	LYAL	F	Lychnis alba	Biennial, perennial	Introduced to U.S.	WA	NI
LYCOFLychnis coronariaPerennialIntroduced to U.S.—NILYUNFLycopus uniflorusPerennialNative to U.S.—OBMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FACMERTEFMertensiaPerennialNative to U.S.—FAC	LYAN2	F	Lycopodium annotinum	Perennial	Native to U.S.	_	FAC
LYUNFLycopus uniflorusPerennialNative to U.S.—OBMAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACIMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACIMEAR4FMentha arvensisPerennialNative to U.S.—FACIMECI3FMertensia ciliataPerennialNative to U.S.—FACIMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACIMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACIMEPAFMertensia paniculataPerennialNative to U.S.—FACIMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACIMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FACIMERTEFMertensiaAnnual, biennial, perennialIntroduced to U.S.—FACIMERTEFMertensiaAnnualPerennialNative to U.S.—FACIMERTEFMertensiaAnnualPerennialIntroduced to U.S.—FACIMERTEFMertensiaAnnual—————	LYCO	F		Perennial	Introduced to U.S.	_	NI
MAGR3FMadia gracilisAnnualNative to U.S.—NIMAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACIMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACIMEAR4FMentha arvensisPerennialNative to U.S.—FACIMECI3FMertensia ciliataPerennialNative to U.S.—FACIMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACIMENTHFMentha—————MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACIMEPAFMertensia paniculataPerennialNative to U.S.—FACIMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACIMERTEFMertensia—————	LYUN	F	Lycopus uniflorus	Perennial		_	OBL
MAVUFMarrubium vulgarePerennialIntroduced to U.S.—FACIMEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACIMEAR4FMentha arvensisPerennialNative to U.S.—FACIMECI3FMertensia ciliataPerennialNative to U.S.—FACIMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACIMENTHFMentha—————MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACIMEPAFMertensia paniculataPerennialNative to U.S.—FACIMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACIMERTEFMertensia————				Annual	Native to U.S.	_	NI
MEAL2FMelilotus albusAnnual, biennial, perennialIntroduced to U.S.—FACMEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMENTHFMentha————FACMEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia————				Perennial	Introduced to U.S.	_	FACU+
MEAR4FMentha arvensisPerennialNative to U.S.—FACMECI3FMertensia ciliataPerennialNative to U.S.—FACMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMENTHFMentha————MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia————						_	FACU
MECI3FMertensia ciliataPerennialNative to U.S.—FACVMELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACVMENTHFMentha————MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACVMEPAFMertensia paniculataPerennialNative to U.S.—FACVMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACVMERTEFMertensia————						_	FAC
MELUFMedicago lupulinaAnnual, perennialIntroduced to U.S.—FACMENTHFMentha—————MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia————	MECI3					_	FACW+
MENTH F Mentha — — — — — — — — — — — — — — — — — Medilotus officinalis Annual, biennial, perennial Introduced to U.S. — FAC MEPA F Mertensia paniculata Perennial Native to U.S. — FAC MEPI F Mentha ×piperita Perennial Introduced to U.S. — FAC MERTE F Mertensia — — — — —						_	FAC
MEOFFMelilotus officinalisAnnual, biennial, perennialIntroduced to U.S.—FACMEPAFMertensia paniculataPerennialNative to U.S.—FACMEPIFMentha ×piperitaPerennialIntroduced to U.S.—FACMERTEFMertensia————						_	_
MEPA F Mertensia paniculata Perennial Native to U.S. — FAC MEPI F Mentha ×piperita Perennial Introduced to U.S. — FAC MERTE F Mertensia — — — — —				Annual hiennial perennial	Introduced to U.S.	_	FACU
MEPI F Mentha × piperita Perennial Introduced to U.S. — FACV MERTE F Mertensia — — — — —							
MERTE F <i>Mertensia — — — — — —</i>							FACW+
						—	FAC W+
				 Perennial	Mative to LLS		
		Г	พษาชุลาแกษร แก่บกลีเล	Felelilliai	Native to 0.5.	—	UBL

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
MIGR	F	Microsteris gracilis	Annual	Native to U.S.	_	FACU
MIGU	F	Mimulus guttatus	Annual, perennial	Native to U.S.	—	OBL
MILE2	F	Mimulus lewisii	Perennial	Native to U.S.	_	FACW+
MIMO3	F	Mimulus moschatus	Perennial	Native to U.S.	—	FACW+
MIMUL	F	Mimulus	—		—	
MINU	F	Microseris nutans	Perennial	Native to U.S.	—	NI
MIPE	F	Mitella pentandra	Perennial	Native to U.S.	_	FACW+
MIPR	F	Mimulus primuloides	Perennial	Native to U.S.	—	FACW+
MIST3	F	Mitella stauropetala	Perennial	Native to U.S.	—	FAC
MITEL	F	Mitella Montin conditatio	— Desensiel		_	
MOCO4	F F	Montia cordifolia	Perennial	Native to U.S.	_	FACW+
MONTI MOOD	F	Montia Monardella odoratissima	 Perennial	Native to U.S.	—	FACU-
MOPA2	F		Perennial	Native to U.S.	—	FACU- FACW-
MOPA2	F	Montia parvifolia Montia perfoliata		Native to U.S.	—	NI
MOPES MOSI2	F	Montia sibirica	Annual, perennial Annual, perennial	Native to U.S.	_	NI
MOUN3	F	Monotropa uniflora	Perennial	Native to U.S.	_	FACU
MYMI	F	Myosotis micrantha	Annual	Introduced to U.S.	_	NI
MYOSO	F	Myosotis			_	
NEPA	F	Nemophila parviflora	Annual	Native to U.S.	_	NI
NUPO2	F	Nuphar polysepala	Perennial	Native to U.S.	_	NI
OSCH	F	Osmorhiza chilensis	Perennial	Native to U.S.	_	NI
OSMOR	F	Osmorhiza			_	_
OSOC	F	Osmorhiza occidentalis	Perennial	Native to U.S.	_	NI
PAFI3	F	Parnassia fimbriata	Perennial	Native to U.S.	_	OBL
PAPE5	F	Parietaria pensylvanica	Annual	Native to U.S.	_	FACU
PEFRP	F	Petasites frigidus var. palmatus	Perennial	Native to U.S.	_	FAC
PEBR	F	Pedicularis bracteosa	Perennial	Native to U.S.	_	NI
PEGL5	F	Penstemon globosus	Perennial	Native to U.S.	_	FAC+
PEGR2	F	Pedicularis groenlandica	Perennial	Native to U.S.	_	OBL
PENST	F	Penstemon	_	—	_	_
PEPA3	F	Pedicularis parryi	Perennial	Native to U.S.	—	FACU
PEPA29	F	Penstemon payettensis	Perennial	Native to U.S.	—	NI
PERA	F	Pedicularis racemosa	Perennial	Native to U.S.	_	NI
PHHA	F	Phacelia hastata	Perennial	Native to U.S.	_	NI
PLLA	F	Plantago lanceolata	Annual, biennial, perennial	Introduced to U.S.	—	FACU+
PLMA2	F	Plantago major	Perennial	Native to U.S.	—	FAC+
PLSC2	F	Plagiobothrys scouleri	Annual	Native to U.S.	—	FACW
POAR7	F	Potentilla arguta	Perennial	Native to U.S.	—	FACU
POBI6	F	Polygonum bistortoides	Perennial	Native to U.S.	—	FACW+
POBI7	F	Potentilla biennis	Annual, biennial	Native to U.S.		FACW
POCU6	F	Polygonum cuspidatum	Perennial	Introduced to U.S.	OR, WA	NI
PODI2	F	Potentilla diversifolia	Perennial	Native to U.S.	_	FACU
POFL3	F	Potentilla flabellifolia	Perennial	Native to U.S.	_	NI
POGL9 POGR9	F F	Potentilla glandulosa	Perennial Perennial	Native to U.S.	_	FAC- FAC
POLA4	F	Potentilla gracilis Polygonum lapathifolium	Annual	Native to U.S. Native to U.S.	—	FACW+
POLA4	F	Polemonium	Ainuai	Native to 0.3.	—	LYCM+
POLYG4	F	Polygonum	_	_	_	_
POOC2	F	Polemonium occidentale	Perennial	Native to U.S.	_	FACW
P00V2	F	Potentilla ovina	Perennial	Native to U.S.	_	NI
POPH	F	Polygonum phytolaccifolium	Perennial	Native to U.S.	_	FAC-
POPU3	F	Polemonium pulcherrimum	Perennial	Native to U.S.	_	NI
POTAM	F	Potamogeton		_	_	_
POTEN	F	Potentilla	_	_	_	_
POVI3	F	Polygonum viviparum	Perennial	Native to U.S.	_	FAC
PRVU	F	Prunella vulgaris	Perennial	Native to U.S.	_	FACU+
PTAN2	F	Pterospora andromedea	Perennial	Native to U.S.	_	NI
PYAS	F	Pyrola asarifolia	Perennial	Native to U.S.	_	FACU
PYMI	F	Pyrola minor	Perennial	Native to U.S.	_	FACU+
1 1 1 1 1 1 1	F	Pyrola	_	—	_	_
	•		–			FAOL
PYROL	F	Pyrola secunda	Perennial	Native to U.S.	_	FACU
PYROL PYSE RAAC3 RAAL		Pyrola secunda Ranunculus acris	Perennial Perennial	Native to U.S. Native and introduced to U.S.	 MT	FACU FACW- FACW

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
RAES	F	Ranunculus eschscholtzii	Perennial	Native to U.S.	_	FACW
RANUN	F	Ranunculus	—	_	—	—
RAOC	F	Ranunculus occidentalis	Perennial	Native to U.S.	—	FACW
RAPO	F	Ranunculus populago	Perennial	Native to U.S.	_	FACW
RARE3	F	Ranunculus repens	Perennial	Introduced to U.S.	_	FACW
RAUN	F	Ranunculus uncinatus	Annual, perennial	Native to U.S.	—	FAC
ROCU	F	Rorippa curvisiliqua	Annual, biennial	Native to U.S.	_	FACW+
RONA2	F	Rorippa nasturtium-aquaticum	Perennial	Native to U.S.	_	OBL
RUAC2	F	Rumex acetosa	Perennial	Native and introduced to U.S.	—	NI
RUCR	F	Rumex crispus	Perennial	Introduced to U.S.	_	FACW
RUMEX	F	Rumex	_	_	_	—
RUOB	F	Rumex obtusifolius	Perennial	Introduced to U.S.	_	FAC
RUOC2	F	Rudbeckia occidentalis	Perennial	Native to U.S.	_	FAC-
RUOC3	F	Rumex occidentalis	Perennial	Native to U.S.	_	FACW+
RUPA5	F	Rumex patientia	Perennial	Introduced to U.S.	_	NI
RUSA	F	Rumex salicifolius	Perennial	Native to U.S.	_	FACW
SAAM3	F	Saussurea americana	Perennial	Native to U.S.	_	NI
SAAR13	F	Saxifraga arguta	Perennial	Native to U.S.	_	FACW+
SAIN4	F	Saxifraga integrifolia	Perennial	Native to U.S.	_	FACW
SAMI3	F	Sanguisorba minor	Perennial	Introduced to U.S.	_	UPL
SAOR2	F	Saxifraga oregana	Perennial	Native to U.S.		FACW+
SASA	F	Sagina saginoides	Biennial, perennial	Native to U.S.		FACW-
SASI10	F	Sanguisorba sitchensis	Perennial	Native to U.S.	_	FACW
SAXIF	F	Saxifraga	_	_	_	_
SCAN2	F	Scleranthus annuus	Annual	Introduced to U.S.	_	UPL
SCLA	F	Scrophularia lanceolata	Perennial	Native to U.S.	_	FAC
SECY	F	Senecio cymbalarioides	Perennial	Native to U.S.	_	FACW+
SEDUM	F	Sedum	_	_	_	_
SEFO	F	Senecio foetidus	Biennial, perennial	Native to U.S.	_	FACW-
SEIN2	F	Senecio integerrimus	Biennial, perennial	Native to U.S.	_	FAC
SENEC	F	Senecio		_	_	_
SEPS2	F	Senecio pseudaureus	Perennial	Native to U.S.	_	FACW
SESE2	F	Senecio serra	Perennial	Native to U.S.	_	FAC
SEST2	F	Sedum stenopetalum	Perennial	Native to U.S.	_	NI
SETR	F	Senecio triangularis	Perennial	Native to U.S.	_	FACW+
SIAC	F	Silene acaulis	Perennial	Native to U.S.	_	UPL
SIAL2	F	Sisymbrium altissimum	Annual, biennial	Introduced to U.S.	_	FACU-
SIME	F	Silene menziesii	Perennial	Native to U.S.	_	FAC
SINO	F	Silene noctiflora	Annual	Introduced to U.S.		NI
SIOR	F	Sidalcea oregana	Perennial	Native to U.S.		FACW-
SIPR	F	Sibbaldia procumbens	Perennial	Native to U.S.	_	NI
SMILA	F	Smilacina			_	_
SMRA	F	Smilacina racemosa	Perennial	Native to U.S.	_	FAC-
SMST	F	Smilacina stellata	Perennial	Native to U.S.		FAC-
SOCA6	F	Solidago canadensis	Perennial	Native to U.S.	_	FACU
SODU	F	Solanum dulcamara	Perennial	Introduced to U.S.	WA	FAC
SOGI	F	Solidago gigantea	Perennial	Native to U.S.	_	FACW-
SOLID	F	Solidago	i erennar			TAOW-
SOMU	F	Solidago multiradiata	Perennial	Native to U.S.	_	FACU
SOSP	F		Perennial	Native to U.S.		FACU
	F	Solidago spathulata			—	OBL
SPAN2	F	Sparganium angustifolium	Perennial	Native to U.S. Native to U.S.	_	FACW
SPCA5		Sphenosciadium capitellatum	Perennial		_	
SPER	F	Sparganium erectum	Perennial	Native to U.S.	_	OBL
SPNA	F	Sparganium natans	Perennial	Native to U.S.	—	OBL
SPRO	F	Spiranthes romanzoffiana	Perennial	Native to U.S.	—	OBL
STAM2	F	Streptopus amplexifolius	Perennial	Native to U.S.	_	FAC-
STCA	F	Stellaria calycantha	Annual, perennial	Native to U.S.	_	FACW+
STCR2	F	Stellaria crispa	Perennial	Native to U.S.	_	FAC+
	F	Stellaria		—	—	
STELL		Stellaria longifolia	Perennial	Native to U.S.	—	FACW
STLO	F					
STLO STLO2	F	Stellaria longipes	Perennial	Native to U.S.	_	FACW-
STLO STLO2 STME2	F F	Stellaria longipes Stellaria media	Perennial Annual, perennial	Introduced to U.S.	_	UPL
STLO STLO2	F	Stellaria longipes	Perennial			

DEEP CANYON AND SUBALPINE RIPARIAN AND WETLAND PLANT ASSOCIATIONS OF THE MALHEUR, UMATILLA, AND WALLOWA-WHITMAN NATIONAL FORESTS 265

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
STREP3	F	Streptopus	_	_	_	_
SWPE	F	Swertia perennis	Perennial	Native to U.S.	—	FACW
SYMI	F	Synthyris missurica	Perennial	Native to U.S.	—	NI
TAOF	F	Taraxacum officinale	Perennial	Native and introduced to U.S.	—	FACU
TARAX	F	Taraxacum	_	_	—	—
THAL	F	Thalictrum alpinum	Perennial	Native to U.S.	—	FACW-
THALI2	F	Thalictrum	—	—	—	
THOC	F	Thalictrum occidentale	Perennial	Native to U.S.	—	FACU
THVE	F	Thalictrum venulosum	Perennial	Native to U.S.	—	NI
TITR	F	Tiarella trifoliata	Perennial	Native to U.S.	—	FAC-
TOFL	F	Tonella floribunda	Annual	Native to U.S.	—	NI
TRCA	F	Trautvetteria caroliniensis	Perennial	Native to U.S.	—	FAC
TRDU	F	Tragopogon dubius	Annual, biennial	Introduced to U.S.	—	NI
TRIFO	F	Trifolium		—	—	_
TRLA14	F	Trollius laxus	Perennial	Native to U.S.	—	OBL
TRLA6	F	Trientalis latifolia	Perennial	Native to U.S.	—	FAC-
TRLA8	F	Trifolium latifolium	Perennial	Native to U.S.	—	NI
TRLO	F	Trifolium longipes	Perennial	Native to U.S.	—	FAC-
TROV2	F	Trillium ovatum	Perennial	Native to U.S.	—	NI
TRPE3	F	Trillium petiolatum	Perennial	Native to U.S.	—	NI
TRPR2	F	Trifolium pratense	Biennial, perennial	Introduced to U.S.	—	FACU
TRRE3	F	Trifolium repens	Perennial	Introduced to U.S.	—	FACU+
TRWO	F	Trifolium wormskioldii	Annual, perennial	Native to U.S.	—	FACW+
TYLA	F	Typha latifolia	Perennial	Native to U.S.	—	OBL
UMBELF	F	Umbelliferae	—	—	—	—
URDI	F	Urtica dioica	Perennial	Native and introduced to U.S.	—	FAC+
VALO	F	Valerianella locusta	Annual	Introduced to U.S.	—	NI
VASI	F	Valeriana sitchensis	Perennial	Native to U.S.	—	FAC
VEAM2	F	Veronica americana	Perennial	Native to U.S.	—	OBL
VEAN2	F	Veronica anagallis-aquatica	Biennial, perennial	Native to U.S.	—	OBL
VECA2	F	Veratrum californicum	Perennial	Native to U.S.	—	OBL
VECU	F	Veronica cusickii	Perennial	Native to U.S.	—	FACW
VEPE2	F	Veronica peregrina	Annual	Native to U.S.	—	OBL
VERAT	F	Veratrum	—	_	—	—
VERON	F	Veronica	_	_	—	—
VESE	F	Veronica serpyllifolia	Perennial	Native and introduced to U.S.		FAC
VETH	F	Verbascum thapsus	Biennial	Introduced to U.S.	WA	NI
VEVI	F	Veratrum viride	Perennial	Native to U.S.	—	OBL
VEWO2	F	Veronica wormskjoldii	Perennial	Native to U.S.	—	FAC+
VIAD	F	Viola adunca	Perennial	Native to U.S.	—	FAC
VIAM	F	Vicia americana	Perennial	Native to U.S.	—	NI
VICA4	F	Viola canadensis	Perennial	Native to U.S.	—	NI
VICIA	F	Vicia	—	_	—	—
VIGL	F	Viola glabella	Perennial	Native to U.S.	—	FACW+
VIMA2	F	Viola macloskeyi	Perennial	Native to U.S.	—	OBL
VIOLA	F	Viola	—	_	—	—
VIOR	F	Viola orbiculata	Perennial	Native to U.S.	—	NI
VIPA4	F	Viola palustris	Perennial	Native to U.S.	—	OBL
XETE	F	Xerophyllum tenax	Perennial	Native to U.S.	—	NI
ZIEL2	F	Zigadenus elegans	Perennial	Native to U.S.	—	FAC+
AGAL3	G	Agrostis alba	Perennial	Introduced to U.S.	—	FACW
AGCA2	G	Agropyron caninum	Perennial	Introduced to U.S.	—	FAC-
AGDI	G	Agrostis diegoensis	Perennial	Native to U.S.	—	_
AGEX	G	Agrostis exarata	Perennial	Native to U.S.	—	FACW
AGHU	G	Agrostis humilis	Perennial	Native to U.S.	_	FACW
AGIN5	G	Agropyron inerme	Perennial	Native to U.S.	—	NI
AGRE2	G	Agropyron repens	Perennial	Introduced to U.S.	OR, WY	FACU
AGROP2	G	Agropyron	—	_	—	—
AGROS2	G	Agrostis	—	_	—	—
AGSC5	G	Agrostis scabra	Perennial	Native to U.S.	—	FAC
AGSP	G	Agropyron spicatum	Perennial	Native to U.S.	_	FACU-
	G	Agrostis stolonifera	Perennial	Native to U.S.	—	FAC+
AGST2						
AGST2 AGTE AGTH2	G G	Agrostis tenuis	Perennial	Introduced to U.S.	—	NI FACW

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
AGVA	G	Agrostis variabilis	Perennial	Native to U.S.	_	NI
ALAE	G	Alopecurus aequalis	Perennial	Native to U.S.	—	OBL
ALPR3	G	Alopecurus pratensis	Perennial	Introduced to U.S.	—	FACW
ANOD	G	Anthoxanthum odoratum	Perennial	Introduced to U.S.	_	FACU
AREL3	G	Arrhenatherum elatius	Perennial	Introduced to U.S.	_	UPL
BRAN	G	Bromus anomalus	Perennial	Native to U.S.	—	NI
BRBR5	G	Bromus briziformis	Annual	Introduced to U.S.	_	NI
BRCA5	G	Bromus carinatus	Annual, biennial, perennial	Native to U.S.	—	NI
BRCI2 BRJA	G G	Bromus ciliatus Bromus ioponiauo	Perennial Annual	Native to U.S. Introduced to U.S.	—	FAC+ FACU
BROMU	G	Bromus japonicus Bromus			_	FACU
BROR2	G	Bromus orcuttianus	Perennial	Native to U.S.	_	NI
BRPA3	G	Bromus pacificus	Perennial	Native to U.S.	_	NI
BRRI8	G	Bromus rigidus	Perennial	Introduced to U.S.	_	NI
BRSE	G	Bromus secalinus	Annual	Introduced to U.S.	_	NI
BRST2	G	Bromus sterilis	Annual	Introduced to U.S.	_	NI
BRSU2	G	Bromus suksdorfii	Perennial	Native to U.S.	_	NI
BRTE	G	Bromus tectorum	Annual	Introduced to U.S.	_	NI
BRVU	G	Bromus vulgaris	Perennial	Native to U.S.	_	FACU-
CAAQ3	G	Catabrosa aquatica	Perennial	Native to U.S.	_	OBL
CACA4	G	Calamagrostis canadensis	Perennial	Native to U.S.	_	FACW+
CALAM	Ğ	Calamagrostis			_	_
CAPU	Ğ	Calamagrostis purpurascens	Perennial	Native to U.S.	_	NI
CARU	Ğ	Calamagrostis rubescens	Perennial	Native to U.S.	_	NI
CILA2	Ğ	Cinna latifolia	Perennial	Native to U.S.	_	FACW
DAGL	Ğ	Dactylis glomerata	Perennial	Introduced to U.S.	_	FACU
DAIN	Ğ	Danthonia intermedia	Perennial	Native to U.S.	_	FACU+
DECE	G	Deschampsia cespitosa	Perennial	Native to U.S.	_	FACW
DEEL	G	Deschampsia elongata	Perennial	Native to U.S.	_	FACW-
DISP	G	Distichlis spicata	Perennial	Native to U.S.	_	FACW
ELCI2	G	Elymus cinereus	Perennial	Native to U.S.	_	NI
ELGL	G	Elymus glaucus	Perennial	Native to U.S.	_	FACU
FEAR3	G	Festuca arundinacea	Perennial	Introduced to U.S.	_	FACU-
FEID	G	Festuca idahoensis	Perennial	Native to U.S.	—	NI
FEOC	G	Festuca occidentalis	Perennial	Native to U.S.	—	NI
FEPR	G	Festuca pratensis	Perennial	Introduced to U.S.	_	FACU+
FESTU	G	Festuca L.	_	_	—	—
FESU	G	Festuca subulata	Perennial	Native to U.S.	—	FAC
FEVI	G	Festuca viridula	Perennial	Native to U.S.	—	NI
GLEL	G	Glyceria elata	Perennial	Native to U.S.	—	FACW+
GLGR	G	Glyceria grandis	Perennial	Native to U.S.	—	NI
GLST	G	Glyceria striata	Perennial	Native to U.S.	_	OBL
GLYCE	G	Glyceria		— —	_	
KOCR	G	Koeleria cristata	Perennial	Native to U.S.	_	NI
MESM	G	Melica smithii	Perennial	Native to U.S.	—	NI
MESP	G	Melica spectabilis	Perennial	Native to U.S.	_	FAC
MESU	G	Melica subulata	Perennial	Native to U.S.	—	NI
MUAN	G	Muhlenbergia andina	Perennial	Native to U.S.	—	FAC+
MUFI2	G	Muhlenbergia filiformis	Annual	Native to U.S.	_	FACW
PHAL2	G	Phleum alpinum	Perennial	Native to U.S.	10/0	FAC
PHAR3 PHPR3	G G	Phalaris arundinacea Phleum pratense	Perennial Perennial	Native to U.S. Introduced to U.S.	WA	FACW FACU
POA	G	Poa	Ferenniai		_	FACU
POACF	G	Poaceae	—	—	—	—
POACE	G	Poaceae Poa bulbosa	Perennial	Introduced to U.S.	_	NI
POCO	G	Poa compressa	Perennial	Introduced to U.S.	_	FACU
POCU3	G	Poa cusickii	Perennial	Native to U.S.	_	1 400
POLE2	G	Poa leptocoma	Perennial	Native to U.S.	_	FACW+
PONE2	G	Poa nervosa	Perennial	Native to U.S.	_	FACU-
POPA2	G	Poa palustris	Perennial	Native to U.S.	_	FAC
	G	Poa pratensis	Perennial	Native and introduced to U.S.	_	FACU+
POPR						
POPR POSA12	G	Poa sandberdii	Perenniai		_	_
POPR POSA12 POSC	G G	Poa sandbergii Poa scabrella	Perennial Perennial	Native to U.S. Native to U.S.	_	FACU

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
PUPA3	G	Puccinellia pauciflora	Perennial	Native to U.S.	_	OBL
STIPA	G	Stipa	—	_	—	—
STOC2	G	Stipa occidentalis	Perennial	Native to U.S.	—	NI
TRCA21	G	Trisetum canescens	Perennial	Native to U.S.	—	FACU
TRCE2	G	Trisetum cernuum	Perennial	Native to U.S.	—	FACU
TRSP2	G	Trisetum spicatum	Perennial	Native to U.S.	—	FACU-
TRWO3	G	Trisetum wolfii	Perennial	Native to U.S.	—	FACU-
CAAB2	GL	Carex abrupta	Perennial	Native to U.S.	—	NI
CAAM10	GL	Carex amplifolia	Perennial	Native to U.S.	—	FACW+
CAAQ	GL	Carex aquatilis	Perennial	Native to U.S.	—	OBL
CAAR2	GL	Carex arcta	Perennial	Native to U.S.	—	FACW+
CAAT3	GL	Carex athrostachya	Perennial	Native to U.S.	—	FACW
CAAU3	GL	Carex aurea	Perennial	Native to U.S.	—	FACW+
CABA3	GL	Carex backii	Perennial	Native to U.S.	—	NI
CABI10	GL	Carex bipartita	Perennial	Native to U.S.	—	OBL
CACA11	GL	Carex canescens	Perennial	Native to U.S.	—	FACW+
CACA12	GL	Carex capillaris	Perennial	Native to U.S.	—	FACW
CACO11	GL	Carex concinnoides	Perennial	Native to U.S.	—	NI
CACU5	GL	Carex cusiskii	Perennial	Native to U.S.	_	OBL
CADE9	GL	Carex deweyana	Perennial Perennial	Native to U.S.	—	FAC+ FACW
CADI6	GL	Carex disperma		Native to U.S.	—	
CAEU2	GL	Carex eurycarpa	Perennial	Native to U.S.	—	FACW+
CAGE2	GL	Carex geyeri	Perennial	Native to U.S.	—	NI
CAHE7	GL GL	Carex hendersonii	Perennial	Native to U.S.	—	NI NI
CAHO5	GL	Carex hoodii Carex illota	Perennial	Native to U.S.	—	FAC
CAIL CAJO	GL	Carex jonesii	Perennial Perennial	Native to U.S.	—	FAC FACW+
CAJO CALA11	GL		Perennial	Native to U.S.	—	OBL
	GL	Carex lasiocarpa		Native to U.S.	—	FACW
CALA13 CALA30	GL	Carex laeviculmis	Perennial Perennial	Native to U.S.	—	OBL
CALASU CALE8	GL	Carex lanuginosa Carex lenticularis	Perennial	Native to U.S. Native to U.S.	_	FACW+
CALE0	GL	Carex leporinella	Perennial	Native to U.S.	—	NI
CALES	GL	Carex lenticularis var. lenticularis	Perennial	Native to U.S.	_	FACW+
CALEL CALI7	GL	Carex limosa	Perennial	Native to U.S.	_	OBL
CALU7	GL	Carex Iuzulina	Perennial	Native to U.S.	_	OBL
CALO7 CAMI7	GL	Carex microptera	Perennial	Native to U.S.	_	FAC
CAMU7	GL	Carex muricata	Perennial	Introduced to U.S.	_	NI
CANE2	GL	Carex nebrascensis	Perennial	Native to U.S.	_	OBL
CANI2	GL	Carex nigricans	Perennial	Native to U.S.	_	FACW
CANU5	GL	Carex nudata	Perennial	Native to U.S.	_	FACW
CAPA14	GL	Carex pachystachya	Perennial	Native to U.S.	_	FAC
CAPA18	GL	Carex parryana	Perennial	Native to U.S.	_	FAC+
CAPR4	GL	Carex praeceptorium	Perennial	Native to U.S.	_	FACW+
CAPR5	GL	Carex praegracilis	Perennial	Native to U.S.	_	FACW
CAPR7	GL	Carex praticola	Perennial	Native to U.S.	_	FACW
CARA6	GL	Carex raynoldsii	Perennial	Native to U.S.	_	FACU
CAREX	GL	Carex			_	
CARO5	GL	Carex rossii	Perennial	Native to U.S.	_	NI
CARO6	GL	Carex rostrata	Perennial	Native to U.S.	_	OBL
CASA10	GL	Carex saxatilis	Perennial	Native to U.S.	_	FACW+
CASC10	GL	Carex scirpoidea	Perennial	Native to U.S.	_	FACU+
CASC12	GL	Carex scopulorum	Perennial	Native to U.S.	_	FACW
CASCP	GL	Carex scopulorum var. prionophylla	Perennial	Native to U.S.	_	FACW
CASH	GL	Carex sheldonii	Perennial	Native to U.S.	_	OBL
CASI2	GL	Carex simulata	Perennial	Native to U.S.	_	OBL
CASP5	GL	Carex spectabilis	Perennial	Native to U.S.	_	FACW
CAST5	GL	Carex stipata	Perennial	Native to U.S.	_	OBL
CASU6	GL	Carex subfusca	Perennial	Native to U.S.	_	FACU
CASU7	GL	Carex subnigricans	Perennial	Native to U.S.	_	FAC
CAUT	GL	Carex utriculata	Perennial	Native to U.S.	_	OBL
CAVE6	GL	Carex vesicaria	Perennial	Native to U.S.	_	OBL
ELBE	GL	Eleocharis bella	Perennial	Native to U.S.	_	FACW
						17.011
ELEOC	GL	Eleocharis	—	_		

Appendix	F—Species	traits	(continued)

Code	Layer	Scientific name	Duration	Nativity	Noxious	Wetland ^a
ELPA6	GL	Eleocharis pauciflora	Perennial	Native to U.S.	_	OBL
JUBA	GL	Juncus balticus	Perennial	Native to U.S.	_	OBL
JUBR3	GL	Juncus brachyphyllus	Perennial	Native to U.S.	_	NI
JUCO2	GL	Juncus confusus	Perennial	Native to U.S.	_	FAC
JUDR	GL	Juncus drummondii	Perennial	Native to U.S.	_	FACW-
JUEF	GL	Juncus effusus	Perennial	Native to U.S.	_	FACW+
JUEN	GL	Juncus ensifolius	Perennial	Native to U.S.	_	FACW
JUFI	GL	Juncus filiformis	Perennial	Native to U.S.	_	FACW+
JUME3	GL	Juncus mertensianus	Perennial	Native to U.S.	_	OBL
JUNCU	GL	Juncus	_	—	_	_
JUPA	GL	Juncus parryi	Perennial	Native to U.S.	_	FAC+
KOSI2	GL	Kobresia simpliciuscula	Perennial	Native to U.S.	_	FAC
LUCA2	GL	Luzula campestris	Perennial	Native to U.S.	_	NI
LUHI4	GL	Luzula hitchcockii	Perennial	Native to U.S.	_	NI
LUPA4	GL	Luzula parviflora	Perennial	Native to U.S.	_	FAC-
LUZUL	GL	Luzula	_	_	_	_
SCCY	GL	Scirpus cyperinus	Perennial	Native to U.S.	_	NI
SCIRP	GL	Scirpus	_	_	_	_
SCMI2	GL	Scirpus microcarpus	Perennial	Native to U.S.	_	OBL
ADPE	FH	Adiantum pedatum	Perennial	Native to U.S.	_	FAC
ATFI	FH	Athyrium filix-femina	Perennial	Native to U.S.	_	FAC
BOVI	FH	Botrychium virginianum	Perennial	Native to U.S.	_	FACU
CYFR2	FH	Cystopteris fragilis	Perennial	Native to U.S.	_	FACU
DRAU8	FH	Dryopteris austriaca	Perennial	Native to U.S.	_	NI
DRFI2	FH	Dryopteris filix-mas	Perennial	Native to U.S.	_	NI
EQAR	FH	Equisetum arvense	Perennial	Native to U.S.	OR	FAC
EQHY	FH	Equisetum hyemale	Perennial	Native to U.S.	_	FACW
EQLA	FH	Equisetum laevigatum	Perennial	Native to U.S.	_	FACW
EQPA	FH	Equisetum palustre	Perennial	Native to U.S.	_	FACW
EQUIS	FH	Equisetum	_	_	_	_
EQVA	FH	Equisetum variegatum	Perennial	Native to U.S.	_	FACW
GYDR	FH	Gymnocarpium dryopteris	Perennial	Native to U.S.	_	FAC
POMU	FH	Polystichum munitum	Perennial	Native to U.S.	_	NI
PTAQ	FH	Pteridium aquilinum	Perennial	Native to U.S.	_	FACU
WOOR	FH	Woodsia oregana	Perennial	Native to U.S.	_	NI
SPHAG2	MOSS	Sphagnum	—	-	—	-

 a UPL = obligate upland; FACU = facultative upland; FAC = facultative; + = faculative species more frequently found in wetlands; - = facultative species less frequently found in wetlands; FACW = facultative wetland; OBL = obligate wetland; NI = no indicator; - = insufficient or no information.

Appendix G: Subspecies and Varieties

Code	Layer	Scientific name	Common name
Subalpine Fir			
ABLA-PIEN			
ACCOC3	F	Aconitum columbianum Nutt. ssp. columbianum	Columbian monkshood
CASCB	GL	Carex scopulorum Holm var. bracteosa (Bailey) F.J. Herm.	Holm's Rocky Mountain sedge
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
TITRU	F	Tiarella trifoliata L. var. unifoliata (Hook.) Kurtz	oneleaf foamflower
ABLA-PIEN MEFEG2	/MEFE-F S	LOODPLAIN	rustu monziosio
-	-	Menziesia ferruginea Sm. var. glabella (Gray) M.E. Peck	rusty menziesia
ABLA/VAME			
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
CACAA8	G	Calamagrostis canadensis (Michx.) Beauv. var. acuminata Vasey ex Shear & Rydb.	northern reedgrass
CASCB	GL	Carex scopulorum Holm var. bracteosa (Bailey) F.J. Herm.	Holm's Rocky Mountain sedge
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
RAUNP	F	Ranunculus uncinatus D. Don ex G. Don var. parviflorus (Torr.) L. Benson	Idaho buttercup
TITRU	F	<i>Tiarella trifoliata</i> L. var. <i>unifoliata</i> (Hook.) Kurtz	oneleaf foamflower
Engelmann S			
PIEN-ABLA	/CASC12		
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
ELGLG	F	Elymus glaucus Buckl. ssp. glaucus	blue wildrye
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowherb
ERSPS	F	Erigeron speciosus (Lindl.) DC. var. speciosus	aspen fleabane
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
PUPAM2	G	Puccinellia pauciflora (J. Presl) Munz var. microtheca (Buckl.) C.L. Hitchc.	weak alkaligrass
PIEN-ABLA	/SETR		
ACCOC3	F	Aconitum columbianum Nutt. ssp. columbianum	Columbian monkshood
ARLUI	F	Artemisia Iudoviciana Nutt. var. incompta (Nutt.) Keck	white sagebrush
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
ELGLJ	G	Elymus glaucus Buckl. var. jepsonii Burtt-Davy	Jepson's blue wildrye
EPALL2	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	milkflower willowherb
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowherb
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
HADIL	F	Habenaria dilatata (Pursh) Hook. var. leucostachys (Lindl.) Ames	Sierra bog orchid
SOSPN2	F	Solidago spathulata DC. var. neomexicana (Gray) Cronq.	Mt. Albert goldenrod
PIEN/EQAR	ł		
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
Grand Fir Sei			
	R2/LIBO3	3-FLOODPLAIN	
TITRU	F	<i>Tiarella trifoliata</i> L. var. <i>unifoliata</i> (Hook.) Kurtz	oneleaf foamflower
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
ABGR/CRD	O2/CAD		
AGEXM3	G	Agrostis exarata Trin. ssp. minor (Hook.) C.L. Hitchc.	spike bentgrass
TRCAO	F	Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	western bugbane
ABGR/ACGI	L-FLOOD	PLAIN	
BEPAS	SD	Betula papyrifera Marsh. var. subcordata (Rydb.)	heartleaved paper birch
AGEXM3	G	Agrostis exarata Trin. ssp. minor (Hook.) C.L. Hitchc.	spike bentgrass
LANEC	F	Lathyrus nevadensis S. Wats. ssp. cusickii (S. Wats.) C.L. Hitchc.	Sierra pea
TITRU	F	Tiarella trifoliata L. var. unifoliata (Hook.) Kurtz	oneleaf foamflower
TRCAO	F	Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	western bugbane
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
		Canadonolo El tan ragaroda (Orodno) O.E. Hitono.	or copingroot violot

Code	Layer	Scientific name	Common name
Douglas-Fir S PSME/ACGL		-FLOODPLAIN	
ELGLG	G	Elymus glaucus Buckl. ssp. glaucus	blue wildrye
HYFOS2	F	Hypericum formosum Kunth ssp. scouleri (Hook.) C.L. Hitchc.	Scouler's St. Johnswort
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
SEINE	F	Senecio integerrimus Nutt. var. exaltatus (Nutt.) Crong.	
			Columbia ragwort
VIAMT2	F	Vicia americana Muhl. ex Willd. var. truncata (Nutt.) Brewer	American vetch
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
PSME/SYAL	-FLOODF	PLAIN	
ELGLJ	G	Elymus glaucus Buckl. var. jepsonii Burtt-Davy	Jepson's blue wildrye
PONEW	G	Poa nervosa (Hook.) Vasey var. wheeleri (Vasey) C.L. Hitchc.	Wheeler's bluegrass
SIMEM	F	Silene menziesii Hook. ssp. menziesii	Menzies' campion
SPBEL	S	Spiraea betulifolia Pallas var. lucida (Dougl. ex Greene) C.L. Hitchc.	shinyleaf spirea
			·····)·····
Ponderosa Pi			
PIPO/SYAL-I	FLOODPI		
SALAC	S	Salix lasiandra Benth. var. caudata (Nutt.) Sudworth	greenleaf willow
LODIM	F	Lomatium dissectum (Nutt.) Mathias & Constance var. multifidum (Nutt.)	carrotleaf biscuitroot
		Mathias & Constance	
VIAMT2	F	Vicia americana Muhl. ex Willd. var. truncata (Nutt.) Brewer	American vetch
	<u>م</u>		
PIPO/CRDO			
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
Lodgepole Pi	ne Serie	s'	
PICO/CASC		5.	
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	aubalaina flaabaaa
ERFEG	Г	Engeron peregnnus (Danks ex Pulsin) Greene ssp. <i>Camanmennus</i> (Greene) Cronq.	subalpine fleabane
Black Cotton	wood Se	ries:	
POTR15/ALI	N2-COST	Γ4	
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
RUIDG	S	Rubus idaeus L. var. gracilipes M.E. Jones	grayleaf red raspberry
TRCAO	F	Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	western bugbane
VICAR	F		
VICAR	Г	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
POTR15/SYA	AL .		
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
POTR15/AC	21		
		Elymus aleusus Buskl, son aleusus	blue wildrug
ELGLG	G	Elymus glaucus Buckl. ssp. glaucus	blue wildrye
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
VIAMT2	F	Vicia americana Muhl. ex Willd. var. truncata (Nutt.) Brewer	American vetch
Red Alder Se	riae.		
ALRU2/SYAI			
ELGLJ	G	Elymus glaucus Buckl. var. jepsonii Burtt-Davy	longon'a blue wildrug
ELGLJ	G	Elymus giaucus ducki. Val. jepsomi dui li-davy	Jepson's blue wildrye
White Alder S	eries:		
ALRH2/MES	IC SHRU	IB	
ELGLG	G	 Elymus glaucus Buckl. ssp. glaucus	blue wildrye
PRVIM	S	Prunus virginiana L. var. melanocarpa (A. Nels.) Sarg.	black chokecherry
RUIDG	S	Rubus idaeus L. var. gracilipes M.E. Jones	grayleaf red raspberry
VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
VICAN	Г	viola canadensis L. val. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
ALRH2/RUB	US		
RUIDG	S	Rubus idaeus L. var. gracilipes M.E. Jones	grayleaf red raspberry
Willow Series	:		
SAAR27	_		
ASALH	F	Aster alpigenus (Torr. & Gray) Gray var. haydenii (Porter) Cronq.	tundra aster
SAARP5	S	Salix arctica Pallas var. petraea (Anderss.) Bebb	alpine willow
SABO2/CAS	C12		
ERPEC		Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalaina flashana
	F		subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush

Code	Layer	Scientific name	Common name
SACO2/CASC	C12		
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Crong.	subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
LUCAM3	ĠL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
	F		
LUPOB3		Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
SALIX/MESIC	FORB		
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
EPALL2	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	milkflower willowherb
EPGLM2	F	Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc.	fringed willowherb
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	
			brightblue speedwell
VIMAM	F	Viola macloskeyi Lloyd ssp. macloskeyi	small white violet
SALIX/CACA	4		
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
	-	g	
SAEX	~		
AGCAM	G	Agropyron caninum (L.) Beauv. ssp. majus (Vasey) C.L. Hitchc.	slender wheatgrass
ARCHF	F	Arnica chamissonis Less. ssp. foliosa (Nutt.) Maguire	Chamisso arnica
ARLUI	F	Artemisia Iudoviciana Nutt. var. incompta (Nutt.) Keck	white sagebrush
ARLUL	F	Artemisia ludoviciana Nutt. var. latiloba Nutt.	white sagebrush
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
CAMIM5	F	Castilleja miniata Dougl. ex Hook. ssp. miniata	giant red Indian paintbrus
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
HYFOS2	F	Hypericum formosum Kunth ssp. scouleri (Hook.) C.L. Hitchc.	Scouler's St. Johnswort
SAEXM	S	Salix exigua Nutt. ssp. melanopsis (Nutt.) Cronq.	
			coyote willow
SALAC	S	Salix lasiandra Benth. var. caudata (Nutt.) Sudworth	greenleaf willow
SARIM4	S	Salix rigida Muhl. var. mackenzieana (Hook.) Cronq.	MacKenzie's willow
SAWOI2	S	Salix wolfii Bebb var. idahoensis Ball	Wolf's willow
SABO2/CAVE None	56		
SALIX/CAAQ			
None			
SAFA/ALVA			
None			
SACO2/CAUT	г		
	1		
None			
SADR/SETR			
None			
SALE/MESIC			
		Actor falicon lind on PC was quaidii (Cran) Crana	Queiek's ester
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
SAEXM	S	Salix exigua Nutt. ssp. melanopsis (Nutt.) Cronq.	coyote willow
SASI2/EQAR			
STCAB2	F	Stellaria calycantha (Ledeb.) Bong. var. bongardiana (Fern.) Fern.	Sitka starwort
Low Shrub Sei	ries:		
KAMI/CANI2			
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
PHEM MOUN	פחו		
CAMEG	-	Cassione mortansiana (Rong) D. Don ver gradilis (Dinor) C.L. Litche	western moss heather
	S	Cassiope mertensiana (Bong.) D. Don var. gracilis (Piper) C.L. Hitchc.	milkflower willowherb
	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	
EPALL2			
POFR4-BEGI	_		
	- F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Crong.	subalpine fleabane
POFR4-BEGL ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
POFR4-BEGI	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane

Code	Layer	Scientific name	Common name
Sitka Alder S ALSI3/MESI			
ACCOC3 ARLUL ASFOC2 EPALL2 SEINE STAMC TITRU	F F F F F	Aconitum columbianum Nutt. ssp. columbianum Artemisia ludoviciana Nutt. var. latiloba Nutt. Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq. Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc. Senecio integerrimus Nutt. var. exaltatus (Nutt.) Cronq. Streptopus amplexifolius (L.) DC. var. chalazatus Fassett Tiarella trifoliata L. var. unifoliata (Hook.) Kurtz	Columbian monkshood white sagebrush Cusick's aster milkflower willowherb Columbia ragwort tubercle twistedstalk oneleaf foamflower
ALSI3/ATFI ASFOC2 EPALN	F F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq. Epilobium alpinum L. var. nutans Hornem.	Cusick's aster Hornemann's willowherb
ALSI3/CILA2 ASFOC2 EPALN	2 F F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq. Epilobium alpinum L. var. nutans Hornem.	Cusick's aster Hornemann's willowherb
Mountain Ald ALIN2/ATFI	ler Serie	s:	
EPGLM2 TITRU	F F	<i>Epilobium glandulosum</i> Lehm. var. <i>macounii</i> (Trel.) C.L. Hitchc. <i>Tiarella trifoliata</i> L. var. <i>unifoliata</i> (Hook.) Kurtz	fringed willowherb oneleaf foamflower
ALIN2-COS VICAR	T4/MESI F	C FORB Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
ALIN2/GLEL RIHUP	S	Ribes hudsonianum Richards. var. petiolare (Dougl.) Jancz.	western black currant
ALIN2/EQAF JUBAM SPBEL	R GL S	<i>Juncus balticus</i> Willd. var. <i>montanus</i> Engelm. S <i>piraea betulifolia</i> Pallas var. <i>lucida</i> (Dougl. ex Greene) C.L. Hitchc.	mountain rush shinyleaf spirea
ALIN2-SYAL None			
ALIN2/CADE TRCAO	Ξ9 F	Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	western bugbane
Dther Tall Sh BEOC2/MES		В	
ELGLG <i>RUIDG</i>	G S	Elymus glaucus Buckl. ssp. glaucus Rubus idaeus L. var. gracilipes M.E. Jones	blue wildrye grayleaf red raspberry
COST4 VICAR	F	Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
CRDO2/MES AMALP2 VICAR	SIC FOR S F	B Amelanchier alnifolia (Nutt.) Nutt. ex M. Roemer var. pumila (Torr. & Gray) Schneid. Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	dwarf serviceberry creepingroot violet
SYAL SAINC SIMEM	F F	Saxifraga integrifolia Hook. var. claytoniifolia (Canby ex Small) Rosendahl Silene menziesii Hook. ssp. menziesii	peak saxifrage Menzies' campion
ACGL POGRE TRCAO	F F	Potentilla gracilis Dougl. ex Hook. var. elmeri (Rydb.) Jepson Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	combleaf cinquefoil western bugbane
CERE2/BRC LODIM	DMU F	Lomatium dissectum (Nutt.) Mathias & Constance var. multifidum (Nutt.)	carrotleaf biscuitroot
VICAR	F	Mathias & Constance Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc.	creepingroot violet
PHLE4/FOR AMALP2 ELGLG VICAR VEPEX	B S G F F	Amelanchier alnifolia (Nutt.) Nutt. ex M. Roemer var. <i>pumila</i> (Torr. & Gray) Schneid. Elymus glaucus Buckl. ssp. glaucus Viola canadensis L. var. rugulosa (Greene) C.L. Hitchc. Veronica peregrina L. var. xalapensis (Kunth) Pennell	dwarf serviceberry blue wildrye creepingroot violet hairy purslane speedwe

DEEP CANYON AND SUBALPINE RIPARIAN AND WETLAND PLANT ASSOCIATIONS OF THE MALHEUR, UMATILLA, AND WALLOWA-WHITMAN NATIONAL FORESTS 273

Code	Layer	Scientific name	Common name
LOIN5/ATFI None			
BEOC2/WE ASFOC STCAB2	T SEDO F F	GE Aster foliaceus Lindl. ex DC. var. canbyi Gray Stellaria calycantha (Ledeb.) Bong. var. bongardiana (Fern.) Fern.	Canby's aster Sitka starwort
BEOC2/PHAF None	२३		
COST4/ATFI EPGLM2 TRCAO	F F	Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc. Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	fringed willowherb western bugbane
PHCA11 None			
PHMA5-SYAL LAPAP2 POARC RUIDG VIAMT2	F F S F	Lathyrus pauciflorus Fern. var. pauciflorus Potentilla arguta Pursh ssp. convallaria (Rydb.) Keck Rubus idaeus L. var. gracilipes M.E. Jones Vicia americana Muhl. ex Willd. var. truncata (Nutt.) Brewer	fewflower pea cream cinquefoil grayleaf red raspberry American vetch
RUPA RUIDG VIAMT2	S F	Rubus idaeus L. var. gracilipes M.E. Jones Vicia americana Muhl. ex Willd. var. <i>truncata</i> (Nutt.) Brewer	grayleaf red raspberry American vetch
RUBA None			
RUDI2 None			
Wet Sedge Ser CAAQ	ries:		
EPALL2 EPGLM2	F F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc. Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc.	milkflower willowherb fringed willowherb
CAUT JUBAV MIGUD2	GL F	<i>Juncus balticus</i> Willd. var. <i>vallicola</i> Rydb. <i>Mimulus guttatus</i> DC. var. <i>depauperatus</i> (Gray) A.L. Grant	valley rush seep monkeyflower
CAVE6 None			
ELPA6 EPALL2	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	milkflower willowherb
SCMI2 ASFOC EPGLM2 STCAB2 TRCAO	F F F	Aster foliaceus Lindl. ex DC. var. canbyi Gray Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc. Stellaria calycantha (Ledeb.) Bong. var. bongardiana (Fern.) Fern. Trautvetteria caroliniensis (Walt.) Vail var. occidentalis (Gray) C.L. Hitchc.	Canby's aster fringed willowherb Sitka starwort western bugbane
CAEU2 EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowherb
CALI7 None CALE9 None			
CALE8 CALEL	GL	Carex lenticularis Michx. var. lenticularis	lakeshore sedge
CAAM10 GATRP3 HADIL RUOCP	F F F	Galium trifidum L. ssp. pacificum (Wieg.) Piper Habenaria dilatata (Pursh) Hook. var. leucostachys (Lindl.) Ames Rumex occidentalis S. Wats. var. procerus (Greene) J.T. Howell	threepetal bedstraw Sierra bog orchid western dock

Code	Layer	Scientific name	Common name
Moist Grami CASC12	noid Ser	ies:	
ACCOC3	F	Aconitum columbianum Nutt. ssp. columbianum	Columbian monkshood
AGCAM	G	Agropyron caninum (L.) Beauv. ssp. majus (Vasey) C.L. Hitchc.	slender wheatgrass
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Crong.	Cusick's aster
ASFOP	F	Aster foliaceus Lindi. ex DC. var. parryi (D.C. Eat.) Gray	
			Parry's aster
CACAA8	G	Calamagrostis canadensis (Michx.) Beauv. var. acuminata Vasey ex Shear & Rydb.	northern reedgrass
CACAP4	G	Calamagrostis canadensis (Michx.) Beauv. var. pallida (Vasey & Scribn.) Stebbins	bluejoint reedgrass
EPGLM2	F	Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc.	fringed willowherb
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
ERPEE	F	Erigeron peregrinus (Banks ex Pursh) Greene var. eucallianthemus Cronq.	subalpine fleabane
HYFON	F	Hypericum formosum Kunth var. nortoniae (M.E. Jones) C.L. Hitchc.	Nortons's St. Johnswort
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	bigleaf lupine
MIMOM2	F	Mimulus moschatus Dougl. ex Lindl. var. moschatus	muskflower
STOCM	G	Stipa occidentalis Thurb. ex S. Wats. var. minor sensu C.L. Hitchc., non (Vasey) C.L. Hitchc.	Dore's needlegrass
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	brightblue speedwell
VIMAM	F	Viola macloskeyi Lloyd ssp. macloskeyi	small white violet
CASC10 S	1 1 1 2		
CASC10-S/		Aster de la companya (Terra & Oracula de Companya de	ture dans and the
ASALH	F	Aster alpigenus (Torr. & Gray) Gray var. haydenii (Porter) Cronq.	tundra aster
CASCP2	GL	Carex scirpoidea Michx. var. pseudoscirpoidea (Rydb.) Cronq.	western singlespike sedge
HADIL	F	Habenaria dilatata (Pursh) Hook. var. leucostachys (Lindl.) Ames	Sierra bog orchid
CALU7			
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
	GL		common woodrush
CANI2			
EPALL2	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	milkflower willowherb
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowherb
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	brightblue speedwell
			5
CACA4	-	Astastalia and ball as DO and analatii (Occu) Occurs	Qualitable antes
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowherb
EPGLM2	F	Epilobium glandulosum Lehm. var. macounii (Trel.) C.L. Hitchc.	fringed willowherb
ERSPS	F	Erigeron speciosus (Lindl.) DC. var. speciosus	aspen fleabane
GATRP3	F	Galium trifidum L. ssp. pacificum (Wieg.) Piper	threepetal bedstraw
RAUNP	F	Ranunculus uncinatus D. Don ex G. Don var. parviflorus (Torr.) L. Benson	Idaho buttercup
TITRU	F	Tiarella trifoliata L. var. unifoliata (Hook.) Kurtz	oneleaf foamflower
DECE			
None			
ELCI2			
None			
CAMU7			
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
	GL	Luzuia vanipesiris (L.) DO. val. multinora (Emm.) Odiak.	
CAJO			
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	brightblue speedwell
CANE2			
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
PUPAH	Б	Puccinellia pauciflora (J. Presl) Munz var. holmii (Beal) C.L. Hitchc.	
FUPAR	G	Fuccinema paucinora (J. Fresi) munz var. nonnin (Dear) C.L. Fillonc.	Holm's pale false mannagrass

Code	Layer	Scientific name	Common name
CASU6			
GATRP3	F	Galium trifidum L. ssp. pacificum (Wieg.) Piper	threepetal bedstraw
CAMI7			
AGCAM	G	Agropyron caninum (L.) Beauv. ssp. majus (Vasey) C.L. Hitchc.	slender wheatgrass
ARLUI	F	Artemisia Iudoviciana Nutt. var. incompta (Nutt.) Keck	white sagebrush
POGRB	F	Potentilla gracilis Dougl. ex Hook. var. brunnescens (Rydb.) C.L. Hitchc.	slender cinquefoil
RAUNP	F	Ranunculus uncinatus D. Don ex G. Don var. parviflorus (Torr.) L. Benson	Idaho buttercup
STOCM	G	Stipa occidentalis Thurb. ex S. Wats. var. minor sensu C.L. Hitchc., non (Vasey) C.L. Hitchc.	Dore's needlegrass
JUBA			
POGRB	F	Potentilla gracilis Dougl. ex Hook. var. brunnescens (Rydb.) C.L. Hitchc.	slender cinquefoil
JUBAV	GL	Juncus balticus Willd. var. vallicola Rydb.	valley rush
STOCM	G	Stipa occidentalis Thurb. ex S. Wats. var. minor sensu C.L. Hitchc., non (Vasey) C.L. Hitchc.	Dore's needlegrass
Forb Series: ALVA-CASC12			
ACCOC3	F	Aconitum columbianum Nutt. ssp. columbianum	Columbian monkshood
EPALL2	F	Epilobium alpinum L. var. lactiflorum (Hausskn.) C.L. Hitchc.	milkflower willowherb
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowhe
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
ERPEE	F	Erigeron peregrinus (Banks ex Pursh) Greene var. eucallianthemus Cronq.	subalpine fleabane
GECAO	F	Gentiana calycosa Griseb. var. obtusiloba (Rydb.) C.L. Hitchc.	explorer's gentian
HYFON	F	Hypericum formosum Kunth var. nortoniae (M.E. Jones) C.L. Hitchc.	Nortons's St. Johnswo
LUCAM3	GL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	brightblue speedwell
VIMAM	F	Viola macloskeyi Lloyd ssp. macloskeyi	small white violet
SETR-MILE2			
ARCHF	F	Arnica chamissonis Less. ssp. foliosa (Nutt.) Maguire	Chamisso arnica
EPALN	F	Epilobium alpinum L. var. nutans Hornem.	Hornemann's willowhe
EPWAO2	F	Epilobium watsonii Barbey var. occidentale (Trel.) C.L. Hitchc.	Watson's willowherb
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
LUPOB3	F	Lupinus polyphyllus Lindl. var. burkei (S. Wats.) C.L. Hitchc.	largeleaf lupine
SPAN2			
None			
NUPO2			
None			
TYLA			
None			
HELA4-ELGL			
None			
VERAT			
ASFOC2	F	Aster foliaceus Lindl. ex DC. var. cusickii (Gray) Cronq.	Cusick's aster
BRCAC2	G	Bromus carinatus Hook. & Arn. var. californicus (Nutt. ex Buckl.) Shear	California brome
CACAP4	G	Calamagrostis canadensis (Michx.) Beauv. var. pallida (Vasey & Scribn.) S.	bluejoint reedgrass
MEPAB	F	Mertensia paniculata (Ait.) G. Don var. borealis (J.F. Macbr.) L.O. Williams	northern bluebells
VESEH4	F	Veronica serpyllifolia L. var. humifusa (Dickson) Vahl	brightblue speedwell
RUOC2			U
ERPEC	F	Erigeron peregrinus (Banks ex Pursh) Greene ssp. callianthemus (Greene) Cronq.	subalpine fleabane
LUCAM3	ĠL	Luzula campestris (L.) DC. var. multiflora (Ehrh.) Celak.	common woodrush
ARLU			

Appendix H: List of Animal Species Names

Common name	Scientific name
American robin	Turdus migratorius
Beaver	Castor canadensis
Black bear	Ursus americanus
Black-billed magpie	Pica hudsonia
Blue grouse	Dendragapus obscurus
Canada goose	Branta canadensis
Canyon wren	Catherpes mexicanus
Cedar waxwing	Bombycilla cedrorum
Chickadee	Poecile spp.
Chipmunk	Tamias spp.
Chukar	Alectoris chukar
Common snipe	Gallinago gallinago
Common yellowthroat	Geothlypis trichas
Crow	Corvus spp.
Dark-eyed juncos	Junco hyemalis
Deer mouse	Peromyscus spp.
Elk	Cervus elaphus
Flycatcher	Empidonax spp.
Golden-crowned kinglet	Regulus satrapa
Great blue heron	Ardea herodias
Green-winged teal	Anas crecca
Hermit thrush	Catharus guttatus
Kingfisher	Ceryle alcyon
Lazuli bunting	Passerina amoena
Lesser yellowlegs	Tringa flavipes
Long-eared owl	Asio otus
Mountain chickadee	Poecile gambeli
Mule deer	Odocoileus hemionus
Muskrat	Ondatra zibethicus
Nuthatch	Sitta spp.
Orioles	Icterus spp.
Pheasant	Phasianus colchicus
Quail	Perdix californica
Rattlesnake	Crotalus viridis
Red-winged blackbird	Agelaius phoeniceus
Ruby-crowned kinglet	Regulus calendula
Ruffed grouse	Bonasa umbellus
Rufous-sided towhee	Pipilo erythrophthalmus
Sage grouse	Centrocercus urophasianus
Sandhill crane	Grus canadensis
Sharp-tailed grouse	Tympanuchus phasianellus
Snowshoe hare	Lepus americanus
Song sparrow	Melospiza melodia
Squirrel	Tamiasciurus spp.
Steller's jay	Cyanocitta stelleri
Thrush	Catharus spp.
Tree frog	Pseudacris regilla
Trout	Oncorhynchus spp., Salvelinus spp.
Vireos	Vireo spp.
Vole	Microtus spp.
Warblers	Dendroica spp.
Weasel	Mustela frenata
Western garter snake	Thamnophis ordinoides
Wild turkey	Meleagris gallopavo
Willow flycatcher	Empidonax traillii
Winter wren	Troglodytes troglodytes
Woodpeckers	Picidae family

Pacific Northwest Research Station

Web site	http://www.fs.fed.us/pnw
Telephone	(503) 808-2592
Publication requests	(503) 808-2138
FAX	(503) 808-2130
E-mail	pnw_pnwpubs@fs.fed.us
Mailing address	Publications Distribution Pacific Northwest Research Station P.O. Box 3890 Portland, OR 97208-3890

U.S. Department of Agriculture Pacific Northwest Research Station 333 SW First Avenue P.O. Box 3890 Portland, OR 97208-3890

Official Business Penalty for Private Use, \$300