OREGON STATE UNIVERSITY, CORVALLIS

SISKIYOU NATIONAL FOREST

Pacific Northwest Region

November 1979

Prepared by

LeRoy C. Meyer and Michael P. Amaranthus Soil Scientists

PREFACE

This Soil Resource Inventory of the Siskiyou National Forest was made to provide some basic soil, bedrock, and landform information for management interpretations. The inventory is part of the Regional soils program developed by the Soil Management Branch of the Division of Watershed Management to assist forest land managers in applying multiple-use principles.

The objective of this Soil Resource Inventory is to provide soils information in a form useful to the land manager as an aid to multiple-use management as directed by Public Law 86-517. This law states that the National Forests are to be administered to achieve and maintain in perpetuity a high level of annual or regular periodic output of the various renewable resources of the National Forests without impairment of the productivity of the land.

All renewable surface resources of the National Forest are dependent upon soil, which is a <u>nonrenewable</u> resource. Soils develop at a slow rate. This fact necessitates <u>conservation</u>, wise use, and in many instances, <u>preservation</u> of this basic resource in order to produce high-level, sustained yields of water, timber, recreation, wildlife, and forage. To accomplish sustained yield of renewable resources, to conserve or preserve the soil resource while making wise use of this resource, it is necessary to have basic soils information and to make sound management interpretations.

This report contains information on climate, soils, geology, recreation, range, wildlife, vegetation, landform features, and some management interpretations. Also included are tables of Management Interpretations; Table of Soil Characteristics of Modal Sites; Table of Landtype Unit Characteristics, Features, and Qualities; and Table of Bedrock Characteristics.

Included in a separate document entitled Photo Mosaic Map Appendix are SRI mapping on aerial photo mosaics, a bedrock geology map, and an isohyetal map.

Field mapping was conducted from August 1974 through April 1978 by Soil Scientists LeRoy C. Meyer and Michael P. Amaranthus. Periodic supervision was provided by Loren Herman and George Badura (1974-1976).

Valuable assistance, advice, and cooperation received from Forest personnel during the course of the survey was sincerely appreciated.

TABLE OF CONTENTS

																								Page
Preface		i,	•		•	•	•		•	•	×	•	•	•			•	•	•		e		•	i
Use		÷	•	4			÷	۰.		•		•	÷		1		•							1
Definitio	ns and	Des	cri	pti	ons	of	La	ndt	ype	Un	its	:												
Defi	nition	s of	La	ndt	ype	Un	its			•		•		•			•							3
Grou	ped La	ndty	pe	Uni	ts	•			•	•	÷			•		•	•	•	•		÷	•		5
Lege	nd of (Comp	1ex	es	÷	•		•		•	×	•	×	÷			•		•		•	•		6
Soil	Serie	s Co	rre	lat	ion	Le	gen	d	•	•	•	÷	•	•	•	•	•	ł	•	÷	·	•	•	8
Land	type Un	nit	Des	cri	pti	ons				•		•	•	•					•					9
Appendix:	1/																							
I	Clima:	te	•	•	•		•	•	•	•		•	•	÷		•	•	•	•		•	•	•	87
II	Geolog	gy a	nd	Phys	sio	gra	phy		·			•	•				•						÷	96
III	Topog	raph	у		•			•	÷	•				•	•	•	•				÷		÷	101
IV	Vegeta	atio	n		÷				÷	•		•	•		•				e,		•	2.4	×	103
٧	Range				•	•	÷	•	•	•		÷	•	÷			•	÷			•		÷	106
VI	Wildl	ife	•			•		•	×	•		•	×.		•		•		•		•	•		107
VII	Defin	itio	ns	and	Ta	ble	s o	f M	ana	gem	ent	In	ter	pre	tat	ion	s:							
	1	Engi	nee	rin	g				•	•		•							÷			ंग		109
	1	Eros	ion	an	d H	ydr	010	gy				÷	•		•	÷	•	•				۰.		129
	. 1	Rang	e a	nd I	Wil	dli	fe	5	•	•	\mathbf{x}^{1}	•	•	•		•		•	•		•	•	÷	140
	ſ	Recr	eat	ion		•	÷		÷	•		÷			•		•					4	÷	145
		Timb	er	(Re	for	est	ati	on)				•		•					•	×	e			153
	1	Timb	er	(Ha	rve	st)		•			×	•		ŝ,	÷.			÷	•		÷			159
VIII	Engin	eeri	ng	Tes	t D	ata		•	•	•		•		•	•		•	•	•		\dot{z}			177
IX	Soil (Chem	ica	1 A	nal	ysi	s	•	×	•		•							•		×		•	227
х	Terms	, De	fin	iti	ons	, a	nd	Tab	1es	of	La	ndt	уре	Un	it	Cri	ter	ia:						
	. 1	Bedr	ock	Ch	ara	cte	ris	tic	s	•		•	•				•		•		•			228
	1	and	typ	e C	har	act	eri	sti	cs,	Fe	atu	res	, a	nd	Qua	lit	ies		•	•	•			234
	:	Soil	Ch	ara	cte	ris	tic	s o	fΜ	oda	1 5	ite								•	•			245
XI	Gloss	ary			•		÷			•							•		4	4				255
1/	SRI maj	nnin	a i	s fi	0117	d i	na	50	nar	ate	do	cum	ont	on	+ i +	led	Ph	oto	Мо	sai	c M	an	App	endix
			3 1	- II					have.			~ MILL		- 541								- r	- WP	

ii

OREGON STATE UNIVERSITY, CORVALLIS

LIST OF ILLUSTRATIONS

	ge
West Side Klamath Range - Mt. Emily	7
East Side Klamath Range - Bald Mountain	9
Siskiyou Mountain Range - East Fork Illinois River	1
Serpentinite and Peridotite East of Josephine Creek	
Olivine Gabbro - Silver Creek Drainage	
Salmon Mountain	
Douglas-fir - Tanoak Vegetative Pattern	
Mt. Butler	
Transitory Range	
Spotted Owl (Courtesy of Nietro PL M)	
Soil Suitable for Sand and Gravel Source	
Native Rock Suited for Road Surfacing	
Moderate Susceptibility to Cuthank Sloughing and Develies	
High Detected in a line of the second strong and Raveling	
High Potential for Sediment Yield	
High Suitability for Dispersed Camping	
Low Potential for Regeneration	
High Potential for Regeneration	
Skyline Logging	
Vegetative Cover Type	
lighly Dissected Landscape	
Soil Cementation	
5011 Cementation	

iii

LIST OF TABLES

iv

Land management activities generally relate to the soil resource. Timber harvest, road construction, recreation development, and many other activities have an effect on the soil resource to some degree. It is extremely important for the land manager to thoroughly understand the effect of the various activities on the soil. It is equally important for the land manager to fully understand the capabilities of the soil resource. Basic soils information contained in this report will help the land managers and planners to: 1) Determine the effects of management on the soil and water resource; and, 2) evaluate the capabilities of the soil the soil capabilities of the soil for various uses.

The information in this report is presented at the landtype unit level and is the basic level of soil identification and management interpretation used in the report. The landtype unit is derived and defined on the basis of its soil, landform, geology, and vegetation characteristics. The average delineation size is 50 to 600 acres.

At this level, management problems related to the landform and soil are defined and interpretations are made. This information has been tabulated and can be found within the Appendix of this report.

The Soil Resource Inventory (SRI) has its primary use at the planning level. Soils, landforms, and bedrock characteristics are defined at an intensity sufficient to help develop resource management policies and basic plans. <u>Due to the reconnaissance nature of this</u> <u>survey</u>, it lacks detail for use in high-intensity, small-area projects. These projects require additional on-site study by various technical specialists, including soil scientists.

There are many uses for the information in this report. Some are quite simple and apparent, while others have not yet been conceived. The real work lies ahead in effectively and fully using this information. The use of this information is achieved best by those with full understanding of the interrelationships of the basic earth features.

Examples of how SRI information can be used are listed below:

UNIVERSITY, CORVALLIS

OREGON STATE

- Land and Resource Management Plans The soils information in this report should be incorporated into the Land and Resource Management plans. As an example of application, the soil areas in this report can provide a map to show the critical soil areas and their associated problems. These problems are discussed for individual landtypes. This is the kind of information that will support the policy and directives, and assist in multiple use. Another example of use would be to color-code the photo maps to illustrate various soil management relationships. For instance, the maps can be colored to show stability, erosion, site index, etc.
- 2. <u>Transportation Planning</u> This is an area where the soils information has key application. Conditions and problems can be met or avoided based on information such as landscape stability, soil depth, soil drainage, and/or bedrock type and competency. Roads may be selected that avoid unstable areas, and construction and maintenance costs may be more accurately estimated. Sources of road rock may also be located through use of soil maps. SRI information is available for assistance in road design such as cutbank ratios and road rock thickness.
- 3. <u>Timber Management Plan</u> The soils information can suggest direction and support policy for allowable cut determinations, logging systems, slash disposal methods, operating season, and deferred cutting areas. With a better understanding of problems and their location, the cut can be planned so that at a given time the majority of cutting is not taking place in critical areas. By spreading out and deferring the more critical areas, more time is available for proper road location and design on these areas. Also, within a few years, logging technology may have developed so that harvest methods are compatible with critical soil areas without causing excessive soil and resource damage.
- 4. <u>5-Year Action Plan</u> This report provides information on the relative susceptibility of soil and other resource damage from timber harvest, road construction, and other timberrelated activities. Provided also, is information on regeneration problems and erosion control requirements.

1

- 5. <u>Recreation Planning</u> The SRI information indicates the various soil suitabilities and limitations that may apply to ski areas, camping areas, trails, roads, and other aspects of recreation development. By knowing the soil suitabilities and limitations, the planner is better able to make plans that are consistent with the capabilities of the land.
- Environmental Assessment Report Any report involving the impact of a management activity requires soils input. Whether it is a ski area, timber sale, recreation, or dam site proposal, there are soil factors that must be considered to make the report
- 7. Land Appraisal and Exchange Soils information should be used for land appraisal and exchange activities. The value of the land is related to such soil factors as texture, depth, drainage, productivity, and stability. Without knowledge of these and other soil factors, it is difficult to appraise land value.
- 8. The following is a list of more specific uses of the report. These uses are adaptable and compatible with the survey data, and are well within the scope and intensity of the survey:
 - a. <u>Engineering Testing</u> By using the soil maps, more efficient testing can be done. The soil maps can be used to determine which soils are most susceptible to certain engineering problems. These problem soils may need more closely spaced testing than soils in which few problems are anticipated.
 - b. <u>Reservoir Sites</u> This report gives information that can be used to determine problems that may be encountered for a reservoir site. The soil interpretations will enable the planner to better determine the general suitability of a particular site and the soil stability as they affect reservoir uses.
 - c. <u>Hydrologic Analysis</u> The information in the SRI is sufficient to determine a broad hydrologic analysis and water balance on the Forest, and is a basis for comparisons between larger watersheds.
 - d. <u>Timber Harvest Methods</u> Additional facts known about the potential for erosion and landscape stability will encourage selection of timber harvest methods that cause minimum damage to soil and other resources.
 - e. <u>Timber Harvest and Road Construction Operating Season</u> These activities should be scheduled at times when they will cause minimum soil damage. Many soils are subject to damage (compaction, erosion, site deterioration) by timber harvest activities when overly wet or excessively dry.
 - f. <u>Erosion Control</u> Since there is wide variability in soil texture, depth, structure, permeability, drainage, and topography, wide differences also occur in the ability of the soil to resist erosion. Forest soils are rated as to their potential erosion class. The land manager can use this information to determine which areas will need special erosion protective measures. These will need to be developed on a site-by-site basis.
 - g. <u>Recreational Developments</u> Several kinds of information are available in this report to assist in selecting favorable sites for campground development. Among these are soil and landform properties and characteristics, specific ratings of filter drainage filed suitability, the relative resistance of soil and vegetation to site deterioration, and indications of special problems which may be encountered.

DEFINITIONS AND DESCRIPTIONS OF LANDTYPE UNITS

Definitions of Landtype Units

This section defines the numbers and symbols found on the soil maps. The numbers identify landtype units. The symbols represent land features important to land management that are too small to delineate at the scale used for this survey. The symbols used in this survey are listed below:

\checkmark	Rock Outcrop
х	Unstable Area
<u>v</u>	Wet Spot and Small Marshes
EN	Slump or Slide Scarp
P29	Soil Description Location <u>1</u> /
P29M	Modal Site Location
P295	Sample Location
-	Debris Avalanche or Slide Track

Landtype Units are shown on the landtype maps as numbers. 2/ Landtype units contain a dominant landtype which accounts for at least 70 percent of the landtype delineation.

The dominant landtype of the landtype unit is described in the landtype unit description and identified by the same number as used for the landtype unit. Within the landtype unit, other landtypes occur. Those most commonly associated with the dominant landtype of the landtype unit are included in the descriptions as inclusions. These inclusions of other landtypes account for no more than 30 percent of the landtype unit.

The management interpretations apply only to the dominant landtype in each landtype unit. The interpretations for most inclusions within any landtype unit are listed on the interpretative tables according to the appropriate landtype number. The Tables of Landtype Unit Characteristics, Features, and Qualities, and Table of Bedrock Characteristics of Landtype Units are also numbered according to the dominant landtype in the landtype unit and apply to that dominant landtype.

The number 29 refers to the Soil Landtype.

2/ Landtype units contain a dominant taxonomic unit.

2

Landtype Unit Complexes

Most of the symbols shown on the maps having three digits are called "Landtype Unit Complexes." 1/ These are landtype units used in areas where two or more defined landtype units are present in an arrangement too complex to separate at the one inch per mile scale. The Legend of Complexes indicates the landtype unit components of the complex and the approximate percentage of each component.

Landtype Unit Descriptions

Most of the landtype units are described in detail. These landtypes have a definable range of characteristics that can be represented by a soil profile description. Landtype Units O through 9c are miscellaneous landtypes, quite variable, and not described in detail. They are described in a short narrative.

Information in Landtype Unit Descriptions

but are individual Landtype Units.

The first paragraph states the primary soil and land form characteristics, location, and common inclusions. The second paragraph gives a brief generalized description of the climate, including precipitation and soil temperature class. The third paragraph briefly describes elevation, slope, aspect, and stability. The fourth paragraph describes the typical vegetation. The fifth paragraph describes the soil profile and the modal site location. The sixth section describes the geology and bedrock. Reference should be made to the appropriate Appendix for definition of terms used in these descriptions.

Range of Profile Characteristics

This describes the range of soil profile characteristics that have been established for the dominant landtype within the landtype unit.

0-9 Miscellaneous landtypes.

Designation

- 10-19 Deep soils, bedrock undifferentiated.
- 21-22 Metagabbro's with related gabbros. East side of Klamath Mountains.

Grouped Landtype Units

- 26-29 Dacite and rhyollite. West side of Klamath Mountains.
- 31-35 Serpentine and peridotite. East side of Klamath Mountains.
- 36-39 Serpentine and peridotite. West side of Klamath Mountains.
- 41-43 Rhythmically bedded sandstones of the Umpqua Formation. West side of Klamath Mountains.
- 46-48 Conglomerates. West side of Klamath Mountains.
- 50 Dothan Formation and Colebrooke Formation volcanics.
- 51-55 Dothan Formation sediments and related volcanics. West side of Klamath Mountains.
- 61-62 Colebrooke Formation schists. West side of the Klamath Mountains.
- 66-68 Gneissic rock. East side of Klamath Mountains.
- 71-72 Sedimentary rocks including siltstones, mudstones, claystones, and related metasediments. Siskiyou Mountains.
- Galice Formation metasedimentary rocks and related sediments. East side of 76-77 Klamath Mountains.
- Metavolcanics and related metasediments. Siskiyou Mountains. 81-83
- Galice Formation metavolcanics and related Galice Formation metasediments. 86-87 East side of Klamath Mountains.
- 91-95 Diorites, granodiorites, quartz diorites, and locally, gabbros. East side of Klamath Mountains and in the Siskiyou Mountains.
- 96-98 Gabbros with local diorites. East side of Klamath Mountains and in the Siskiyou Mountains.
- 99-100 Olivine gabbro. Along the crest of the Klamath Mountains.
- 120-125 Rhythmically bedded sandstones and siltstones of the Type Formation. North portion of Klamath Mountains.
- 176-178 Galice Formation metasediments and related sediments and metavolcanics. West side of Klamath Mountains.
- 186-187 Galice Formation metavolcanics and related sediments and metavolcanics. West side of Klamath Mountains.
- 191-194 Diorites, granodiorites, quartz diorites, and locally, gabbros. West side of Klamath Mountains.

5

196-197 Gabbros with local diorites. West side of Klamath Mountains.

STATE UNIVERSITY, CORVALLIS OREGON

4

1/ Landtype Units 100, 121-125, 176-178, 186, 191-194, and 196-197 are not complexes

Landtype Unit No.

Landtype Unit Complexes

101	60 percent Unit 100 and 40 percent Unit 11.
126	65 percent Unit 120 and 35 percent Unit 2.
127	50 percent Unit 120 and 50 percent Unit 2.
128	50 percent Unit 120 and 50 percent Unit 121.
170	55 percent Unit 121 and 45 percent Unit 122.
	70 percent Unit 176 and 30 percent Unit 2
171	60 percent Unit 176 and 40 percent Unit 19
175	60 percent Unit 176 and 40 percent Unit 177
179	60 percent Unit 178 and 40 percent Unit 19.
190	65 percent Unit 196 and 35 percent Unit 1.
195	55 percent Unit 191 and 45 percent Unit 192.
198	55 percent Unit 191 and 45 percent Unit 192.
199	55 percent Unit 196 and 45 percent Unit 197.
210	65 percent Unit 191 and 35 percent Unit 1.
	60 percent Unit 21 and 40 percent Unit 1.
212	60 percent Unit 21 and 40 percent Unit 22.
312	65 percent Unit 31 and 35 percent Unit 32.
313	65 percent Unit 31 and 35 percent Unit 3.
314	60 percent Unit 31 and 40 percent Unit 34.
315	60 percent Unit 31 and 40 percent Unit 34.
343	60 percent Unit 31 and 40 percent Unit 35.
352	60 percent Unit 34 and 40 percent Unit 3.
353	60 percent Unit 35 and 40 percent Unit 32.
	65 percent Unit 35 and 35 percent Unit 3
363	/U percent Unit 36 and 30 percent Unit 3
367	60 percent Unit 36 and 40 percent Unit 37
369	65 percent Unit 36 and 35 percent Unit 39.
378	50 percent Unit 37 and 50 percent Unit 38.
379	65 percent Unit 37 and 35 percent Unit 38.
393	65 percent Unit 37 and 35 percent Unit 39.
410	65 percent Unit 39 and 35 percent Unit 3.
412	70 percent Unit 41 and 30 percent Unit 2.
	50 percent Unit 41 and 50 percent Unit 42.
419	50 percent Unit 41 and 40 percent Unit 19.
429	50 percent Unit 42 and 50 percent Unit 19
430	65 percent Unit 43 and 35 percent Unit 2.
439	65 percent Unit 43 and 35 percent Unit 19.
469	65 percent Unit 46 and 35 percent Unit 19.
480	70 percent Unit 48 and 30 percent Unit 2.
500	70 percent Unit 50 and 30 percent Unit 2.
509	70 percent Unit 50 and 30 percent Unit 1.
510	65 percent Unit 50 and 35 percent Unit 19.
510u	70 percent Unit 51 and 30 percent Unit 2.
	b5 Dercent Unit 510 and 35 percent Unit 2
512	bu percent Unit 51 and 40 percent Unit 52.
512u	bU percent Unit 51u and 40 percent linit 52u
516	/U percent Unit 51 and 30 percent Unit 26
519	bil percent linit 51 and 40 nousent linit to
527	70 percent Unit 52 and 30 percent Unit 27.
529	60 percent Unit 52 and 50 percent Unit 2/.
530	60 percent Unit 52 and 40 percent Unit 19.
530u	60 percent Unit 53 and 40 percent Unit 2.
534	ou percent Unit 530 and 40 percent linit 2
	bb percent Unit 53 and 35 percent Unit 54
538	/U percent Unit 53 and 30 percent Unit 29
539	00 Dercent Unit 53 and 35 nercent Unit 10
540	05 Dercent Unit 54 and 35 percent Unit 2
549	70 percent Unit 54 and 30 percent Unit 29
612	60 percent Unit 61 and 40 percent Unit 62.
	percent unit of and to percent unit bz.

1/ These percentages may differ slightly from landtype unit to landtype unit. These total 100%, but other inclusions as described in individual landtypes may be present.

6

1.6	anatype	
	Unit	
	No.	
_		
	619	
	660	
	667	
	678	
	712	
	678 712 714	
	714	
	718	
	724	
	760	
	767	
	768	
	768u	
	770	
	778	
	770 778 778u	
	810	
	810	
	810u	
	812	
	812u	
	816	
	816u	
	8100	
	818	
	818u	
	823	
	823u	
	0230	
	824	
	826u	
	828u	
	860	
	867	
	868	
	878	
	910	
	912	
	312	
	912u	
	914u	
	918	
	918u	
	923	
	923	
	923u	
	928	
	928u	
	952	
	052.	
	952u	
	960	
	967	
	967u	
	968	
	968u	
	9000	
	978	
	990	
	991	

Landtype

Landtype Unit Complexes

60	percent	Unit	61 and 40 percent Unit 19.
70	percent	Unit	66 and 30 percent Unit 1.
60	percent	Unit	66 and 40 percent Unit 67.
60	percent	Unit	67 and 40 percent Unit 68.
60	percent	Unit	71 and 40 percent Unit 72.
70	percent	Unit	71 and 30 percent Unit 4.
65	percent	Unit	71 and 35 percent Unit 18.
60	percent	Unit	
70	percent		76 and 30 percent Unit 2.
60	percent	Unit	76 and 40 percent Unit 77.
65	percent	Unit	76 and 35 percent Unit 18.
65	percent	Unit	76u and 35 percent Unit 18u.
70	percent	Unit	77 and 30 percent Unit 2.
60	percent	Unit	77 and 40 percent Unit 18.
60	percent	Unit	77u and 40 percent Unit 18u.
70	percent	Unit	81 and 30 percent Unit 1.
65	percent	Unit	81u and 35 percent Unit 1.
60	percent	Unit	81 and 40 percent Unit 82.
60	percent	Unit	81u and 40 percent Unit 82u.
70			81 and 30 percent Unit 16.
70	percent	Unit	81u and 30 percent Unit 16u.
60	nercent	Unit	81 and 40 percent Unit 18.
60			81u and 40 percent Unit 18u.
60	percent	Unit	82 and 40 percent Unit 83.
60			82u and 40 percent Unit 83u.
60			82 and 40 percent Unit 4.
60	percent	Unit	82u and 40 percent Unit 16u.
60	percent	Unit	82u and 40 percent Unit 18u.
70	percent	Unit	86 and 30 percent Unit 1.
60			86 and 40 percent Unit 87.
65	percent	Unit	86 and 35 percent Unit 18.
60	percent	Unit	87 and 40 percent Unit 18.
70	percent	Unit	91 and 30 percent Unit 1. 91 and 40 percent Unit 92.
60	percent	Unit	91 and 40 percent Unit 92.
65	percent	Unit	91u and 35 percent Unit 92u.
65	percent	Unit	91u and 35 percent Unit 14.
65	percent	Unit	91 and 35 percent Unit 18.
65	percent	Unit	91 and 35 percent Unit 18. 91u and 35 percent Unit 18u.
65	percent	Unit	92 and 35 percent Unit 93.
65			92u and 35 percent Unit 93u
60	percent	Unit	92 and 40 percent Unit 18.
60	percent	Unit	92u and 40 percent Unit 18u.
60	percent	Unit	95 and 40 percent Unit 92.
60	percent		
70			96 and 30 percent Unit 1.
60	percent	Unit	96 and 40 percent Unit 97.
65	percent	Unit	96u and 35 percent Unit 97u.
65	percent	Unit	96 and 35 percent Unit 18.
65			96u and 35 percent Unit 18u.
65			97 and 35 percent Unit 98.
70			99 and 30 percent Unit 1.
65			99 and 35 percent Unit 11.
	20		

7

OREGON STATE UNIVERSITY, CORVALLIS

SOIL SERIES CORRELATION LEGEND

SRI Mapping Units	Soil Series
1, 2	Witzel rock outcrops
3, 34, 35	Pearsoll extremely stony clay loam
4	Pollard-Beekman gravelly loam complex
5, 31	Dubakella-Pearsoll gravelly loam complex
6	Bigelow gravelly loam
7	Woodseye-Craggy rock outcrops complex
10, 11	Takilma varient gravelly loam
12	Eightlar extremely stony clay loam
13, 14, 16, 16u	Bigelow gravelly fine sandy loam
15	Abegg gravelly loam
18	Speaker-Josephine gravelly loam complex
18u	Goodwin very gravelly fine sandy loam
21	Speaker gravelly loam
22, 72, 82	Josephine gravelly loam
31u, 32u, 34u, 35u	Perdin cobbly loam rock outcrops
32	Eightlar extremely stony clay loam
50, 51, 81	Beekman gravelly loam
51u	Woodseye extremely gravelly loam
53, 54, 71, 77, 87	Beekman-Colestine gravelly loam complex
66, 91	Siskiyou gravelly sandy loam
67, 92, 95, 97	Tethrick gravelly sandy loam
68, 93, 98	Holland sandy loam
76, 86, 96	Vermisa-Beekman extremely gravelly loam complex
99	Frantz very gravelly loam
100	Knapke extremely gravelly loam

8

OREGON STATE UNIVERSITY, CORVALLIS

LANDTYPE UNIT DESCRIPTIONS

Riverwash areas consisting of sparsely vegetated, unsorted gravels and sands immediately adjacent to riverbeds. This landtype is subject to flooding for up to 6 months of the year.

Landtype Unit 1

<u>Rockoutcrop</u>: Andesites, basalts, gabbros, dioriotes, gneiss, metavolcanics, metasediments, rhyollites, and dacites, forming cliffs "rock knobs" and talus slopes. This landtype is usually associated with volcanic and metavolcanic dikes, vents, and plugs as well as diorite, gabbro, metasedimentary, rhyollite, and dacite outcrops. This landtype is usually found on or near ridgetops and locally near stream bottoms. Material from this landtype is usually well suited for road rock. Landtype Unit 1 is stable. Stability Class I.

Vegetation usually consists of low site and noncommercial timber, serviceberry, manzanita, huckleberry, canyon live oak, forbs, grasses, mosses, and lichens.

Unit 1 construction characteristics:

- 1. Road rock.
- 2. Blasting usually required.

Landtype Unit 2

Rockoutcrop: Sediments, pyroclastic sediments, volcanic breccias, tuffs, agglomerates, conglomerates, and sandstones. These rockoutcrops are usually more easily weathered than Landtype 1. Generally, materials from this landtype are not as well suited for road rock as those from Landtype 1. Colluvial rock and soil is found adjacent to rockoutcrops within this unit. Landtype Unit 2 is stable. Stability Class I.

Vegetation ususally consists of tanoak, canyon live oak, huckleberry oak, manzanita, patches of low site and noncommercial timber, manzanita, serviceberry, grasses, forbs, mosses, and lichens.

Unit 2 construction characteristics:

- 1. Not well suited for road rock.
- 2. Usually can be ripped.

Rockoutcrop: Peridotite and serpentine, hard peridotite and serpentine forming rock knobs. Rockoutcrops are dominantly on the upper slopes and near creek bottoms. Minor amounts of diorite, gabbro, and olivine gabbro outcrops may be present. Material from this landtype is usually not well suited for road rock; peridotite is ususally hard enough, but it disinte-grates rapidly under heavy traffic. Colluvial rock and shallow soil is usually found adjacent to rockoutcrops within the unit. Landtype Unit 3 is stable. Stability Class I.

Vegetation consists of gnarled Jeffrey pine and local western white pine, azalea, prostrate juniper, forbs, grasses, mosses, and lichens.

WERSITY CORVALUS

Landtype Unit 0

Landtype Unit 3

Landtype Unit 4

Landflow and landslump, terrain generally on or derived from metamorphic and sedimentary rocks on the east side of the Forest.

This landtype consists of landflow and landslump terrain that either is or has been active during the past history of the slope. The slope shape (discontinuous, benchy, and hummocky) is a direct result of present or past movement. Soil materials vary from shallow loams to clay loams on headwalls, to deep to very deep clay loams and clays in basin areas over incompetent to moderately competent rock. Boulders, as well as stones, cobbles, and gravels, are often found in the soil mass. Basically, there are three components within this landtype:

- 1. Headwalls: (scarps) shallow soils (10 to 20 inches deep) on steep slopes, greater than 65 percent.
- Intermediate areas: Moderately deep to deep soils (20 to 40 inches and 40 to 60 2. inches deep) over highly fractured bedrock on moderate slopes, 35 to 65 percent.
- Basins: Very deep soils (greater than 60 inches) on gentle slopes, less than 35 3.

Landtype 4 is usually found adjacent to drainages and on mid to lower slopes. Landtype 4 is unstable to locally very unstable. Stability class IV (Locally V in drainages). Surface soil erosion potential is moderate to severe. Erosion class III and IV.

Native vegetation consists of Douglas-fir, western redcedar, Port-Orford-cedar, red alder, madrone, tanoak, chinkapin, Pacific yew, incense-cedar, white fir, vine maple, bluestem ceanothus, elderberry, whitethorn ceanothus, grasses, forbs, salal, reeds, sedges, rushes, ferns, and mosses. This landtype is found on the east side of the Klamath Mountains and Siskiyou Mountains on metavolcanics, metasediments, and sediments primarily.

Landtype Unit 5

Landflow and landslump terrain generally on or derived from serpentine and peridotite.

This landtype consists of landflow and landslump terrain that is active now or has been active during the past history of the slope. The slope shape (benchy, undulating, and hummocky) is a direct result of present or past movement. Soil materials vary from shallow to very deep, extremely stony clays and clay loams. Large unattached boulders as well as stones, cobbles, and gravels are often found in the soil mass. Basically there are two components within this landtype:

- 1. Headwalls and intermediate areas: Scarps with shallow to moderately deep soils (10 to 20 inches and 20 to 40 inches deep) on moderately steep slopes (35 to 65 percent) over moderately hard bedrock.
- Basins: Deep to very deep soils (40 to 60 inches and greater than 60 inches deep) 2. over soft to moderately hard bedrock on less than 35 percent slopes.

Land type unit 5 is unstable to very unstable. Stability class IV, and V, but most commonly IV. Surface soil erosion potential is severe. Erosion class IV.

Native vegetation includes Douglas-fir, Jeffrey pine, incense-cedar, western redcedar, Port-Orford-cedar, red alder, elderberry, California coffeeberry, grasses, forbs, reeds, and sedges. Landtype 5 is found in the Siskiyou and Klamath Mountains on ultrabasic rocks (serpentine and peridotite).

Wet Meadow Land: This landtype consists of areas that have high water tables and are seasonally ponded or have seepage areas adjacent to springs. These units are found in the upper Forest zone. This landtype is highly variable in topographic position and is found in depressions, on flats, along streamside areas, and locally on steeper sideslopes. Boulder fields or talus areas vegetated with red alder are found on this unit on steep slopes. Land type unit 6 is stable. Stability Class I. Surface soil erosion is slight to moderate. Frosion Class II and III.

Vegetation consists of sedges, rushes, grasses, red alder, wetland forbs, and willow.

Many of these areas are not delineated, but rather are inclusions of other landtypes because of the small scale photos used for SRI mapping.

Dry Nonforest: Dry nonforested areas supporting various grasses, forbs, and shrubs, including deerbrush and chokecherry. These units are found in the upper forest zone, along ridgetops, and in areas of cirque topography. Landtype 7 usually occurs on moderately steep to steep slopes, and is well drained. Soils are shallow to moderately deep. Small patches of low site timber may be included in this landtype. Unit 7 includes seasonally wet areas. Wet meadows may occur during the spring season. Landtype unit 7 is moderately stable. Stability Class II. Surface soil erosion potential is very severe to severe. Erosion Class V and IV.

In the Siskiyou Mountains, Landtype 7 is a relatively homogeneous unit.

Landflow and landslump terrain generally on or derived from sedimentary rocks. All rocks are highly fractured.

This landtype consists of landflows and landslump terrain that is active or has been active in the past history of the slope. The slope shape (benchy and hummocky) is a direct result of present or past movement. Materials vary in depth from shallow to very deep and consist of three main components:

- slopes over 65 percent slope (headwall areas) (scarps).
- 2. moderate slopes (35 to 65 percent).
- 3

Large unattached boulders, as well as stones, cobbles, and gravels, are often found in the soil mass.

Native vegetation includes Douglas-fir, western redcedar, Port-Orford-cedar, western hemlock. red alder, tanoak, madrone, manzanita, rhododendron, salal, evergreen huckleberry, reeds, rushes, sedges, grasses, forbs, ferns, and mosses.

Landtype 8 is unstable to very unstable. Stability Class IV and V. Surface soil erosion potential is severe to very severe. Erosion Class IV and V.

Landtype 8 is found on the coastal (west) side of the Klamath Mountains on sediments on uneven slopes.

÷∦É.

Landtype Unit 6

Landtype Unit 7

Landtype Unit 8

1. Shallow soils (10 to 20 inches deep) over hard to moderately hard bedrock on steep

Moderately deep to deep soils (20 to 40 inches and 40 to 60 inches deep) on

Very deep soils (greater than 60 inches deep) on gentle slopes ranging from 0 to 35 percent slope (slump basin areas). Includes sag ponds and wet spots.

Landtype Unit 8c

Landflow and landslump terrain generally on or derived from schists of the Colebrooke schist formation. This landtype differs from Landtype 8 in that it is slightly more unstable and erosive.

This landtype consists of landflow and landslump terrain that is active or has been active in the past history of the slope. The slope shape (benchy and hummocky) is a direct result of present or past movement. Materials vary in depth from shallow to very deep and consist of three main components:

- 1. Shallow soils (10 to 20 inches deep) on steep slopes over 65 percent slope (headwall areas).
- 2. Moderately deep to deep soils (20 to 40 inches and 40 to 60 inches deep) on moderate slopes (35 to 65 percent).
- 3. Very deep soils (greater than 60 inches deep) on gentle slopes ranging from 0 to 35 percent slope (slump basin areas). Includes sag ponds and wet spots.

Large unattached boulders, as well as stones, cobbles, and gravels, are often found in the soil mass.

Native vegetation includes Douglas-fir, western redcedar, Port-Orford-cedar, western hemlock, red alder, tanoak, madrone, rhododendron, manzanita, salal, evergreen huckleberry, reeds, rushes, sedges, grasses, forbs, ferns, and mosses.

Landtype 8c is very unstable to unstable. Stability Class V and IV. Surface soil erosion potential is very severe to severe. Erosion Class V and IV.

Landtype 8c is found on the coastal (west) side of the Klamath Mountains; on schists on uneven slopes.

Landtype Unit 9

Landflow and landslump terrain generally on or derived from sedimentary rocks.

This landtype consists of landflow and landslump terrain that is active or has been active during the past history of the slope. The slope shape (benchy and hummocky) is a direct result of present or past movement. Materials are highly variable in depth and range from shallow to very deep, and consist of three main components:

- 1. Shallow soils (10 to 20 inches deep) on steep slopes, over 65 percent slopes (headwall and scarp areas, rejuvenated slopes).
- Moderately deep to deep soils (20 to 40 inches and 40 to 60 inches deep). 35 to 65 2. percent slopes (intermediate areas).
- Very deep soils (greater than 60 inches) on gentle slopes, less than 35 percent 3. slopes (slump basins). Includes sag ponds and wet spots.

This landtype has a greater percentage of shallow and moderately deep soils than Landtypes 4. 5. 8. or 8c. Landtype 9 is more dissected and has more developed drainages and less basins than the other three landflow, landslump units. Large unattached boulders, as well as stones, cobbles, and gravels are often found in the soil mass.

Native vegetation includes Douglas-fir, Port-Orford-cedar, western redcedar, red alder, tanoak, madrone, rhododendron, salal, evergreen huckleberry, reeds, rushes, sedges, grasses, forbs, ferns, and mosses. Landtype 9 is unstable to very unstable. Stablility class IV and V. Surface soil erosion potential is very severe to severe. Erosion class V and IV.

Landtype 9 is found on the coastal (west) side of the Klamath Mountains; on sediments and dissected slopes.

Landflow or landslump terrain generally on or derived from schists of the Colebrooke formation. This landtype differs from Landtype 9 in that it is slightly more unstable and erosive, and mass movements generally are larger.

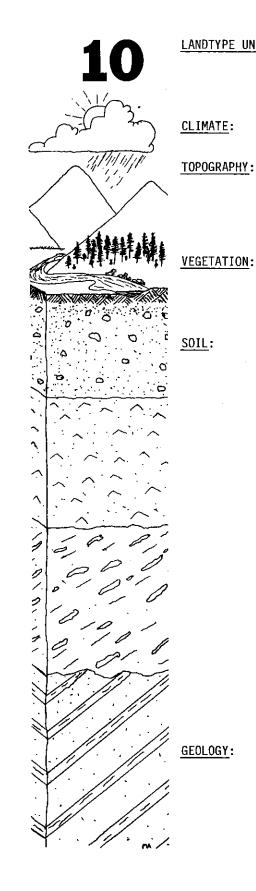
This landtype consists of landflow and landslump terrain that is active or has been active during the past. The slope shape (benchy and hummocky) is a direct result of present or past movement. Materials are highly variable in depth and range from shallow to very deep, and consist of three main components:

- (headwall areas).
 - ate slopes, 35 to 65 percent.

This landtype has a greater percentage of 1 and 2 (see 3 points above) than Landtypes 4, 5, 8, or 8c. Landtype 9c is more dissected and has more developed drainages, entrenched streams, and less basins than the aforementioned landflow and landslump units. Large unattached boulders, as well as stones, cobbles, and gravels, are often found in the soil mass. Native vegetation includes Douglas-fir, Port-Orford-cedar, western redcedar, red alder, tanoak, madrone, rhododendron, salal, evergreen huckleberry, reeds, rushes, sedges, grasses, forbs, ferns, and mosses.

Landtype 9c is very unstable to unstable. Stability class V, and IV. Surface soil erosion potential is very severe. Erosion class V.

Slope failures are concentrated along entrenched streams.


Landtype 9c occurs on the coastal (west) side of the Klamath Mountains on dissected slopes.

Landtype Unit 9c

1. Shallow soils (10 to 20 inches deep) on steep slopes, over 65 percent slopes

2. Moderately deep to deep soils (20 to 40 inches to 40 to 60 inches deep) on moder-

3. Very deep soils (greater than 60 inches deep) on gentle slopes, less than 35 percent slopes (slump basins). Includes sag ponds and wet spots.

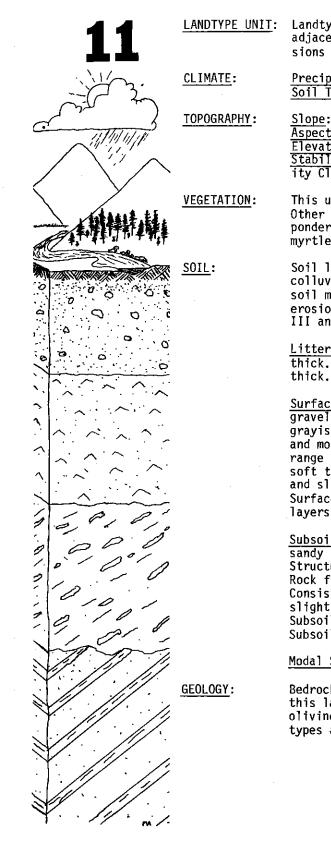
LANDTYPE UNIT: Landtype 10 occupies valley bottom positions with alluvial serpentine and peridotite deposits on the east side of the Klamath Mountains. Common inclusions are fresh sands, gravels, cobbles, and stones or riverwash adjacent to streams, and Landtypes 12 and 32.

<u>Precipitation</u>: 60 to 80 inches/year. 152 to 203 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 5 to 20 percent, no dissections. <u>Aspect</u>: All aspects. <u>Elevation</u>: 500 to 2,000 feet. 153 to 610 meters. <u>Stability</u>: Landtype 10 is stable to moderately stable, (except when undercut by streams). Stability Class I and II.

This unit supports Site Class V and lower Douglas-fir. Other species include: Jeffrey pine, knobcone pine, incense-cedar, ponderosa pine, greenleaf manzanita, prostrate juniper, serviceberry, western azalea, Oregon myrtle, Idaho fescue, needlegrass, forbs, and mosses.

Soil 10 is a deep to very deep soil derived from alluvium, with shallow and moderately deep inclusions. The soil materials are generally well drained, but are moderately drained locally. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Undecomposed leaves, needles, and twigs, 1/4 to 3/4 inches thick.

<u>Surface Layers</u>: Surface layers are gravelly to extremely gravelly loams and clay loams. Colors are dark brown to dark reddish brown. Structure is weak fine granular to strong fine and medium subangular blocky. Rock fragments range from 25 to 75 percent by volume. Consistence is soft to hard, friable to firm, slightly sticky to sticky, and nonplastic to plastic. The pH ranges from 5.4 to 6.2. Surface thickness ranges from 18 to 40 inches thick. Surface layers are moderately permeable.

<u>Subsoil Layers</u>: Subsoil layers are extremely cobbly clay loams and clay. Colors are brown, light brown, and reddish brown. Structure is massive. Rock fragments range from 60 to 80 percent by volume. Consistence is very hard, very firm, sticky, and plastic. The pH ranges from 5.8 to 6.2. Subsoil thickness ranges from 20 to 40 plus inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NW4, SE4, Section 19, T.38S., R.8W.

Soil materials are derived dominately from alluvium, from serpentine and peridotite rock.

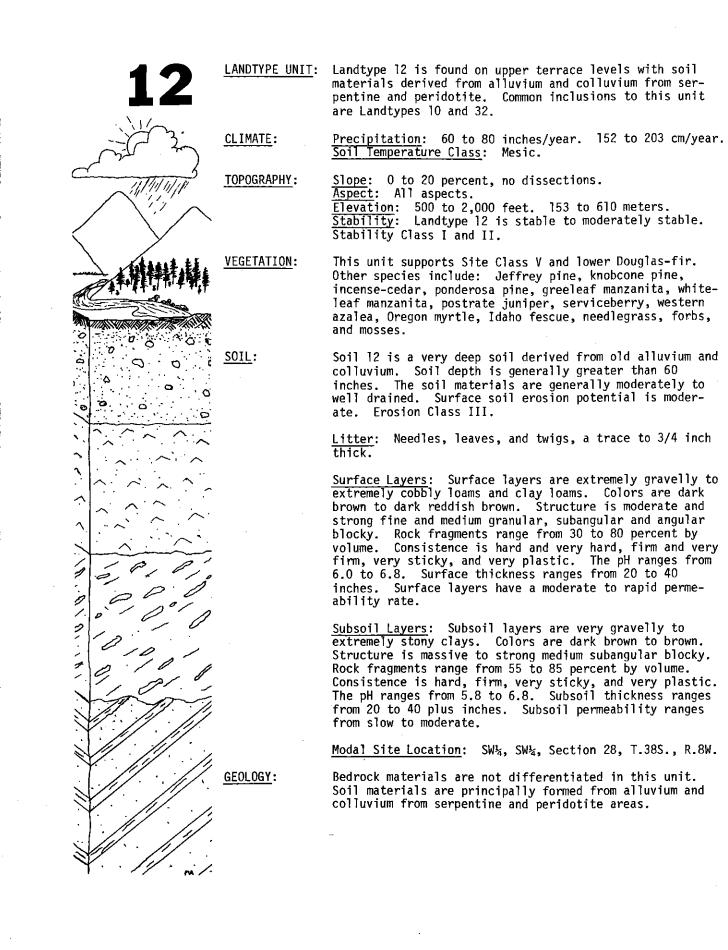
LANDTYPE UNIT: Landtype 11 is found on moderately steep toe slope areas adjacent to or on olivine gabbro areas. Common inclusions to this unit are Landtypes 99 and 100.

> Precipitation: 60 to 90 inches/year. 152 to 229 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 35 to 65 percent, smooth slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 3,500 feet. 305 to 1,067 meters. <u>Stability</u>: Landtype 11 is moderately unstable. Stability Class III.

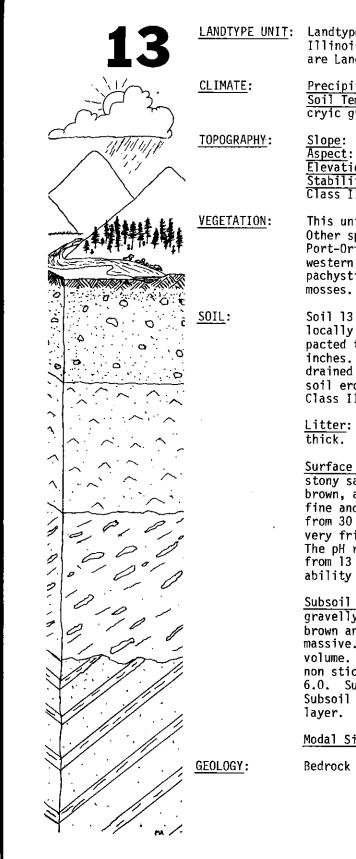
This unit supports Site Class IV and V Douglas-fir. Other species include: Knobcone pine, incense-cedar, ponderosa pine, serviceberry, greenleaf manzanita, Oregon myrtle, Idaho fescue, needlegrass, forbs, and mosses.

Soil 11 is a very deep soil derived from slope wash and colluvium. Soil depth is greater than 60 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, 1/4 inch to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to extremely gravelly loams. Colors are very dark brown and very dark grayish brown. Structure is weak fine granular to weak and moderate medium subangular blocky. Rock fragments range from 20 to 80 percent by volume. Consistence is soft to slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 6.3 to 6.8. Surface thickness ranges from 20 to 40 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are extremely gravelly sandy loams and loams. Colors are dark yellowish brown. Structure is massive to weak fine subangular blocky. Rock fragments range from 60 to 85 percent by volume. Consistence is soft, friable, slightly sticky, and slightly plastic. The pH ranges from 6.4 to 7.0. Subsoil thickness ranges from 20 to 40 plus inches. Subsoil layers have rapid permeability rates.


Modal Site Location: NE4, SE4, Section 6, T.32S., R.9W.

Bedrock materials are variable and not differentiated in this landtype. Soil materials are primarily derived from olivine gabbro rock, but may be found on other bedrock types adjacent to olivine gabbro areas.

CORVALLIS

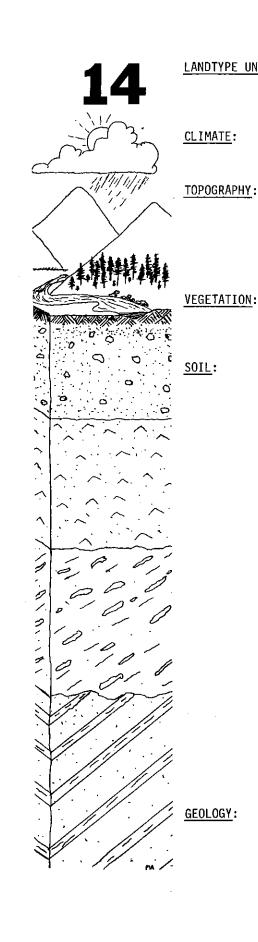
シドル

LANDTYPE UNIT: Landtype 13 is found in gentle glacial basins on the Illinois Valley District. Common inclusions to this unit are Landtypes 6, 14, 15u, 83u, 93u, and 98u.

<u>Precipitation</u>: 60 to 90 inches/year. 152 to 229 cm/year. <u>Soil Temperature Class</u>: Frigid 4,000 to 5,500 feet, cryic greater than 5,500 feet.

Slope: 5 to 35 percent, no dissections. <u>Aspect</u>: All aspects. <u>Elevation</u>: 4,000 to 6,000 feet. 1,220 to 2,135 meters. <u>Stability</u>: Landtype 13 is moderately stable. Stability Class II.

This unit supports Site Class II and III Shasta red fir. Other species include: Mountain hemlock, white fir, Port-Orford-cedar, some Douglas-fir, rhododendron, western azalea (high elevation), salal, kinnikinnick, pachystima, bedstraw, oxalis, grasses, sedges, reeds, and mosses.


Soil 13 is a deep soil derived from glacial till and locally from colluvium. Soil depth to a moderately compacted till layer generally occurs between 40 to 60 inches. The soil materials are generally moderately drained with inclusions of poorly drained soils. Surface soil erosion potential is slight to moderate. Erosion Class II and III.

<u>Litter</u>: Leaves, needles, and twigs 1/2 to 1 1/2 inches thick. Decomposed humus material, 1/4 to 1 inch thick.

<u>Surface Layers</u>: Surface layers are very gravelly or stony sandy loams. Colors are very dark brown, dark brown, and dark grayish brown. Structure is weak very fine and fine granular to massive. Rock fragments range from 30 to 65 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.2 to 6.2. Surface thickness ranges from 13 to 40 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very to extremely gravelly or stony sandy loams. Colors are yellowish brown and brown. Structure is weak fine granular to massive. Rock fragments range from 50 to 75 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.2 to 6.0. Subsoil thickness ranges from 6 to 30 inches. Subsoil layers have rapid permeability to the impermeable layer.

<u>Modal Site Location</u>: SE¼, NE¼, Section 6, T.41S., R.6W. Bedrock materials are variable.

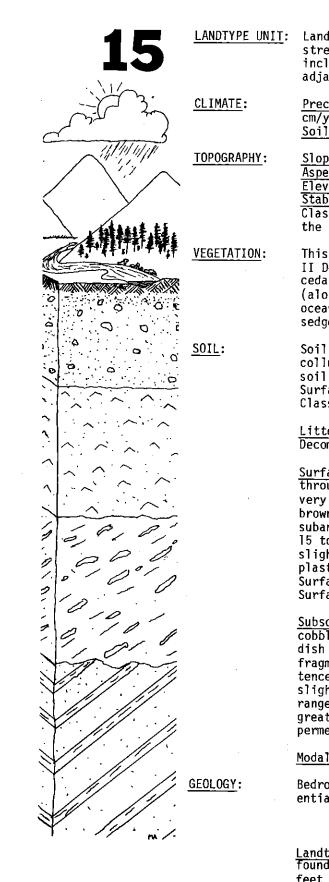
LANDTYPE UNIT: Landtype 14 is found on moderately sloping troughs below glacial basins on the Illinois Valley District. Common inclusions to this unit are Landtypes 6, 13, 16u, 18u, 82u, 92u, and 97u.

<u>Precipitation</u>: 60 to 90 inches/year. 152 to 229 cm/year. <u>Soil Temperature Class</u>: Frigid 4,000 to 5,500 feet, cyric above 5,500 feet.

<u>Slope</u>: 35 to 65 percent, slight to moderately dissected slopes.

Aspect: All aspects. Elevation: 4,000 to 6,500 feet. 1,220 to 2,135 meters. Stability: Landtype 14 is moderately stable, but locally moderately unstable adjacent to stream channels. Stability Class II and III.

This unit supports Site Class II and III Shasta red fir and white fir. Other species include: Port-Orfordcedar, mountain hemlock, some Douglas-fir, rhododendron, western azalea (high elevation), grasses, and mosses.


Soil 14 is a very deep soil derived from glacial till and locally from colluvium. Soil depth is greater than 60 inches, A weakly compacted layer occurs from 5 to 6 feet below the surface. The soil materials are moderately well drained. Surface soil erosion potential is severe. Erosion Class IV.

<u>Litter</u>: Needles, leaves, and twigs, 1/2 to 2 inches thick. Decomposed humus material, a trace to one inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to extremely gravelly fine sandy loams. Colors are very dark brown, dark brown, and very dark grayish brown. Structure is weak very fine and fine granular. Rock fragments range from 25 and 65 percent by volume. Consistence is soft, friable, slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 25 to 45 inches. Surface layers have a rapid permeability rate.

<u>Subsoil Layers</u>: Subsoil layers are very to extremely gravelly or stony sandy loams and loams. Colors are dark yellowish brown and brown. Structure is weak very fine granular to massive. Rock fragments range from 60 to 80 percent by volume. Consistence is soft, very friable, non sticky, and non plastic. The pH ranges from 5.5 to 6.2. Subsoil thickness ranges from 20 to 45 inches. Subsoil layers have rapid permeability rates to a compacted layer approximately 60 to 72 inches below the surface.

<u>Modal Site Location</u>: SW¹/₄, SE¹/₄, Section 11, T.40S., R.6W. Bedrock materials are variable.

LANDTYPE UNIT: Landtype 15 is found on gentle valley bottoms along streams and is locally subjected to flooding. Common inclusions in this unit are fresh sands and gravels adjacent to stream channels and Landtypes 0, 16 and 18.

> <u>Precipitation</u>: 40 to 120 inches/year. 102 to 300 cm/year. Soil Temperature Class: Mesic, 15u is frigid.

Slope: 0 to 20 percent, smooth.

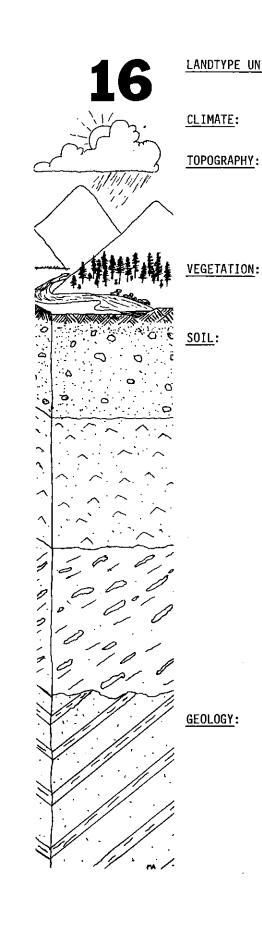
Aspect: All aspects.

Elevation: 100 to 4,000 feet. 30 to 1,220 meters. Stability: Landtype 15 is moderately stable. Stability Class II. Failures occur locally as the stream undercuts the creek banks.

This unit supports Site Class III and locally Site Class II Douglas-fir. Other species include: Western redcedar, Port-Orford-cedar, red alder, western hemlock (along the coast), salal, vine maple, serviceberry, oceanspray, willows, Oregon grape, forbs, grasses, sedges, reeds, and mosses.

Soil 15 is a very deep soil derived from alluvium and colluvium. Soil depth is greater than 60 inches. The soil materials are generally moderately to well drained. Surface soil erosion potential is moderate. Erosion Class III.

<u>Litter</u>: Leaves, needles, and twigs, 1/4 to 1 inch thick. Decomposed humus material, a trace to 1/4 inch thick.


<u>Surface Layers</u>: Surface layers are gravelly loamy sands through very gravelly silt loams. Colors are dark brown, very dark grayish brown, dark reddish brown, and reddish brown. Structure is weak to moderate fine granular to subangular blocky structure. Rock fragments range from 15 to 60 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky and slightly plastic to plastic. The pH ranges from 5.9 to 7.0. Surface thickness ranges from 20 to 35 inches thick. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are extremely gravelly to cobbly sand through clay loam. Colors are brown to reddish yellow. Structure is single grain to massive. Rock fragments range from 65 to 90 percent by volume. Consistence is loose to hard, loose to firm, non sticky to slightly sticky and non plastic to plastic. The pH ranges from 5.9 to 7.2. Subsoil thickness is usually greater than 40 inches thick. Subsoil layers have rapid permeability rates.

Modal Site Location: SW4, NE4, Section 18, T.36S, R.8W.

Bedrock materials are variable and not usually differentiated in this landtype.

<u>Landtype 15u</u> is similar to Landtype 15 except that it is found in the upper forest zone, generally above 3,500 feet elevation, and supports Site Class II and I Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 16 occurs on moderately steep toe slopes and is primarily found on the Illinois Valley District. Common inclusions in this Unit are Landtypes 15, and 18.

<u>Precipitation</u>: 60 to 80 inches/year. 152 to 203 cm/year. <u>Soil Temperature Class</u>: Mesic, 16u is frigid.

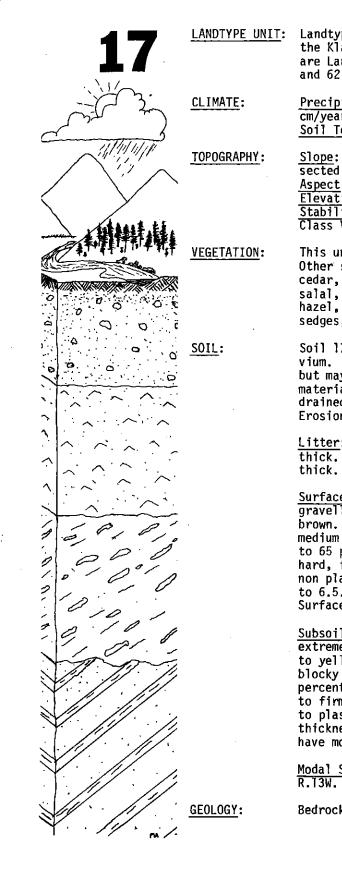
<u>Slope:</u> 30 to 70 percent, slight to moderately dissected slopes.

<u>Aspect:</u> All aspects. <u>Elevation</u>: 500 to 4,000 feet. 150 to 1,220 meters. <u>Stability</u>: Landtype 16 is moderately stable to moderately unstable and locally unstable. Stability Class II and III. Locally IV along streams.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western redcedar, Port-Orfordcedar, ponderosa pine, serviceberry, vine maple, whitethorn ceanothus, forbs, grasses, and mosses.

Soil 16 is a very deep soil derived from colluvium. Soils are greater than 60 inches deep. The soil materials are well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.

Litter: Needles, leaves, and twigs, approximately 1 inch thick. Decomposed humus material, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are very gravelly loams and sandy loams. Colors are dark brown and brown. Structure is weak fine granular. Rock fragments range from 40 to 65 percent by volume. Consistence is soft, friable, non sticky, and non plastic. The pH ranges from 5.8 to 6.3. Surface thickness ranges from 15 to 30 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are usually extremely gravelly to cobbly loamy sands, sandy loams and loams. Colors are brown to dark yellowish brown. Structure is single grained. Rock fragments range from 60 to 90 percent by volume. Consistence is loose, non sticky, and non plastic. The pH ranges from 5.8 to 6.3. Subsoil thickness ranges from 25 to 40 plus inches thick. Subsoil layers have rapid permeability rates.

Modal Site Location: NE4, NE4, Section 11, T.41S., R.6W.

Bedrock materials are variable.

Landtype 16u is similar to Landtype 16 except that it may have a weakly compacted layer in the Sucker Creek area of the Illinois Valley District; and is found in the upper forest zone, generally above 4,000 feet elevation, and supports Site Class II and III Shasta red fir and white fir.

20

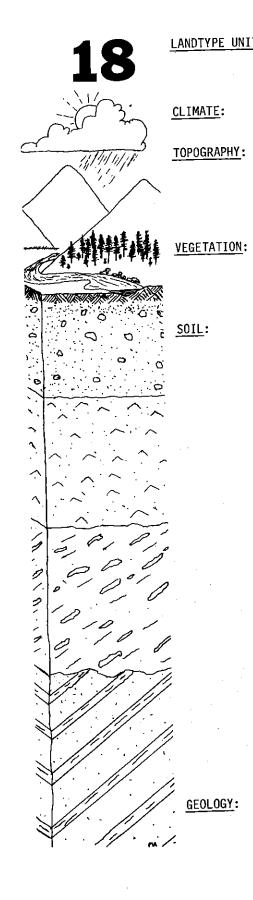
LANDTYPE UNIT: Landtype 17 is found on toe slopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 8, 8c, 9, 9c, 19, 51, 52, 53, 54, 55, 61, and 62.

<u>Precipitation</u>: 90 to 140 inches/year. 229 to 356 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 50 to 90 percent, oversteepened moderately dissected slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 500 to 2,500 feet. 152 to 760 meters. <u>Stability</u>: Landtype 17 is very unstable. Stability Class V.

This unit supports Site Class II and III Douglas-fir. Other species include: Port-Orford-cedar, western redcedar, red alder, tanoak, madrone, willow, rhododendron, salal, evergreen huckleberry, vine maple, California hazel, sword fern, twin-flower, starflower, bracken fern, sedges, grasses, and mosses.

Soil 17 is a deep to very deep soil derived from colluvium. Soil depth is generally greater than 60 inches, but may be shallower in local slide areas. The soil materials are generally moderate to moderately well drained. Surface soil erosion potential is severe. Erosion Class IV.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 3/4 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams. Colors are very dark grayish brown to brown. Structure is weak fine granular to weak fine, medium subangular blocky. Rock fragments range from 30 to 65 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 10 to 30 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly loams to clay loams. Colors are brown to yellowish brown. Structure is weak fine subangular blocky to massive. Rock fragments range from 50 to 80 percent by volume. Consistence is soft to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.5 to 6.6. Subsoil thickness ranges from 20 to 40 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: SW4, SW4, Section 14, T.38S., R.13W.

Bedrock materials are variable.

LANDTYPE UNIT: Landtype 18 is found on moderate sideslopes and toe slopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 16, 71, 72, 76, 77, 81, 82, 86, 87, 91, 92, and 95.

Precipitation: 40 to 80 inches/year. 102 to 203 cm/year. Soil Temperature Class: Mesic, 18u is frigid.

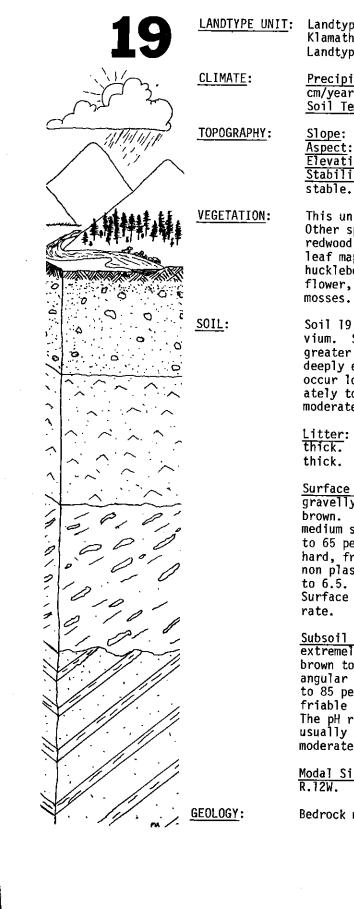
Slope: 35 to 65 percent, slightly to moderately dissected.

Aspect: All aspects. Elevation: 1,000 to 4,000 feet. 304 to 1,216 meters. Stability: Landtype 18 is moderately unstable. Stability Class III. Locally unstable, Stability Class IV.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western redcedar, sugar pine, Port-Orford-cedar, serviceberry, vine maple, red huckleberry, wild blackberry, wild currant, lupine, grasses, and mosses.

Soil 18 is a deep soil derived from colluvium. Soil depth is 40 to 60 inches but ranges greater than 60 inches locally. The soil materials are generally well drained to moderately well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.

Litter: Undecomposed leaves, needles, and twigs, a trace to 1.1/2 inches thick. Decomposed humus material, a trace to 3/4 inch thick.


<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams and sandy loams. Colors are very dark grayish brown to brown and light reddish brown. Structure is weak fine granular to moderately fine and medium subangular blocky. Rock fragments range from 30 to 60 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 6.8. Surface thickness ranges from 10 to 20 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly sandy loams, to heavy loams. Colors are brown to yellowish brown. Structure is weak to moderate, fine and medium subangular blocky to massive. Rock fragments range from 50 to 80 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 25 to 40 plus inches. The subsoil materials have moderate to rapid permeability rates.

Modal Site Location: NW4, SE4, Section 14, T.37S., R.8W.

Bedrock materials are variable.

Landtype 18u is similar to Landtype 18 except that it is found in the upper forest zone, generally above 4,000 feet elevation, and supports Site Class II and III Shasta red fir and white fir.

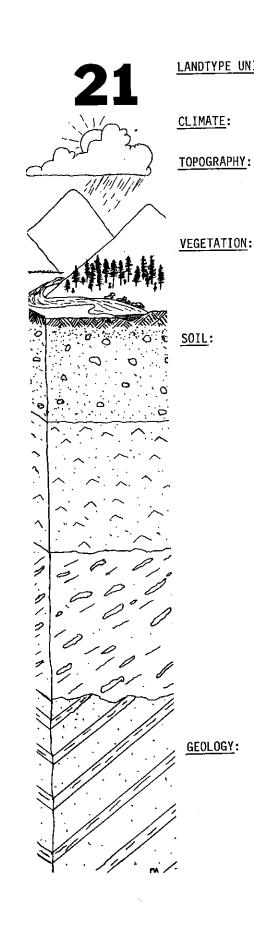
LANDTYPE UNIT: Landtype 19 occurs on toe slopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 17, 41, 43, 51, 52, 61, 176, and 191.

<u>Precipitation</u>: 90 to 140 inches/year. 229 to 356 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 35 to 70 percent, moderately dissected slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 500 to 3,500 feet. 152 to 1,064 meters. <u>Stability</u>: Landtype 19 is moderately unstable to unstable. Stability Class III and IV.

This unit supports Site Class II and III Douglas-fir. Other species include: Western white pine, sugar pine, redwood, incense-cedar, tanoak, madrone, red alder, bigleaf maple, myrtle, rhododendron, vine maple, evergreen huckleberry, salal, California hazel, sword fern, twinflower, bedstraw, starflower, bracken fern, grasses, and mosses.

Soil 19 is a deep to very deep soil derived from colluvium. Soil depth is 40 to 60 inches but ranges to greater than 60 inches locally. Minor inclusions of deeply entrenched stream channels with shallow soils also occur locally. The soil materials are generally moderately to well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 3/4 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams. Colors are very dark grayish brown to brown. Structure is weak fine granular to weak fine and medium subangular blocky. Rock fragments range from 30 to 65 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 10 to 30 inches. Surface layers have a moderate to rapid permeability

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravellly loams to clay loams. Colors are brown to yellowish brown. Structure is weak fine subangular blocky to massive. Rock fragments range from 55 to 85 percent by volume. Consistence is soft to hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness is usually greater than 30 inches. Subsoil layers have a moderately rapid to rapid permeability rate.

<u>Modal Site Location</u>: SE¼, NW¼, Section 29, T.41S., R.12W.

Bedrock materials are variable.

LANDTYPE UNIT: Landtype 21 is found on steep sideslope positions east of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 22, 96, and 97.

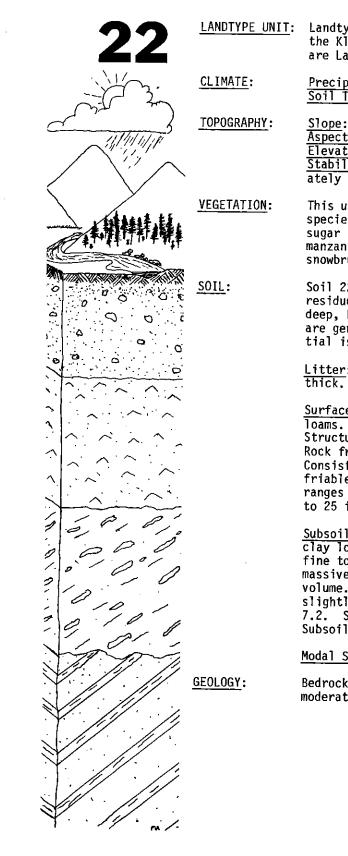
<u>Precipitation</u>: 35 to 70 inches/year. 89 to 178 cm/year. Soil <u>Temperature Class</u>: Mesic.

Slope: 50 to 90 percent, smooth to slightly dissected. Aspect: All aspects.

Elevation: 1,500 to 3,500 feet. 456 to 1,067 meters. Stability: Landtype 21 is moderately stable. Stability Class II.

This unit supports Site Class IV and locally V Douglasfir. Other species include: Incense-cedar, western white pine, sugar pine, tanoak, chinkapin, madrone, elderberry, manzanita, Oregon grape, wild rose, trailing blackberry, snowbrush ceanothus, grasses, forbs, and mosses.

Soil 21 is a shallow soil derived from residuum and colluvium. Soil depth is generally from 10 to 20 inches but ranges to 40 inches. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, twigs, and leaves, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly sandy loams and loams. Colors are generally dark brown. Structure is weak to moderate medium granular and subangular blocky. Rock fragments range from 20 to 50 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.4 to 7.0. Surface thickness ranges from 5 to 12 inches. Surface layers have rapid permeability.

Subsoil Layers: Subsoil layers are gravelly to extremely gravelly loams and silt loams. Colors are brown and yellowish brown. Structure is moderate medium subangular blocky to massive. Rock fragments range from 35 to 70 percent by volume. Consistence is slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 6.3 to 7.0. Subsoil thickness ranges from 8 to 30 inches. Subsoil layers have rapid permeability.

Modal Site Location: NW4, SW4, Section 17, T.36S., R.7W.

Bedrock consists of moderately hard to hard, highly fractured metagabbro rock.

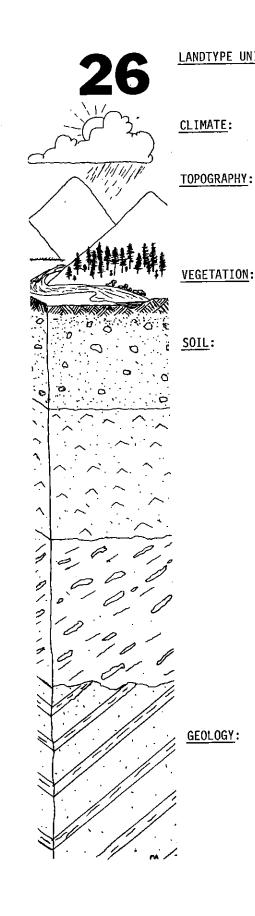
LANDTYPE UNIT: Landtype 22 is found on moderately steep slopes east of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 21, and 97.

<u>Precipitation</u>: 35 to 70 inches/year. 89 to 178 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 30 to 60 percent, smooth slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,500 to 3,500 feet. 456 to 1,067 meters. <u>Stability</u>: Landtype 22 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV Douglas-fir. Other species include: Incense-cedar, western white pine, sugar pine, tanoak, chinkapin, madrone, elderberry, manzanita, Oregon grape, wild rose, trailing blackberry, snowbrush ceanothus, grasses, forbs, and mosses.

Soil 22 is a moderately deep to deep soil derived from residuum and colluvium. Soil depth is 40 to 60 inches deep, but may be shallower locally. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, twigs, and leaves, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly loams and loams. Colors are dark reddish brown and dark brown. Structure is weak medium granular to subangular blocky. Rock fragments range from 15 to 30 percent by volume. Consistence is soft to slightly hard, very friable to friable, slightly sticky, and slightly plastic. The pH ranges from 6.3 to 6.7. Surface thickness ranges from 12 to 25 inches. Surface layers have moderate permeability.

<u>Subsoil Layers</u>: Subsoil layers are gravelly loams and clay loams. Colors are dark red and red. Structure is fine to moderate coarse and medium subangular blocky and massive. Rock fragments range from 15 to 30 percent by volume. Consistence is hard, firm, slightly sticky, and slightly plastic to plastic. The pH ranges from 6.7 to 7.2. Subsoil thickness ranges from 20 to 40 inches. Subsoil layers have moderate permeability.

Modal Site Location: SW4, NE4, Section 20, T.36S., R.7W.

Bedrock consists of moderately hard, highly fractured to moderately decomposed metagabbro rock.

LANDTYPE UNIT: Landtype 26 is found on moderately steep to steep sideslope positions in the Mt. Emily Area of the Chetco Ranger District. Common inclusions in this unit are Landtypes 19, 27, 28, and 51.

> <u>Precipitation</u>: 110 to 130 inches/year. 279 to 329 cm/year. Soil Temperatur<u>e Class</u>: Mesic.

Slope: 40 to 90 percent, smooth to moderately dissected slopes.

Aspect: Generally north, northwest, northeast, and east. <u>Elevation</u>: 500 to 3,000 feet. 152 to 912 meters. <u>Stability</u>: Landtype 26 is moderately stable. Stability Class II.

This unit supports Site Class III and IV Douglas-fir. Other species include: Port-Orford- cedar, red alder, tanoak, madrone, manzanita, salal, sword fern, beargrass, bracken fern, grasses, lichens, and mosses.

Soil 26 is a shallow soil derived from colluvium and residuum. Soil depth is generally 10 to 20 inches. The soil materials are generally well drained. Surface soil erosion potential is severe to very severe. Erosion Class IV and V.

<u>Litter:</u> Needles, leaves, and twigs, a trace to 3/4 inch thick.

Surface Layers: Surface layers are sandy loams and loams. Colors are light brownish gray to gray. Structure is weak fine granular to weak fine subangular blocky. Rock fragments range from 0 to 15 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 6.0 to 6.5. Surface thickness ranges from 6 to 12 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are sandy loam and loams. Colors are light brownish gray to light gray. Structure is weak fine subangular blocky to massive. Rock fragments range from 5 to 15 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic. The pH ranges from 6.0 to 6.5. Subsoil thickness ranges from 5 to 15 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NE4, SW4, Section 9, T.40S., R.12W.

Bedrock consists of moderately hard to hard, highly fractured rhyollites, dacites, and syenites.

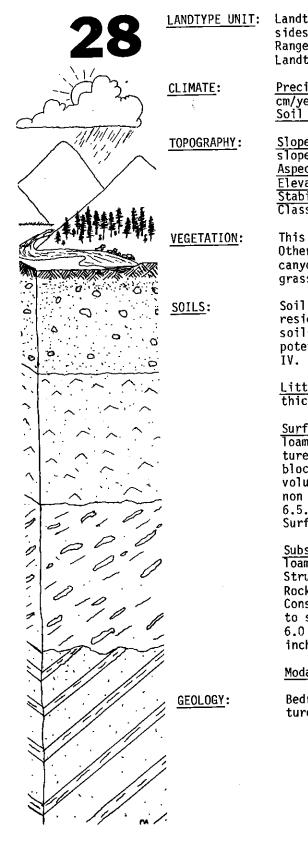
LANDTYPE UNIT: Landtype 27 is found on gentle to moderately steep ridgetop positions in the Mt. Emily area of the Chetco Ranger District. Common inclusions in this unit are Landtypes 19, 26, 29, and 52.

> <u>Precipitation</u>: 110 to 130 inches/year. 279 to 329 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 10 to 40 percent, smooth ridgetops. <u>Aspect</u>: Generally north, northwest, northeast, and east. <u>Elevation</u>: 500 to 3,000 feet. 152 to 912 meters. <u>Stability</u>: Landtype 27 is moderately stable. Stability Class II.

This unit supports Site Class III and locally IV Douglasfir. Other species include: Port-Orford-cedar, redwood, red alder, tanoak, madrone, salal, sword fern, beargrass, grasses, lichens, and mosses.

Soil 27 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate, locally severe. Erosion Class III, locally IV.


Litter: Needles, leaves, and twigs, a trace to 3/4 inch thick.

<u>Surface Layers</u>: Surface layers are loams to fine sandy loams. Colors are dark yellowish. Structure is weak fine grandular to weak fine subangular blocky. Rock fragments range from 5 to 15 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.5 to 6.0. Surface thickness ranges from 10 to 20 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are very cobbly loams to loams. Colors are dark yellowish brown to yellowish brown. Structure is weak fine subangular blocky and weak fine granular. Rock fragments range from 20 to 50 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic. The pH ranges from 6.0 to 6.5. Subsoil thickness ranges from 10 to 30 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NE指, SE指, Section 8, T.40S., R.12W.

Bedrock consists of soft to moderately hard dacites, rhylollites, and syenites.

LANDTYPE UNIT: Landtype 28 is found on moderately steep to very steep sideslope positions in the Mt. Emily area of the Chetco Ranger District. Common inclusions in this unit are Landtypes 19, 26, 29, and 53.

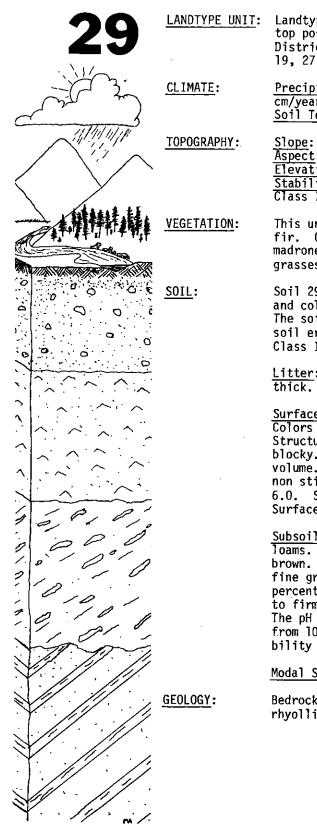
<u>Precipitation</u>: 110 to 130 inches/year. 279 to 329 cm/year. Soil Temperatur<u>e Class</u>: Mesic.

Slope: 40 to 90 percent, smooth to moderately dissected slopes.

Aspect: Generally south, southeast, southwest, and west. <u>Elevation</u>: 500 to 3,000 feet. 152 to 912 meters. <u>Stability</u>: Landtype 28 is moderately stable. Stability Class II.

This unit supports Site Class IV and V Douglas-fir. Other species include: Knobcone pine, tanoak, madrone, canyon live oak, manzanita, salal, bracken fern, beargrass, grasses, lichens, and mosses.

Soil 28 is a shallow soil derived from colluvium and residuum. Soil depth is generally 10 to 20 inches. The soils are generally well drained. Surface soil erosion potential is very severe to severe. Erosion Class V and IV.


Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are sandy loams and loams. Colors are light brownish gray to gray. Structure is weak fine granular to weak fine subangular blocky. Rock fragments range from 0 to 15 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 6.0 to 6.5. Surface thickness ranges from 5 to 10 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are sandy loams and loams. Colors are light brownish gray to light gray. Structure is weak fine subangular blocky to massive. Rock fragments range from 5 to 15 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic. The pH ranges from 6.0 to 6.5. Subsoil thickness ranges from 5 to 10 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NE¼, SW¼, Section 9, T.40S., R.12W.

Bedrock consists of hard to moderately hard, highly fractured dacites, rhyollites, and syenites.

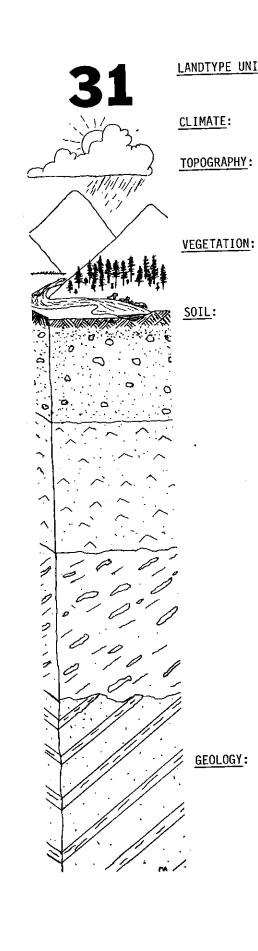
LANDTYPE UNIT: Landtype 29 is found on gentle to moderately steep ridgetop positions in the Mt. Emily area of the Chetco Ranger District. Common inclusions in this unit are Landtypes 19, 27, 28, and 54.

> <u>Precipitation</u>: 110 to 130 inches/year. 279 to 329 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 10 to 40 percent, smooth ridgetops. <u>Aspect</u>: Generally south, southeast, southwest, and west. <u>Elevation</u>: 500 to 3,000 feet. 152 to 912 meters. <u>Stability</u>: Landtype 29 is moderately stable. Stability Class II.

This unit supports Site Class IV and locally V Douglasfir. Other species include: Knobcone pine, tanoak, madrone, hairy manzanita, salal, beargrass, bracken fern, grasses, mosses, and lichens.

Soil 29 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.


Litter: Needles, leaves, twigs, a trace to 1/2 inch thick.

Surface Layers: Surface layers are loams to sandy loams. Colors are dark yellowish brown to yellowish brown. Structure is weak fine granular to weak fine subangular blocky. Rock fragments range from 5 to 15 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.5 to 6.0. Surface thickness ranges from 10 to 20 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are cobbly loams to stony loams. Colors are dark yellowish brown to yellowish brown. Structure is weak fine subangular blocky and weak fine granular. Rock fragments range from 30 to 50 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic. The pH ranges from 6.0 to 6.5. Subsoil thickness ranges from 10 to 30 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NE¹/₄, SW¹/₄, Section 8, T.40S., R.12W.

Bedrock consists of hard to moderately hard dacites, rhyollites, and syenites.

19

LANDTYPE UNIT: Landtype 31 is found on moderately steep sideslopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 3, 32, 34, and 35.

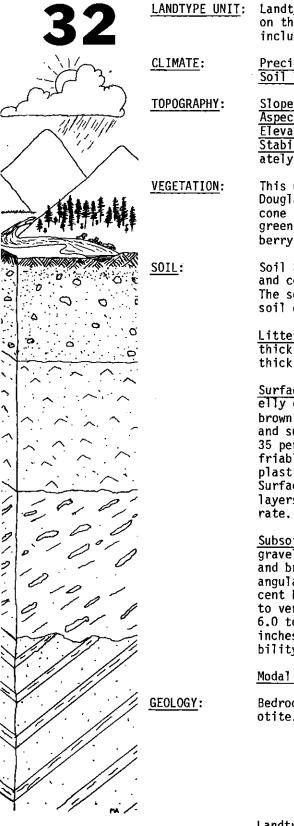
Precipitation: 40 to 90 inches/year. 102 to 229 cm/year. Soil Temperature Class: Mesic, frigid on 31u.

Slope: 35 to 65 percent, slightly dissected slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 4,000 feet. 305 to 1,220 meters. <u>Stability</u>: Landtype 31 is moderately stable. Stability <u>Class II</u>.

This unit supports Site Class V and lower Douglas-fir. Other species include: Jeffrey pine, knobcone pine, incense-cedar, whiteleaf manzanita, western azalea, prostrate juniper, grasses, forbs, and mosses.

Soil 31 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe to moderate. Erosion Class IV and III.

Litter: Needles, twigs, and leaves, less than 1/2 inch thick. Decomposed humus material, 0 to 1/4 inch thick.


<u>Surface Layers</u>: Surface layers are very gravelly and extremely gravelly loams stony loams and clay loams. Colors are dark brown to light gray. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 40 to 70 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.5 to 7.5. Surface thickness ranges from 4 to 11 inches. Surface layers have a rapid permeability rate.

<u>Subsoil Layers</u>: Subsoil layers are extremely gravelly to cobbly clay loams to clays. Colors are dark reddish brown to dark yellowish brown. Structure is moderate to fine and medium subangular and angular blocky to massive. Rock fragments range from 40 to 70 percent by volume. Consistence is slightly hard, friable to firm, sticky to very sticky, plastic to very plastic. The pH ranges from 6.7 to 7.5. Subsoil thickness ranges from 7 to 17 inches. Subsoil layers have slow to moderate permeability rates.

Modal Site Location: NE4, SE4, Section 20, T.36S., R.7W.

Bedrock ranges from green, moderately hard, highly sheared serpentine to hard blocky, rust-colored peridotite.

Landtype 31u is similar to Landtype 31 except that it is found in the upper forest zone, generally between 4,000 and 4,600 feet in elevation, and supports Site Class V sugar pine, Shasta red fir and white fir.

Landtype 32u is similar to Landtype 32 except that it is found in the upper forest zone, generally between 4,000 and 4,500 feet in elevation. This landtype supports sugar pine and Site Class IV and V Shasta red fir and white fir.

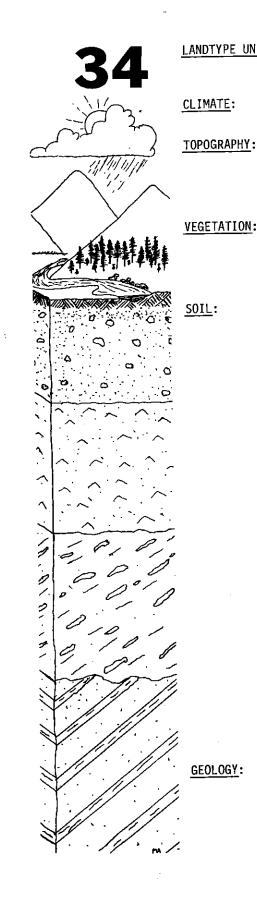
LANDTYPE UNIT: Landtype 32 is found on gentle ridgetops and sideslopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 10, 12, 31 and 35.

> <u>Precipitation</u>: 40 to 90 inches/year. 102 to 229 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on 32u.

Slope: 0 to 35 percent, smooth slopes. Aspect: All aspects. Elevation: 1,000 to 4,000 feet. 305 to 1,220 meters. Stability: Landtype 32 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports low site, (Site Class V and lower) Douglas-fir. Other species include: Jeffrey pine, knobcone pine, incense-cedar, ponderosa pine, whiteleaf and greenleaf manzanita, western azalea, California coffeeberry, prostrate juniper, grasses, forbs, and mosses.

Soil 32 is a moderately deep soil derived from residuum and colluvium. Soil depth generally is 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are heavy loams to gravelly clay loams. Colors are dark reddish brown to dark brown. Structure is moderate fine and medium granular and subangular blocky. Rock fragments range from 10 to 35 percent by volume. Consistence is soft to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 8 to 19 inches. Surface layers have moderately slow to moderate permeability rate.

<u>Subsoil Layers</u>: Subsoil layers are gravelly to very gravelly clay loams and clays. Colors are reddish brown and brown. Structure is moderate fine and medium subangular blocky. Rock fragments range from 15 to 40 percent by volume. Consistence is hard to very hard, firm to very firm, sticky, and plastic. The pH ranges from 6.0 to 7.2. Subsoil thickness ranges from 12 to 30 inches. Subsoil layers have a slow to moderate permeability rate.

Modal Site Location: SW4, NE4, Section 22, T.40S., R.7W.

Bedrock consists of soft weathered serpentine and peridotite.

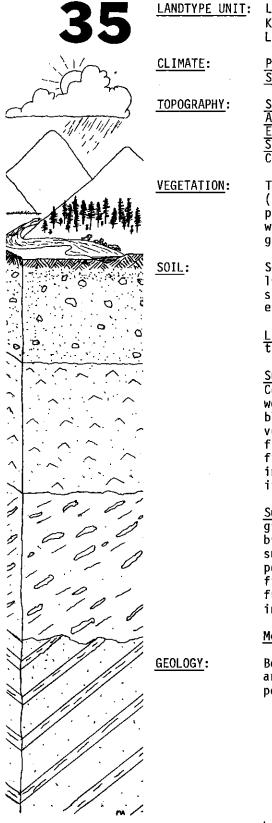
LANDTYPE_UNIT: Landtype 34 is found on steep highly dissected sideslopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 3, 31, and 35.

> Precipitation: 50 to 90 inches/year. 127 to 229 cm/year. Soil Temperature Class: Mesic.

Slope: 50 to 90 percent, highly to extremely dissected. Aspect: All aspects. Elevation: 1,200 to 4,000 feet. 366 to 1,220 meters. Stability: Landtype 34 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports low Site Class V and lower Douglasfir. Other species include: Jeffrey pine, knobcone pine, incense-cedar, ponderosa pine, whiteleaf manzanita, western azalea, prostrate juniper, grasses, forbs, and mosses.

Soil 34 is a shallow, locally moderately deep soil derived from colluvium and residuum. Soil depth to bedrock is usually 10 to 20 inches but ranges to 40 inches. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, twigs, and leaves, less than 1/2 inch thick. Decomposed humus material, a trace to 1/4 inch thick.

Surface Layers: Surface layers are very gravelly and extremely gravelly to stony loams to clay loams. Colors are dark brown to light gray. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 40 to 70 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.5 to 7.5. Surface thickness ranges from 4 to 11 inches. Surface layers have a rapid permeability rate.

Subsoil Layers: Subsoil layers are extremely gravelly to cobbly clay loams to clays. Colors are dark reddish brown to dark yellowish brown. Structure is moderate, fine and medium subangular and angular blocky to massive. Rock fragments range from 50 to 80 percent by volume. Consistence is hard, firm, sticky to very sticky, plastic to very plastic. The pH ranges from 6.7 to 7.5. Subsoil thickness ranges from 7 to 17 inches. Subsoil permeability is slow to moderate.

Modal Site Location: NE4, SW4, Section 34, T.39S., R.9W.

Bedrock ranges from green hard to moderately hard, highly sheared serpentine to hard, blocky, rust-colored peridotite.

LANDTYPE UNIT: Landtype 35 is found on ridgetops on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 3, 31, 32, and 34.

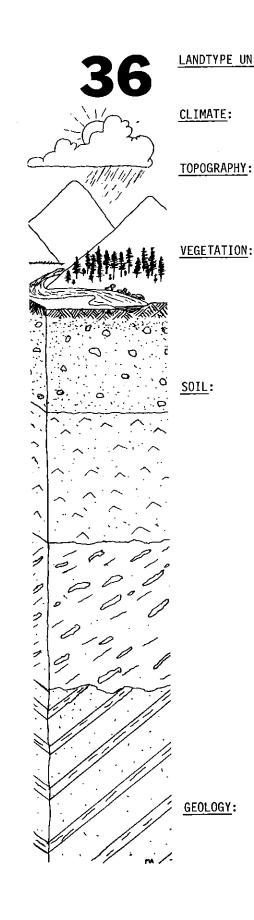
> Precipitation: 40 to 90 inches/year. 127 to 229 cm/year. Soil Temperature Class: Mesic, frigid on 35u.

Slope: O to 35 percent, smooth slopes. Aspect: All aspects. Elevation: 1,500 to 4,000 feet. 458 to 1,220 meters. Stability: Landtype 35 is moderately stable. Stability Class II.

This unit supports lower than Site Class V Douglas-fir (non-commercial timber). Other species include: Jeffrey pine, incense-cedar, knobcone pine, ponderosa pine, whiteleaf manzanita, prostrate juniper, western azalea, grasses, forbs, and mosses.

Soil 35 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.

Litter: Needles, leaves, and twigs, a trace to 1 inch thick.


Surface Layers: Surface layers are gravelly loams. Colors are dark brown to grayish brown. Structure is weak, fine granular to moderate, medium subangular blocky. Rock fragments range from 15 to 50 percent by volume. Consistence is soft to slightly hard, friable to firm, slightly sticky to slightly plastic. The pH ranges from 6.7 to 7.7. Surface thickness ranges from 8 to 11 inches. Surface layers have moderate to rapid permeability rates.

Subsoil Layers: Subsoil layers are gravelly to extremely gravelly clay loams. Colors are dark yellowish brown and brown. Structure is moderate and strong medium to coarse subangular blocky. Rock fragments range from 10 to 50 percent by volume. Consistence is hard to very hard, firm to very firm, sticky, and plastic. The pH ranges from 6.5 to 7.5. Subsoil thickness ranges from 6 to 18 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: SE4, NE4, Section 22, T.40S., R.7W.

Bedrock consists of moderately hard to hard serpentine and peridotite. Serpentine is often highly sheared and peridotite is characteristically blocky.

Landtype 35u is similar to Landtype 35 except that it is found in the upper forest zone, generally between 4,000 and 5,000 feet in elevation. This landtype supports Site Class V Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 36 is found on moderately steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 3, 37, and 39.

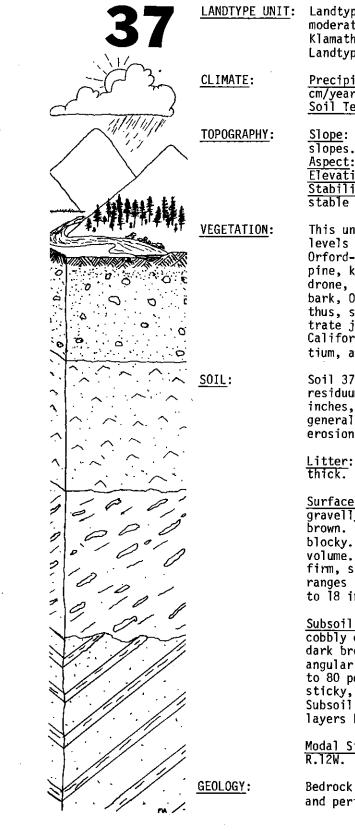
<u>Precipitation</u>: 100 to 125 inches/year. 254 to 325 cm/year. Soil Temperature Class: Mesic.

Slope: 35 to 65 percent, slightly dissected slopes. Aspect: All aspects.

Elevation: 1,000 to 3,500 feet. 305 to 1,067 meters. Stability: Landtype 36 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports low site (Site Class V and lower) Douglas-fir. Stocking levels are usually low. Other species include: Incense-cedar, Jeffrey pine, knobcone pine, western white pine, Port-Orford-cedar, madrone, chinkapin, rhododendron, western azalea, bearberry, Oregon myrtle, canyon live oak, California coffeeberry, wedgeleaf ceanothus, sumac, birchleaf mountain mahogany, salal, prostrate juniper, silk tassel, Oregon grape, serviceberry, dogbane, lomatium, and onion grass.

Soil 36 is a shallow to moderately deep soil derived from residuum and colluvium. Soil depth to bedrock is generally 10 to 20 inches, but may be deeper locally. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very cobbly loams. Colors are very dark grayish brown and dark brown. Structure is weak and moderate, fine granular to subangular blocky. Rock fragments range from 15 to 45 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 6.8. Surface thickness ranges from 6 to 12 inches. Surface layers have moderate to rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly loams, silt loams, and clay loams. Colors are brown and reddish brown. Structure is moderate, fine and medium subangular blocky to massive. Rock fragments range from 35 to 75 percent by volume. Consistence is hard, firm, sticky, and plastic. The pH ranges from 5.5 to 7.0. Subsoil thickness ranges from 8 to 18 inches. Subsoil layers have moderate permeability.

Modal Site Location: NW4, SW4, Section 35, T.33S., R.12W.

Bedrock consists of moderately hard, highly sheared serpentine and blocky peridotite.

LANDTYPE UNIT: Landtype 37 is found on gentle ridgetops and gentle to moderately steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 36, 38, and 39.

<u>Precipitation</u>: 100 to 125 inches/year. 254 to 325 cm/year. Soil Temperature Class: Mesic.

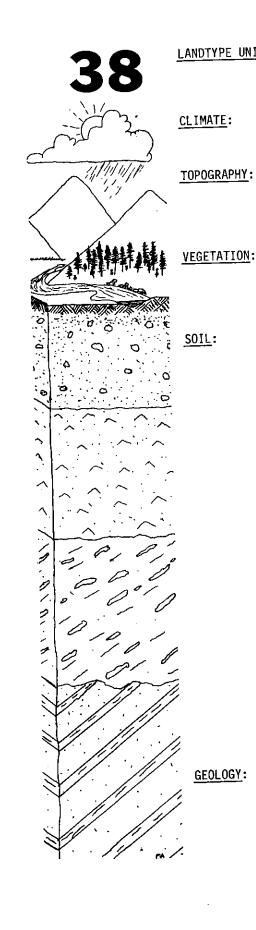
<u>Slope</u>: 10 to 45 percent, smooth to slightly dissected slopes.

Aspect: All aspects.

Elevation: 1,000 to 3,500 feet. 305 to 1,067 meters. Stability: Landtype 37 is moderately unstable, to unstable locally. Stability Class III, locally IV.

This unit supports Site Class V Douglas-fir. Stocking levels are usually low. Other species include: Port-Orford-cedar, sugar pine, incense-cedar, western white pine, knobcone pine, Jeffrey pine, lodgepole pine, madrone, tanoak, chinkapin, rhododendron, cascara, ninebark, Oregon myrtle, canyon live oak, wedgeleaf ceanothus, sumac, birchleaf mountain mahogany, salal, prostrate juniper, silk tassel, Oregon grape, serviceberry, California coffeeberry, hucklberry oak, dogbane, lomatium, and onion grass.

Soil 37 is a moderately deep to deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches, but ranges to 50 inches. The soil materials are generally moderately well to well drained. Surface soil erosion potential is moderate. Erosion Class III.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams. Colors are very dark brown and dark brown. Structure is weak fine granular to subangular blocky. Rock fragments range from 15 to 55 percent by volume. Consistence is soft to slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 6.0 to 6.8. Surface thickness ranges from 7 to 18 inches. Surface layers have moderate permeability.

<u>Subsoil Layers</u>: Subsoil layers are extremely gravelly or cobbly clay loams to clays. Colors are reddish brown to dark brown. Structure is moderate to strong medium subangular blocky and massive. Rock fragments range from 50 to 80 percent by volume. Consistence is hard, firm, sticky, and plastic. The pH ranges from 5.5 to 6.6. Subsoil thickness ranges from 14 to 35 inches. Subsoil layers have moderate permeability.

<u>Modal Site Location</u>: SE눸, NE뉰, Section 35, T.33S., R.12W.

Bedrock consists of soft to moderately hard serpentine and peridotite. Bedrock is often highly sheared.

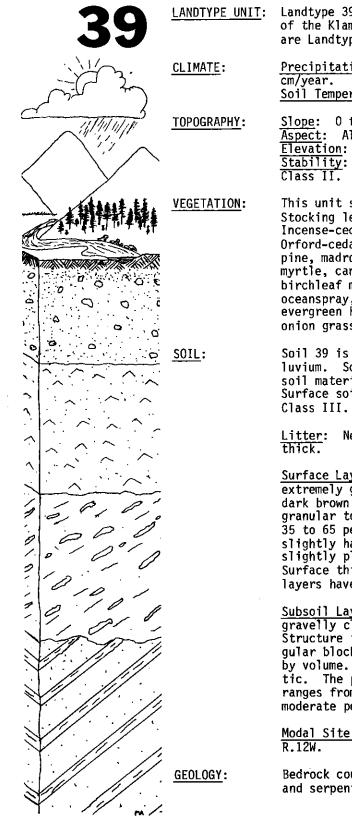
LANDTYPE UNIT: Landtype 38 is found on moderately steep to steep sideslopes in the northern portion of the Forest on the Powers District. Common inclusions in this unit are Landtypes 5, 37, and 186.

<u>Precipitation</u>: 90 to 100 inches/year. 229 to 254 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 35 to 75 percent, slightly dissected. <u>Aspect</u>: Northeast, north, and west. <u>Elevation</u>: 1,500 to 3,500 feet. 456 to 1,067 meters. <u>Stability</u>: Landtype 38 is moderately unstable. Stability Class III.

This unit supports Site Class V and some IV Douglas-fir. Other species include: Incense-cedar, Port-Orford-cedar, western redcedar, tanoak, madrone, rhododendron, salal, oceanspray, Oregon grape, serviceberry, swordfern, mosses, and grasses.

Soil 38 is a deep to very deep soil derived from colluvium and residuum. Soil depth is generally greater than 60 inches with minor inclusions of shallower soils. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, twigs and leaves, less than 1/2 inch thick.

Surface Layers: Surface layers are extremely gravelly loams and silt loams. Colors are very dark brown and dark brown to dark reddish brown. Structure is weak medium granular to weak fine subangular blocky. Rock fragments range from 45 to 80 percent by volume. Consistence is soft to slightly hard, very friable to friable, slightly sticky to sticky, and slightly plastic. The pH ranges from 7.0 to 7.8. Surface thickness ranges from 15 to 28 inches. Surface layers have moderately rapid to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very cobbly to extremely cobbly loams and silt loams. Colors are dark yellowish brown to reddish brown. Structure is weak very fine and fine subangular blocky. Rock fragments range from 50 to 80 percent by volume. Consistence is friable, slightly sticky to sticky, and slightly plastic. The pH ranges from 7.0 to 8.0. Subsoil thickness ranges from 30 to 50 plus inches thick. Subsoil layers have moderately rapid to rapid permeability rates.

Modal Site Location: SE4, NE4, Section 3, T.32S., R.12W.

Bedrock consists of highly fractured serpentine and peridotite.

LANDTYPE UNIT: Landtype 39 is found on gentle ridgetops on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 3, 36, and 37.

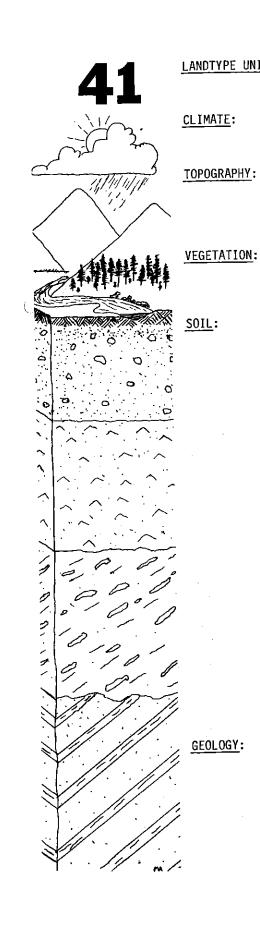
<u>Precipitation</u>: 100 to 150 inches/year. 254 to 381 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 0 to 35 percent, smooth slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 500 to 3,500 feet. 153 to 1,067 meters. Stability: Landtype 39 is moderately stable. Stabi

<u>Stability</u>: Landtype 39 is moderately stable. Stability Class II.

This unit supports Site Class V and lower Douglas-fir. Stocking levels are very low. Other species include: Incense-cedar, sugar pine, western white pine, Port-Orford-cedar, lodgepole pine, knobcone pine, Jeffrey pine, madrone, chinkapin, rhododendron, ninebark, Oregon myrtle, canyon live oak, wedgeleaf ceanothus, sumac, birchleaf mountain mahogany, salal, prostrate juniper, oceanspray, silk tassel, Oregon grape, serviceberry, evergreen huckleberry, wild rose, dogbane, lomatium, and onion grass.

Soil 39 is a shallow soil derived from residium and colluvium. Soil depth is generally 10 to 20 inches. The soil materials are generally moderately well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, leaves, and twigs, a trace to I inch thick.

<u>Surface Layers</u>: Surface layers are very gravelly to extremely gravelly loams and clay loams. Colors are very dark brown to reddish brown. Structure is weak fine granular to subangular blocky. Rock fragments range from 35 to 65 percent by volume. Consistence is soft to slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 5.5 to 6.6. Surface thickness ranges from 5 to 10 inches. Surface layers have moderate permeability.

<u>Subsoil Layers</u>: Subsoil layers are very to extremely gravelly clay loams and clays. Colors are reddish brown. Structure is moderate to strong, fine and medium subangular blocky. Rock fragments range from 45 to 75 percent by volume. Consistence is hard, firm, sticky, and plastic. The pH ranges from 5.8 to 6.7. Subsoil thickness ranges from 7 to 16 inches. Subsoil layers have slow to moderate permeability.

Modal Site Location: NW¼, SW¼, Section 33, T.33S., R.12W.

Bedrock consists of moderately hard to hard peridotite and serpentine.

LANDTYPE UNIT: Landtype 41 is found on moderately steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 42, 43, and 46.

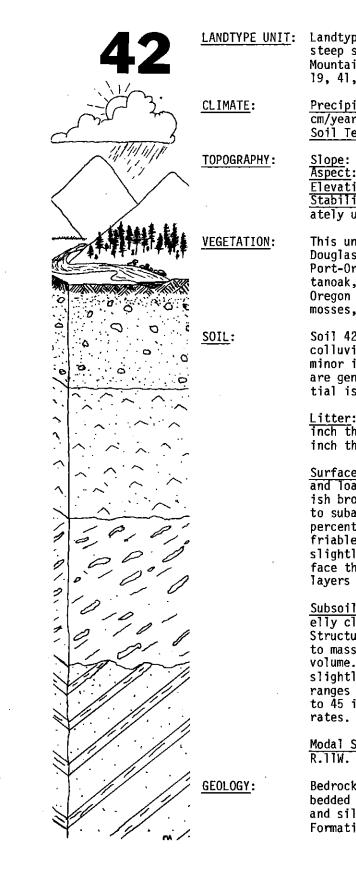
<u>Precipitation</u>: 100 to 135 inches/year. 254 to 333 cm/year.

Soil Temperature Class: Mesic.

<u>Slope</u>: 40 to 90 percent, moderate to highly dissected. <u>Aspect</u>: Generally north, northeast, northwest, and east. <u>Elevation</u>: 800 to 3,500 feet. 243 to 1,067 meters. <u>Stability</u>: Landtype 41 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western hemlock, western white pine, tanoak, chinkapin, red alder, serviceberry, Oregon grape, vanillaleaf, ferns, and fescue.

Soil 41 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches, but may be shallower locally. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly sandy loams and loams. Colors are grayish brown to dark yellowish brown. Structure is moderate, medium granular and fine subangular blocky. Rock fragments range from 15 to 35 percent by volume. Consistence is soft to slightly hard, friable, non sticky, and non plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 6 to 16. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers range from gravelly sandy loams through silt loams. Colors are brown to yellowish brown. Structure is weak to moderately fine and medium subangular blocky. Rock fragments range from 15 to 35 percent by volume. Consistence is slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 6.2 to 6.7. Subsoil thickness ranges from 10 to 30 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: SE4, SE4, Section 25, T.35S., R.12W.

Bedrock consists of moderately hard rhythmically bedded sandstones and siltstones of the Umpqua Formation, and moderately hard siltstones of the Days Creek member of the Umpqua Formation.

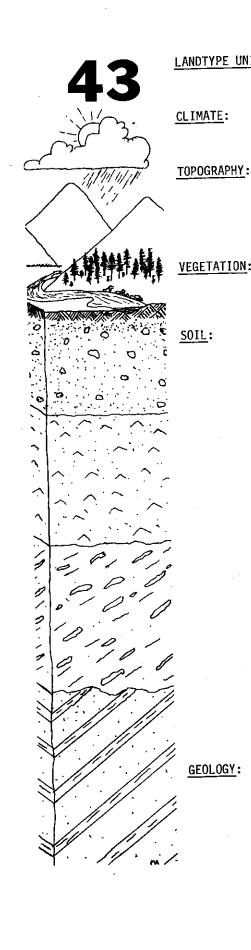
LANDTYPE UNIT: Landtype 42 is found on gentle ridgetops to moderately steep sideslope positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 41, and 46.

<u>Precipitation</u>: 80 to 130 inches/year. 203 to 330 cm/year. Soil Temperature Class: Mesic.

Slope: 5 to 45 percent, slight to moderate dissections. <u>Aspect</u>: All aspects. <u>Elevation</u>: 800 to 3,500 feet. 243 to 1,067 meters. <u>Stability</u>: Landtype 42 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and some Site II Douglas-fir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, western white pine, tanoak, madrone, chinkapin, red alder, rhododendron, Oregon grape, oceanspray, salal, vanillaleaf, forbs, mosses, and grasses.

Soil 42 is mostly a deep soil derived from residuum and colluvium. Soil depth is generally 40 to 60 inches with minor inclusions of shallower soil. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 1/2 inch thick. Decomposed humus material, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly sandy loams and loams. Colors are dark grayish brown to dark yellowish brown. Structure is weak and moderate fine granular to subangular blocky. Rock fragments range from 5 to 35 percent by volume. Consistence is soft to slightly hard, friable to firm, slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 6.7. Surface thickness ranges from 7 to 20 inches. Surface layers have moderate permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are silt loams to gravelly clay loams. Colors are brown and yellowish brown. Structure is moderate fine and medium subangular blocky to massive. Rock fragments range from 5 to 35 percent by volume. Consistence is slightly hard to hard, firm, slightly sticky to sticky, and slightly plastic. The pH ranges from 5.8 to 6.8. Subsoil thickness ranges from 20 to 45 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NW¼, SE¼, Section 13, T.35S., R.11W.

Bedrock consists of moderately hard to soft rhythmically bedded sandstones and siltstones of the Umpqua Formation and siltstones of the Days Creek member of the Umpqua Formation.

LANDTYPE UNIT: Landtype 43 is found on moderately steep to steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 41, and 42.

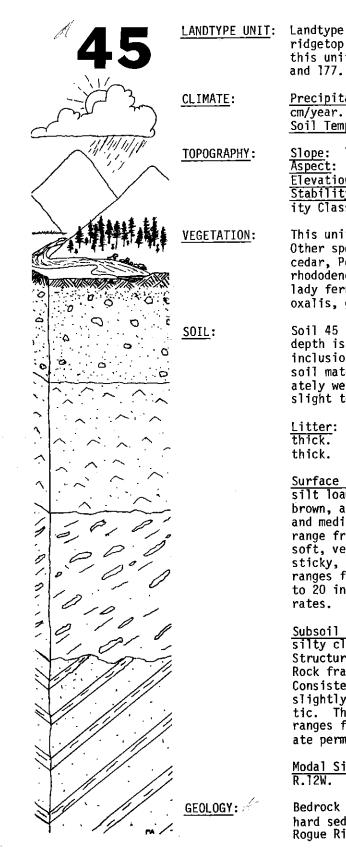
> <u>Precipitation</u>: 90 to 120 inches/year. 229 to 304 cm/year. Soil Temperature Class: Mesic.

Slope: 40 to 90 percent, moderate to highly dissected slopes.

Aspect: Generally south, southwest, southeast, and west. <u>Elevation</u>: 1,000 to 3,500 feet. 305 to 1,067 meters. <u>Stability</u>: Landtype 43 is moderately stable. Stability Class II.

This unit supports Site Class IV and V Douglas-fir. Other species include: Madrone, tanoak, canyon live oak, knobcone pine, chinkapin, Oregon grape, oceanspray, greenleaf manzanita, bracken fern, and fescue.

Soil 43 is a shallow soil derived from residuum and colluvium. Soil depth is generally between 10 and 20 inches. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe to very severe. Erosion Class IV and V.


Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick.

Surface Layers: Surface layers are gravelly to very gravelly sandy loams and loams. Colors are dark brown and dark yellowish brown. Structure is weak medium granular to subangular blocky. Rock fragments range from 15 to 50 percent by volume. Consistence is soft, very friable to friable, non sticky, and slightly plastic. The pH ranges from 6.4 to 7.2. Surface thickness ranges from 3 to 10 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are gravelly to very gravelly sandy loams to silt loams. Colors are yellowish brown to brown. Structure is weak to moderate fine to medium subangular blocky. Rock fragments range from 10 to 50 percent by volume. Consistence is slightly hard, friable to firm, non sticky to slightly sticky, and slightly plastic. The pH ranges from 6.4 to 6.9. Subsoil thickness ranges from 7 to 15 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: NW4, NW4, Section 36, T.35S., R.12W.

Bedrock consists of moderately hard rhythmically bedded sandstones and siltstones of the Umpqua Formation, and moderately hard siltstone of the Days Creek member of the Umpgua Formation.

LANDTYPE UNIT: Landtype 45 is found on gentle to moderately steep ridgetop and sideslope positions. Common inclusions in this unit are Landtypes 8, 8c, 19, 41, 42, 61, 62, 176, and 177.

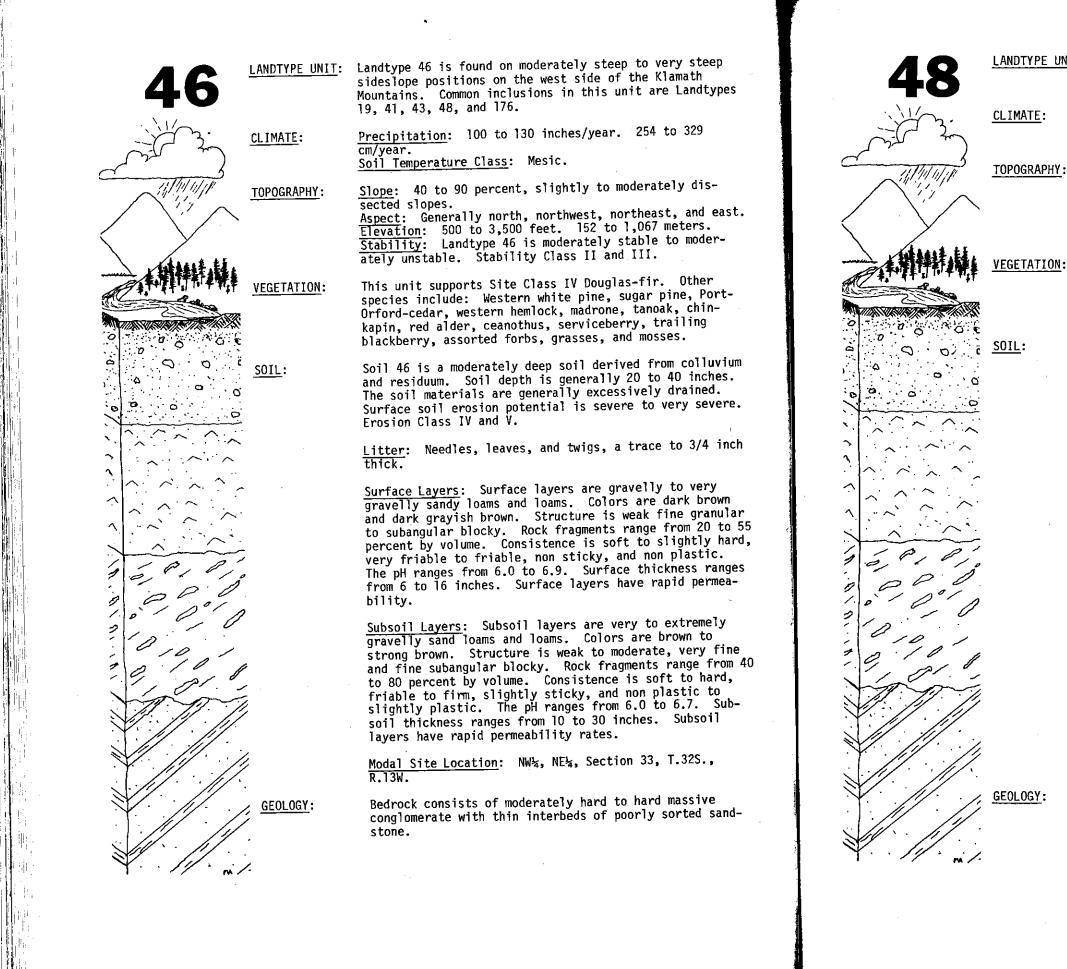
> <u>Precipitation</u>: 90 to 130 inches/year. 229 to 330 cm/year. Soil Temperature Class: Mesic.

Slope: 10 to 50 percent, slight to moderate dissections. Aspect: All aspects. Elevation: 800 to 3,500 feet. 243 to 1,067 meters. Stability: Landtype 45 is moderately unstable. Stability Class III.

This unit supports Site Class II and III Douglas-fir. Other species include: Western hemlock, western redcedar, Port-Orford-cedar, red alder, tanoak, madrone, rhododendron, salal, evergreen huckleberry, sword fern, lady fern, vanillaleaf, twin flower, twisted stalk, oxalis, grasses, and mosses.

Soil 45 is a very deep soil derived from colluvium. Soil depth is generally greater than 60 inches with minor inclusions of more shallow soil near the ridgetops. The soil materials are generally somewhat poorly to moderately well drained. Surface soil erosion potential is slight to moderate. Erosion Class II and III.

Litter: Needles, leaves, and twigs, a trace to 3 inches thick. Decomposed humus material, 1/2 to 1 1/2 inches thick.


Surface Layers: Surface layers are loams and gravelly silt loams. Colors are very dark grayish brown, dark brown, and brown. Structure is weak to moderate, fine and medium granular to subangular blocky. Rock fragments range from 5 to 30 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 6.8. Surface thickness ranges from 12 to 20 inches. Surface layers have moderate permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are loams, clay loams and silty clay loams. Colors are brown and strong brown. Structure is moderate medium and fine subangular blocky. Rock fragments range from 3 to 15 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.7 to 6.5. Subsoil thickness ranges from 30 to 50 inches. Subsoil layers have moderate permeability rates.

<u>Modal Site Location</u>: NE指, SW指, Section 11, T.32S., R.12W.

Bedrock consists of highly fractured soft to moderately hard sedimentary and metasedimentary rocks north of the Rogue River on the west side of the Klamath Mountains.

41

42

2

LANDTYPE UNIT: Landtype 48 is found on moderately steep to very steep sideslopes. Common inclusions in this unit are Landtypes 19, 43, 46, and 178.

<u>Precipitation</u>: 100 to 130 inches/year. 254 to 329 cm/year. Soil Temperature Class: Mesic.

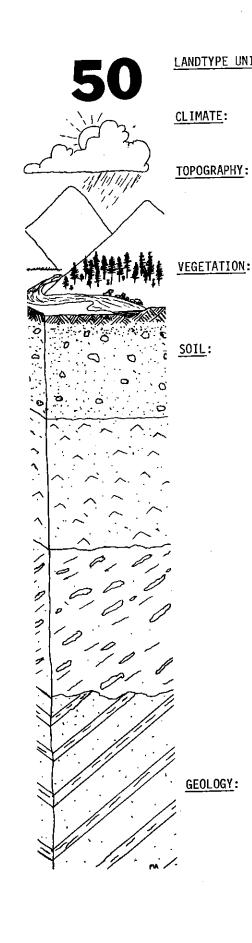
<u>Slope</u>: 40 to 90 percent plus, slightly to moderately dissected slopes.

<u>Aspect</u>: Generally south, southeast, southwest, and west. <u>Elevation</u>: 500 to 3,500 feet. 152 to 1,067 meters. <u>Stability</u>: Landtype 46 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class V Douglas-fir. Other species include: Western white pine, canyon live oak, Port-Orford-cedar, western hemlock, sugar pine, tanoak, madrone, chinkapin, poison oak, red alder, ceanothus, serviceberry, assorted forbs, grasses, and mosses.

Soil 48 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches deep but may be greater than 40 inches deep locally. The soil materials are generally excessively drained. Surface soil erosion potential is very severe to severe. Erosion Class Vand IV.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are gravelly to very gravelly sandy loams and loams. Colors are dark brown and dark grayish brown. Structure is weak fine and medium granular to subangular blocky. Rock fragments range from 25 to 55 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky, and non plastic. The pH ranges from 5.8 to 6.8. Surface thickness ranges from 4 to 12 inches. Surface layers have rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are very to extremely gravelly sandy loams and loams. Colors are brown to strong brown. Structure is weak to moderate very fine subangular blocky. Rock fragments range from 35 to 80 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 10 to 25 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NW4, NE4, Section 35, T.35S., R.12W.

Bedrock consists of moderately hard to hard massive conglomerate with thin interbeds of poorly sorted sand-stone.

43

LANDTYPE UNIT: Landtype 50 is found on moderately steep to steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 51, 53.

> Precipitation: 110 to 150 inches/year. 279 to 381 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 50u.

Slope: 40 to 90 percent, moderate to highly dissected slopes.

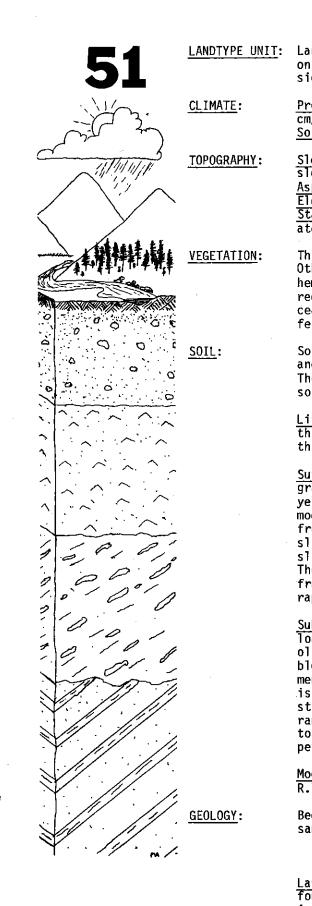
Aspect: All aspects.

Elevation: 2,000 to 4,000 feet. 610 to 1,220 meters. Stability: Landtype 50 is moderately stable. Stability Class II.

This unit supports Site Class IV Douglas-fir. Other species include: Western white pine, sugar pine, tanoak, madrone, chinkapin, canyon live oak, ceanothus, serviceberry, trailing blackberry, bracken fern, grasses, and mosses.

Soil 50 is a shallow soil derived from residuum and colluvium. Soil depth is 10 to 20 inches. The soil materials are generally well to excessively drained. Surface soil erosion potential is severe. Erosion Class IV.

Litter: Needles, leaves, and twigs, a trace to I inch thick. Decomposed humus materials, a trace to 1 inch thick.


Surface Layers: Surface layers are very gravelly to extremely gravelly loams. Colors are dark brown to brown. Structure is weak to moderate fine granular. Rock fragments range from 40 to 75 percent by volume. Consistence is soft, friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 3 to 8 inches. Surface layers have moderately rapid to very rapid permeability rates.

Subsoil Layers: Subsoil layers are very gravelly loams to extremely gravelly loams. Colors are dark brown to brown. Structure is weak fine subangular blocky. Rock fragments range from 40 to 75 percent by volume. Consistence is soft, friable, slightly sticky, and slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 12 to 17 inches. Subsoil layers have moderately rapid to rapid permeability rates.

Modal Site Location: SE¹/₄, SE¹/₄, Section 35, T.36S., R.13W.

Bedrock consists of hard, highly fractured volcanics of the Dothan and Colebrooke Formations.

Landtype 50u is similar to Landtype 50 except that it is found in the upper forest zone, generally ranging from 4,000 to 5,500 feet in elevation, and supports Site Class III and IV Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 51 is found on moderately steep to steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 50, 52, and 53.

> Precipitation: 110 to 150 inches/year. 279 to 381 cm/vear.

Soil Temperature Class: Mesic, frigid on Landtype 5lu.

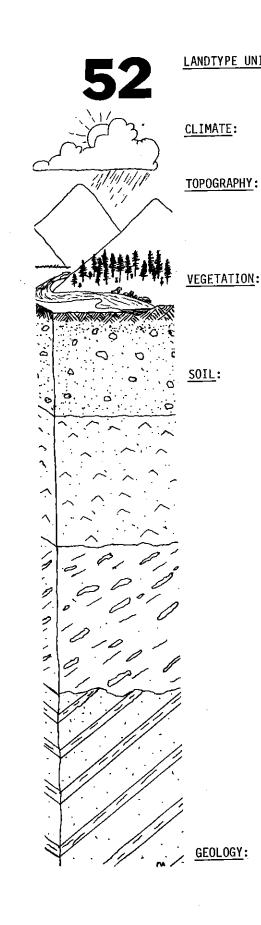
Slope: 40 to 90 percent, moderate to highly dissected slopes.

Aspect: Generally north, northwest, northeast, and east. Elevation: 500 to 4,000 feet. 152 to 1,220 meters. Stability: Landtype 51 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western white pine, western hemlock, sugar pine, redwood, tanoak, madrone, chinkapin, red alder, rhododendron, greenleaf mazanita, salal, ceanothus, serviceberry, blackcap raspberry, bracken fern, bear grass, grasses, and mosses.

Soil 51 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.

Litter: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus materials, a trace to 1/2 inch thick.


Surface Layers: Surface layers are sandy loams to very gravelly loams. Colors are very dark brown to dark yellowish brown. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 15 to 55 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 7.0. Surface thickness ranges from 4 to 14 inches. Surface layers have moderate to rapid permeability rates.

Subsoil Lavers: Subsoil lavers are extremely gravelly loams to light clay loams. Colors are yellowish brown to olive brown. Structure is weak very fine subangular blocky to moderate fine subangular blocky. Rock fragments range from 20 to 80 percent by volume. Consistence is soft to hard, very friable to very firm, non sticky to sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 10 to 25 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: NW4, NE4, Section 24, T.38S., R.13W.

Bedrock consists of moderately hard, highly fractured sandstones and siltstones of the Dothan Formation.

Landtype 51u is similar to Landtype 51 except that it is found in the upper forest zone, generally ranging from 4,000 to 5,500 feet elevation, and supports Site Class III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 52 is found on gentle to moderately steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 51, and 54.

Precipitation: 110 to 150 inches/year. 279 to 381 cm/year.

Soil Temperature Class: Mesic, frigid on Landtype 52u.

Slope: 10 to 40 percent, smooth to moderately dissected slopes.

Aspect: Generally north, northwest, northeast, and east. <u>Elevation</u>: 500 to 4,000 feet. 152 to 1,220 meters. <u>Stability</u>: Landtype 52 is moderately unstable to moder-<u>ately</u> stable. Stability Class III and II.

This unit supports Site Class II and III Douglas-fir. Other species include: Western white pine, sugar pine, redwood, Port-Orford-cedar, western hemlock, tanoak, madrone, chinkapin, red alder, ceanothus, serviceberry, salal, Sadlers oak, greenleaf manzanita, bracken fern, grasses, and mosses.

Soil 52 is a deep to moderately deep soil, derived from residuum and colluvium. Soil depth is generally 40 to 60 inches, but may range to 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.

Litter: Needles, leaves, and twigs, a trace to 1 1/2 inch thick. Decomposed humus materials, a trace to 1 inch thick.


Surface Layers: Surface layers are loams to extremely gravelly loams. Colors are very dark brown to brown. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 5 to 55 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 7.0. Surface thickness ranges from 8 to 20 inches. Surface layers have moderately rapid to rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are extremely gravelly sandy loams to clay loams. Colors are dark brown to yellowish brown. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 30 to 90 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky, and slightly plastic to plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 10 to 40 inches. Subsoil layers have moderate to very rapid permeability rates.

Modal Site Location: NW4, SE4, Section 28, T.38S., R.13W.

Bedrock consists of soft to moderately hard siltstone, mudstone, and sandstone of the Dothan Formation.

<u>Landtype 52u</u> is similar to Landtype 52 except that it is found in the upper forest zone, at elevations of 4,000 to 5,500 feet, and supports Site Class II and III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 53 is found on moderately steep to steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 50, 51, and 54.

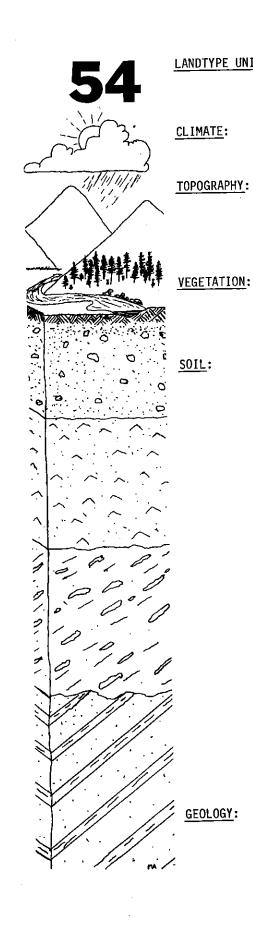
> <u>Precipitation</u>: 110 to 150 inches/year. 279 to 381 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 53u.

<u>Slope</u>: 40 to 90 percent, moderately to highly dissected. <u>Aspect</u>: Generally south, southeast, southwest, and west. <u>Elevation</u>: 2,000 to 4,000 feet. 610 to 1,220 meters. <u>Stability</u>: Landtype 53 is moderately stable. Stability Class II.

This unit supports Site Class IV and V Douglas-fir. Other species include: Incense-cedar, knobcone pine, western white pine, sugar pine, tanoak, madrone, ceanothus, serviceberry, manzanita, forbs, grasses, and mosses.

Soil 53 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are sandy loams to extremely gravelly loams. Colors are very dark grayish brown to dark yellowish brown. Structure is weak, fine granular to moderate, medium granular. Rock fragments range from 15 to 55 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 3 to 9 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are sandy loams to extremely gravelly loam. Colors are dark brown to brown. Structure is weak fine and medium subangular blocky to moderate fine and medium subangular blocky. Rock fragments range from 20 to 80 percent by volume. Consistence is slightly hard to hard, friable to firm, non sticky, and non plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 10 to 15 inches. Subsoil layers have moderately rapid to very rapid permeability rates.

Modal Site Location: SE4, SW4, Section 8, T.39S., R.11W.

Bedrock consists of moderately hard, highly fractured sandstone and siltstones of the Dothan Formation.

<u>Landtype 53u</u> is similar to Landtype 53 except that it is found in the upper forest zone, generally ranging from 4,000 to 5,500 feet elevation, and supports Site Class III and IV Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 54 is found on gentle to moderately steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 52, and 53.

> Precipitation: 110 to 150 inches/year. 279 to 381 cm/year.

Soil Temperature Class: Mesic, frigid on Landtype 54u.

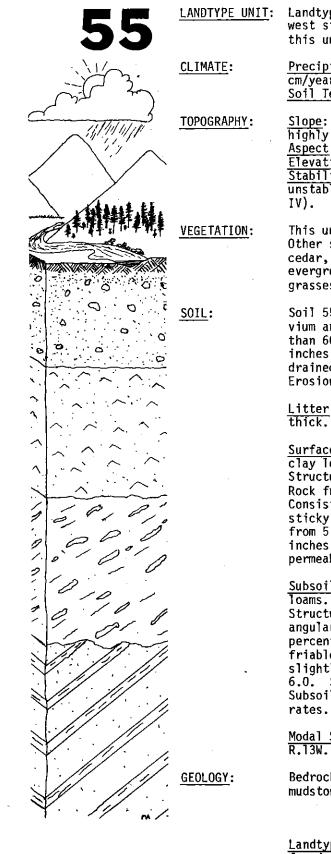
Slope: 10 to 40 percent, smooth to moderately dissected slopes.

<u>Aspect</u>: South, southeast, southwest, and west. <u>Elevation</u>: 2,000 to 4,000 feet. 610 to 1,220 meters. <u>Stability</u>: Landtype 54 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV Douglas-fir. Other species include: Western white pine, sugar pine, knobcone pine, incense-cedar, tanoak, madrone, chinkapin, ceanothus, serviceberry, manzanita, bracken fern, grasses, and mosses.

Soil 54 is a moderately deep, locally deep soil, from residuum and colluvium. Soil depth is generally 20 to 40 inches, but locally it may range deeper than 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.

Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are sandy loams to extremely gravelly loams. Colors are dark brown to dark yellowish brown. Structure is weak, fine granular to weak, medium subangular blocky. Rock fragments range from 15 to 55 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 5 to 15 inches. Surface layers have moderately rapid to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are loams to extremely gravelly sandy loams. Colors are dark yellowish brown to brown. Structure is weak, medium subangular blocky to moderate, medium subangular blocky. Rock fragments range from 20 to 80 percent by volume. Consistence is slightly hard to hard, friable to firm, non sticky to slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 15 to 30 inches. Subsoil layers have moderately rapid to very rapid permeability rates.

Modal Site Location: NE4, NW4, Section 17, T.39S., R.11W.

Bedrock consists of moderately hard to soft siltstones and sandstones of the Dothan Formation.

Landtype 54u is similar to Landtype 54 except that it is found in the upper forest zone, between 4,000 and 5,500 feet elevation, and supports Site Class III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 55 is found on moderately steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 8, 17, 19, and 52.

<u>Precipitation</u>: 110 to 150 inches/year. 279 to 381 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 55u.

Slope: 35 to 70 percent, shallow entrenched, moderate to

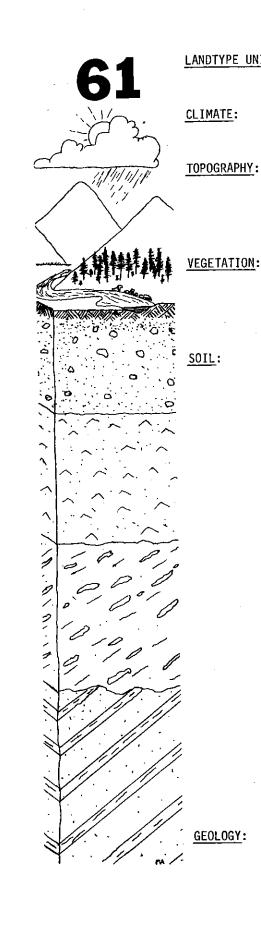
siope: 35 to 70 percent, shallow entrenched, moderate to highly dissected slopes. Aspect: All aspects.

Elevation: 1,000 to 4,000 feet. 305 to 1,220 meters. Stability: Landtype 55 is moderately unstable (locally unstable along drainages). Stability Class III, (locally IV).

This unit supports Site Class III and II Douglas-fir. Other species include: Western hemlock, Port-Orfordcedar, tanoak, red alder, madrone, salal, rhododendron, evergreen huckleberry, Oregon grape, equisetum, ferns, grasses, and mosses.

Soil 55 is a very deep to deep soil derived from colluvium and local residuum. Soil depth is generally greater than 60 inches deep, but may be as shallow as 40 to 60 inches. The soil materials are generally moderately drained. Surface soil erosion potential is moderate. Erosion Class III.

Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick. Decomposed humus materials, 1/4 to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are generally loams to clay loams. Colors are very dark grayish brown to brown. Structure is weak fine granular to strong medium granular. Rock fragments range from 15 to 25 percent by volume. Consistence is soft to hard, very friable to firm, non sticky to sticky, and slightly plastic. The pH ranges from 5.0 to 6.5. Surface thickness ranges from 2 to 18 inches. Surface layers have moderate to moderately rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are clay to very cobbly loams. Colors are very dark brown to olive brown. Structure is weak fine subangular blocky to coarse subangular blocky. Rock fragments range from 15 to 90 percent by volume. Consistence is soft to very hard, friable to very firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.0 to 6.0. Subsoil thickness ranges from 30 to 58 inches. Subsoil layers have slow to moderately rapid permeability rates.

Modal Site Location: SE¼, SE¼, Section 35, T.36S., R.13W.

Bedrock consists of soft to moderately hard siltstones, mudstones and sandstones of the Dothan Formation.

<u>Landtype 55u</u> is similar to Landtype 55 except that it is found in the upper forest zone, generally at 4,000 to 5,500 feet elevation, and supports Site Class II Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 61 is found on moderately steep to steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 17, 19, and 62.

> <u>Precipitation</u>: 110 to 130 inches/year. 279 to 330 cm/year. Soil Temperature Class: Mesic.

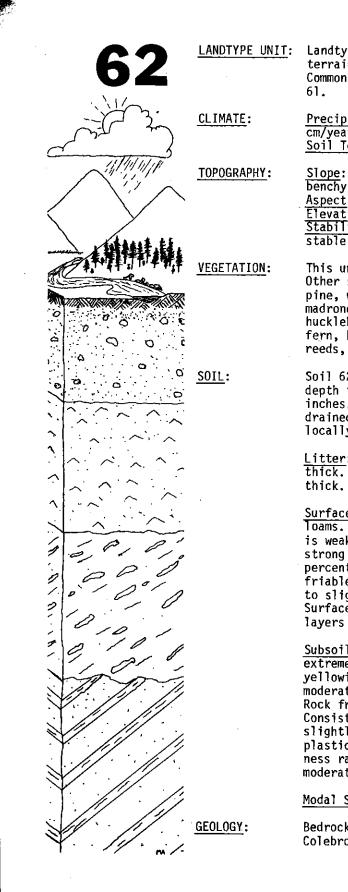
Slope: 40 to 90 percent, moderate to highly dissected slopes.

Aspect: All aspects.

Elevation: 500 to 3,500 feet. 152 to 1,064 meters. Stability: Landtype 61 is moderately unstable. Stability Class III.

This unit supports Site Class III and II Douglas-fir. Other species include: Western hemlock, western white pine, western redcedar, Port-Orford-cedar, red alder, tanoak, madrone, chinkapin, rhododendron, Oregon grape, salal, evergreen huckleberry, bracken fern, twin-flower, sword fern, beargrass, grasses, sedges, and mosses.

Soil 61 is generally a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches, but locally it may be less than 20 inches. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, leaves, and twigs, 1/4 to 3/4 inch thick. Decomposed humus materials a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are loams to gravelly loams. Colors are dark brown to grayish brown. Structure is weak fine granular to strong medium granular. Rock fragments range from 10 to 30 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 4 to 24 inches. Surface layers have moderate to moderately rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly loams to silt loams. Colors are dark brown to grayish brown. Structure is weak fine subangular blocky to strong medium subangular blocky. Rock fragments range from 10 to 50 percent by volume. Consistence is soft to hard, very friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.0 to 7.0. Subsoil thickness ranges from 16 to 36 inches. Subsoil layers have moderate to moderately rapid permeability rates.

Modal Site Location: SE¼, SE¼, Section 24, T.36S., R.12W.

Bedrock consists of moderately hard highly sheared schists of the Colebrook Formation.

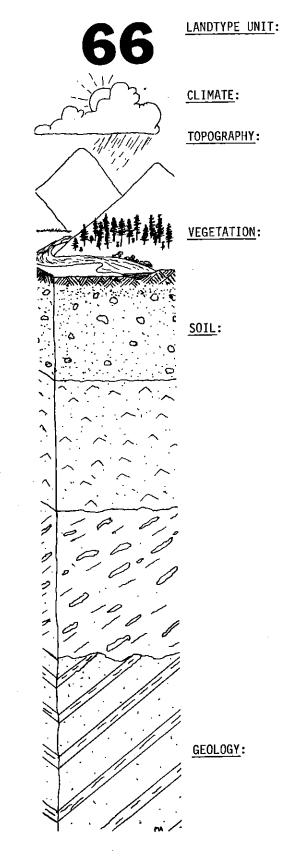
LANDTYPE UNIT: Landtype 62 is found on gentle to moderately steep terrain on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 17, 19, and

> <u>Precipitation</u>: 110 to 130 inches/year. 279 to 330 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 10 to 40 percent, smooth to moderately dissected, benchy sideslopes. Aspect: All aspects.

Elevation: 500 to 3,500 feet. 152 to 1,064 meters. Stability: Landtype 62 is moderately unstable to unstable. Stability Class III and IV.

This unit supports Site Class II and III Douglas-fir. Other species include: Western hemlock, western white pine, western redcedar, Port-Orford-cedar, tanoak, madrone, chinkapin, salal, rhododendron, evergreen huckleberry, twin-flower, sword fern, lady fern, deer fern, bracken fern, beargrass, grasses, sedges, rushes, reeds, and mosses.


Soil 62 is mostly from residuum and colluvium. Soil depth is 40 to 60 inches, but may range to 20 to 40 inches. The soil materials are generally moderately well drained. Surface soil erosion potential is moderate, locally severe. Erosion Class III and locally IV.

<u>Litter</u>: Needles, leaves, and twigs, 1/2 to 1/2 inches thick. Decomposed humus materials, a trace to 1/2 inch thick.

Surface Layers: Surface layers are loams to gravelly loams. Colors are very dark brown to brown. Structure is weak fine granular, moderate medium granular and strong fine granular. Rock fragments range from 3 to 20 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.0 to 6.0. Surface thickness ranges from 5 to 15 inches. Surface layers have moderate to rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are gravelly loams to extremely gravelly silty clay loams. Colors are dark yellowish brown to light olive brown. Structure is moderate medium and fine subangular blocky to massive. Rock fragments range from 35 to 80 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.0 to 6.5. Subsoil thickness ranges from 25 to 55 inches. Subsoil layers have moderate to moderately rapid permeability rates.

<u>Modal Site Location</u>: SW¼, SW¼, Section 8, T.36S., R.12W. Bedrock consists of soft highly sheared schists of the Colebrooke Formation.

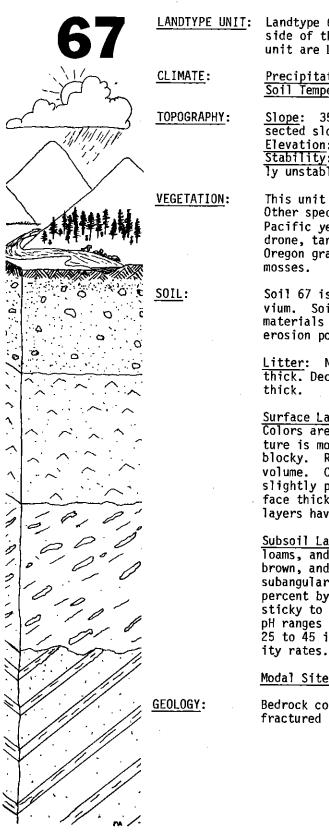
LANDTYPE UNIT: Landtype 66 is found on moderately steep to very steep sideslopes positions on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 67, 68, 76, and 86.

<u>Precipitation</u>: 50 to 90 inches/year. 127 to 229 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 50 to 90 percent, moderate, locally highly dissected slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 2,000 to 4,000 feet. 610 to 1,220 meters. <u>Stability</u>: Landtype 66 is moderately stable. Stability <u>Class IL</u>.

This unit supports Site Class IV and V Douglas-fir. Other species include: Sugar pine, incense-cedar, Pacific yew, white fir, western white pine, chinkapin, tanoak, madrone, manzanita, ceanothus, blue elderberry, wild gooseberry, wild rose, Oregon grape, trailing blackberry, forbs, grasses, and mosses.

Soil 66 is mostly moderately deep, derived from residuum and colluvium. Soil depth is 20 to 40 inches, with inclusions less than 20 inches. The soil materials are generally excessively drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, leaves, and twigs, a trace to I inch thick.

<u>Surface Layers</u>: Surface layers are non gravelly to very gravelly sandy loams and loams. Colors are dark brown, brown, and dark reddish brown. Structure is weak fine granular. Rock fragments range from 5 to 45 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.8 to 6.6. Surface thickness ranges from 7 to 15 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly to extremely gravelly loams, silt loams, and clay loams. Colors are strong brown, reddish yellow, and yellowish red. Structure is weak to moderate fine and medium subangular blocky. Rock fragments range from 25 to 65 percent by volume. Consistence is hard, firm, sticky, and slightly plastic. The pH ranges from 5.8 to 6.8. Subsoil thickness ranges from 10 to 30 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: SW4, NW4, Section 18, T.36S., R.8W.

Bedrock consists of moderately hard to hard moderately fractured amphibole gneiss.

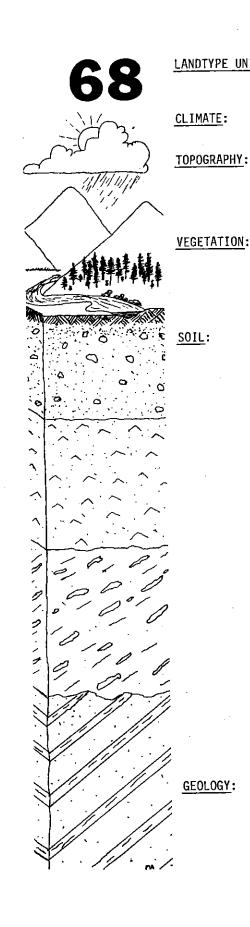
LANDTYPE UNIT: Landtype 67 is on moderately steep sideslopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 66, 68, 77, and 87.

<u>Precipitation</u>: 50 to 90 inches/year. 127 to 229 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 35 to 65 percent, slightly to moderately dissected slopes. <u>Elevation</u>: 2,000 to 4,000 feet. 610 to 1,220 meters. <u>Stability</u>: Landtype 67 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and IV Douglas-fir. Other species include: Sugar pine, western white pine, Pacific yew, incense-cedar, white fir, chinkapin, madrone, tanoak, manzanita, wild gooseberry, wild rose, Oregon grape, trailing blackberry, forbs, grasses, and mosses.

Soil 67 is a deep soil derived from residuum and colluvium. Soil depth is generally 40 to 60 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 1/2 inch thick.

Surface Layers: Surface layers are gravelly loams. Colors are dark brown, brown, and reddish brown. Structure is moderate fine to coarse granular and subangular blocky. Rock fragments range from 10 to 35 percent by volume. Consistence is hard, firm, slightly sticky, and slightly plastic. The pH ranges from 6.5 to 7.7. Surface thickness ranges from 9 to 22 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly silt loams, loams, and clay loams. Colors are yellowish red, reddish brown, and red. Structure is moderate medium and coarse subangular blocky. Rock fragments range from 15 to 35 percent by volume. Consistence is hard, firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.0 to 7.0. Subsoil thickness ranges from 25 to 45 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NW4, NW4, Section 16, T.34S., R.9W.

Bedrock consists of soft to moderately hard, highly fractured amphibole gneiss.

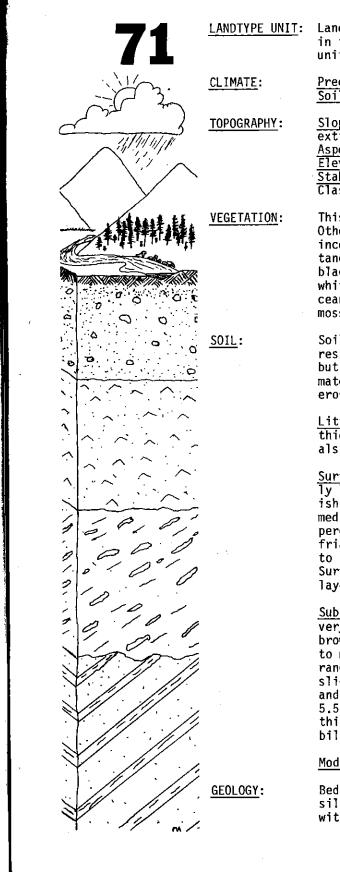
LANDTYPE UNIT: Landtype 68 is on gentle rolling terrain on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 67, 77, and 87.

<u>Precipitation</u>: 50 to 90 inches/year. 127 to 229 cm/year. Soil Temperature <u>Class</u>: Mesic.

Slope: 2 to 35 percent, rolling slopes. Aspect: All aspects. Elevation: 2,000 to 4,000 feet. 610 to 1,220 meters. Stability: Landtype 68 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III Douglas-fir. Other species include: Port-Orford-cedar, western white pine, sugar pine, incense-cedar, Pacific yew, white fir, madrone, tanoak, chinkapin, manzanita, snowbrush ceanothus, whitethorn ceanothus, Oregon grape, blue elderberry, trailing blackberry, forbs, grasses, and mosses.

Soil 68 is a very deep soil derived from residuum and colluvium. Soil depth is greater than 60 inches. The soil materials are generally moderately well drained. Surface soil erosion potential is slight to moderate. Erosion Class II and III.


Litter: Needles, leaves, and twigs, a trace to 1 1/2 inches thick. Decomposed humus material, a trace to 1 inch deep.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly sandy loams to silt loams. Colors are very dark grayish brown to reddish brown. Structure is moderate medium granular to subangular blocky. Rock fragments range from 10 to 50 percent by volume. Consistence is soft to slightly hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.2 to 7.2. Surface thickness ranges from 8 to 20 inches thick. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly loams silt loams, and clay loams. Colors are brown, yellowish red, and reddish brown. Structure is moderate to strong medium subangular blocky. Rock fragments range from 15 to 40 percent by volume. Consistence is slightly hard to hard, firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 6.0 to 6.8. Subsoil thickness ranges from 25 to 50 inches thick. Subsoil layers have moderate permeability rates.

Modal Site Location: SW4, NW4, Section 8, T.34S., R.9W.

Bedrock consists of soft, massive, highly decomposed amphibole gneiss.

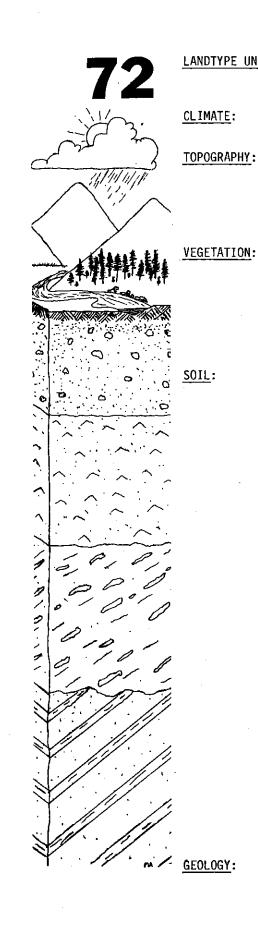
LANDTYPE UNIT: Landtype 71 is found on moderately steep to steep slopes in the Siskiyou Mountains. Common inclusions in this unit are Landtypes 18, 72, 76, 81, and 86.

> <u>Precipitation</u>: 50 to 80 inches/year. 127 to 203 cm/year. <u>Soil Temperature Class</u>: Mesic.

<u>Slope</u>: 40 to 90 percent, moderately to highly (locally extremely) dissected terrain. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 3,500 feet. 305 to 1,064 meters. <u>Stability</u>: Landtype 71 is moderately stable. Stability Class II.

This unit supports Site Class III and IV Douglas-fir. Other species include: Sugar pine, western white pine, incense-cedar, white fir, Pacific yew, ponderosa pine, tanoak, madrone, chinkapin, canyon live oak, California black oak, snowbrush ceanothus, serviceberry, vine maple, white leaf manzanita, whitethorn ceanothus, blueblossom ceanothus, poison oak, bracken fern, dogbane, fescue, and mosses.

Soil 71 is generally moderately deep, and derived from residuum and colluvium. Soil depth is 20 to 40 inches, but locally ranges to less than 20 inches. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1/2 inch thick. Moderately decomposed to decomposed humus materials, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are loams to very gravelly loams. Colors are very dark grayish brown to yellowish brown. Structure is weak fine granular to moderate medium granular. Rock fragments range from 30 to 40 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 8.0. Surface thickness ranges from 3 to 12 inches. Surface layers have rapid to moderate permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly loams to very gravelly silt loams. Colors are dark yellowish brown to reddish yellow. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 20 to 50 percent by volume. Consistence is slightly hard to hard, firm, slightly sticky to sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 7.0. Subsoil thickness ranges from 4 to 14 inches thick. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: NE¹/₄ SW¹/₄, Section 14, T.37S., R.8W.

Bedrock consists of moderately hard, highly fractured siltstones, mudstones, and local metasedimentary rocks, with interspersed stringers of metavolcanic rock.

LANDTYPE UNIT: Landtype 72 is found on gentle to moderately steep terrain in the Siskiyou Mountains. Common inclusions in this unit are Landtypes 4, 18, 71, 77, and 82.

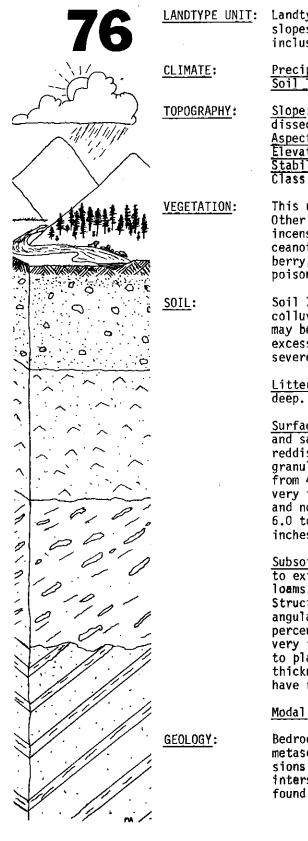
> Precipitation: 50 to 80 inches/year. 127 to 203 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 10 to 40 percent, smooth to moderately dissected terrain. Aspect: All aspects.

Elevation: 1,000 to 3,500 feet. 305 to 1,064 meters. Stability: Landtype 72 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and locally IV Douglasfir. Other species include: Sugar pine, ponderosa pine, incense-cedar, white fir, tanoak, madrone, California black oak, chinkapin, Sadler oak, Oregon grape, Salal, snowbrush ceanothus, trailing blackberry, snowberry, wild rose, greenleaf manzanita, thimbleberry, poison oak, whiteleaf manzanita, serviceberry, princess pine, wild iris, dogbane, bracken fern, vetch, fescue, and mosses.

Soil 72 is a deep to moderately deep soil, derived from residuum and colluvium. Soil depth is generally 40 to 60 inches, but may range to 20 to 40 inches deep. The soil materials are generally well to moderately well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, leaves, and twigs, a trace to 2 inches thick. Decomposed humus, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are loams, very gravelly silt loams, very gravelly loams and extremely gravelly sandy loams. Colors are very dark brown to dark yellowish brown. Structure is weak very fine and fine granular to moderate fine and medium granular and moderate fine and medium subangular blocky. Rock fragments range from 3 to 60 percent by volume. Consistence is soft to slightly hard, very friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.0 to 6.5. Surface thickness ranges from 3 to 23 inches. Surface layers have rapid to moderate permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly sandy loam to clay loam. Colors are dark brown to yellowish red. Structure is weak fine and medium subangular blocky to strong medium subangular blocky to massive. Rock fragments range from 5 to 50 percent by volume. Consistence is soft to hard, very friable to firm, slightly sticky to very sticky, slightly plastic to very plastic. The pH ranges from 5.0 to 6.8. Subsoil thickness ranges from 15 to 55 inches thick. Subsoil layers have moderately slow to moderately rapid permeability rates.

Modal Site Location: SW4, SW4, Section 30, T.37S., R.7W.

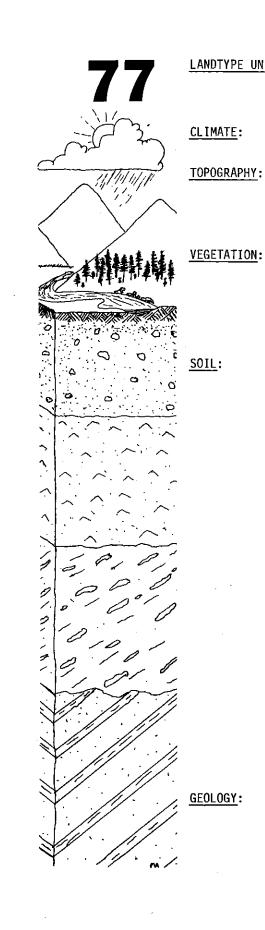
Bedrock consists of soft to moderately hard siltstones, mudstones, and local metasedimentary rocks, with interspersed stringers of metavolcanic rocks.

<u>Landtype 76u</u> is similar to Landtype 76 except that it is found in the upper forest zone, generally 4,000 to 5,000 feet in elevation, and supports Site Class III and IV Shasta red fir and white fir.

LANDTYPE UNIT:Landtype 76 is found on moderately steep to steep side-
slopes on the east side of the Klamath Mountains. Common
inclusions in this unit are Landtypes 18, 71, 77, and 86.CLIMATE:Precipitation: 45 to 85 inches/year. 114 to 215 cm/year.
Soil Temperature Class: Mesic, frigid on Landtype 76u.TOPOGRAPHY:Slope: 45 to 90 percent, moderately to locally highly
dissected.terrain.
Aspect: All aspects.
Elevation: 1,000 to 4,000 feet. 304 to 1,216 meters.
Stability: Landtype 76 is moderately stable. Stability
Class II.VEGETATION:This unit supports Site Class IV and V Douglas-fir.
Other species include: Ponderosa pine, sugar pine,

Other species include: Ponderosa pine, sugar pine, incense-cedar, tanoak, madrone, chinkapin, snowbrush ceanothus, Oregon grape, whitethorn ceanothus, serviceberry, Sadler Oak, snowberry, vine maple, manzanita, poison oak, wild iris, grasses, and mosses.

Soil 76 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches, but may be deeper locally. The soil materials are generally excessively drained. Surface soil erosion potential is severe. Erosion Class IV.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 3/4 inch deep.

<u>Surface Layers</u>: Surface layers are very gravelly loams and sandy loams. Colors are dark grayish brown to dark reddish brown. Structure is weak very fine to medium granular and subangular blocky. Rock fragments range from 40 to 60 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky and non plastic to slightly plastic. The pH ranges from 6.0 to 6.8. Surface thickness ranges from 4 to 10 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are usually very cobbly to extremely cobbly or gravelly sandy loams to clay loams. Colors are reddish brown to yellowish brown. Structure is weak to moderate, very fine and fine subangular blocky. Rock fragments range from 50 to 80 percent by volume. Consistence is soft to slightly hard, very friable to friable, slightly sticky, and non plastic to plastic. The pH ranges from 6.0 to 6.6. Subsoil thickness ranges from 6 to 16 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NE4, NE4, Section 2, T.38S., R.9W.

Bedrock consists of hard, highly to moderately fractured metasedimentary of the Galice Formation. Small inclusions of metavolcanic rock and pebbly conglomerate are interspersed locally. The hardest bedrock is usually found on steep slopes and adjacent to drainages.

LANDTYPE UNIT: Landtype 77 is found on moderately steep sideslopes to gentle ridgetops on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 72, 76, and 87.

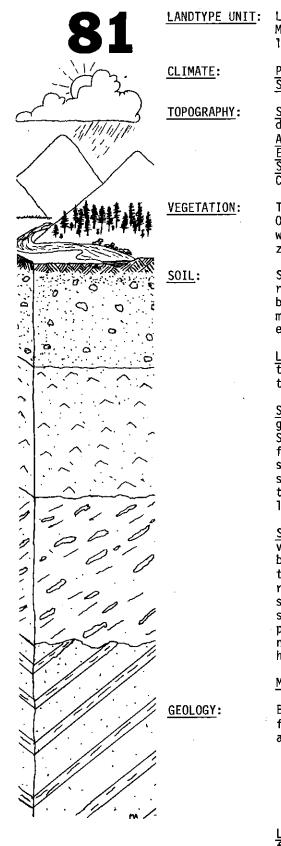
> Precipitation: 45 to 85 inches/year. 114 to 215 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 77u.

Slope: 3 to 45 percent, slightly dissected slopes. Aspect: All aspects. Elevation: 1,000 to 4,000 feet. 304 to 1,216 meters. Stability: Landtype 77 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV and locally III Douglasfir. Other species include: Sugar pine, western white pine, incense-cedar, tanoak, madrone, Pacific yew, chinkapin, Oregon grape, snowbrush ceanothus, whitethorn ceanothus, Sadler oak, snowberry, trailing blackberry, poison oak, princess pine, wild iris, fescue and other grasses, and mosses.

Soil 77 is a moderately deep to deep soil derived from residuum and colluvium. Soil depth is 20 to 40 inches, but may be 40 to 60 inches deep locally. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.

Litter: Needles, leaves, and twigs, a trace to 1 1/2 inches thick. Decomposed humus material, a trace to 3/4 inches thick.


Surface Layers: Surface layers are very gravelly loams. Colors are dark gravish brown to dark reddish brown. Structure is weak fine granular to subangular blocky. Rock fragments range from 35 to 60 percent by volume. Consistence is soft to slightly hard, friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 8 to 12 inches. Surface layers have rapid permeability rates.

Subsoil Layers: Subsoil layers are very gravelly loams and clay loams. Colors are reddish brown, brown, and yellowish brown. Structure is generally moderate fine and medium subangular blocky. Rock fragments range from 35 to 50 percent by volume. Consistence is hard, firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.8 to 6.8. Subsoil thickness ranges from 12 to 28 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NE4, NE4, Section 2, T.38S., R.9W.

Bedrock consists of soft saprolitic to moderately hard metasedimentary rocks of the Galice Formation. Inclusions of metavolcanic rocks are interspersed locally.

Landtype 77u is similar to Landtype 77 except that it is found in the upper forest zone, generally 4,000 to 5,000 feet in elevation, and supports Site Class III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 81 is found on steep slopes in the Siskiyou Mountains. Common inclusions in this uUnit are Landtypes 18, 71, and 82.

> Precipitation: 50 to 80 inches/year. 127 to 203 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 81u.

Slope: 60 to 90 percent, moderately locally highly, dissected terrain.

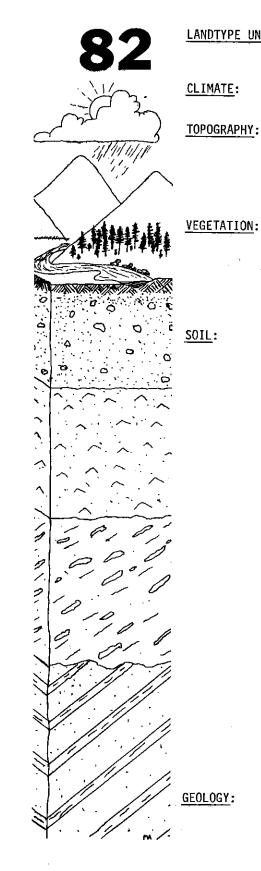
Aspect: All aspects.

Elevation: 1,000 to 4,000 feet. 305 to 1,220 meters. Stability: Landtype 81 is moderately stable. Stability Class II.

This unit supports Site Class IV and III Douglas-fir. Other species include: Incense-cedar, Port-Orford-cedar, white fir, chinkapin, tanoak, madrone, ceanothus, manzanita, princess pine, grasses, and mosses.

Soil 81 is generally a moderately deep soil derived from residuum and colluvium. Soil depth is 20 to 40 inches, but locally ranges from 10 to 20 inches. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.

Litter: Needles, leaves, and twigs, a trace to 1 inch thick. Moderately decomposed to decomposed humus, and trace to 1/2 inch thick.


Surface Layers: Surface layers are loams to extremely gravelly loams. Colors are reddish brown to pale brown. Structure is weak, fine granular. Rock fragments range from 15 to 65 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 4 to 24 inches thick. Surface layers have moderately rapid to rapid permeability rates.

Subsoil Lavers: Subsoil lavers are gravelly loams to very gravelly loams. Colors are brown to yellowish brown. Structure is moderate very fine and fine granular to moderate very fine subangular blocky. Rock fragments range from 30 to 50 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 10 to 30 inches thick. Subsoil lavers have moderate to rapid permeability rates.

Modal Site Location: NE4, SW4, Section 16, T.40S., R.6W.

Bedrock consists of moderately hard to hard highly fractured metavolcanic rocks with interspersed sediments and metasediments.

Landtype 81u is similar to Landtype 81 except that it is found in the upper forest zone, generally between 4,000 and 5,500 feet elevation, is 10 to 20 inches deep, and supports Site Class III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 82 is found on moderately steep slopes in the Siskiyou Mountains. Common inclusions in this unit are Landtypes 4, 16, 18, 72, 81, and 83.

<u>Precipitation</u>: 50 to 80 inches/year. 127 to 203 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on Landtype 82u.

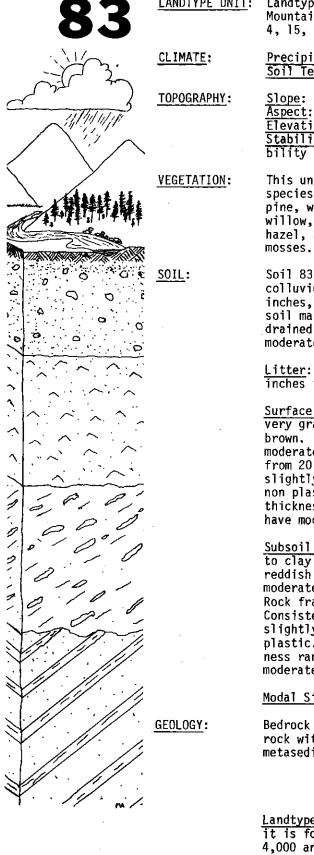
<u>Slope</u>: 30 to 60 percent, smooth to moderately dissected slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 4,000 feet, 305 to 1,220 meters.

<u>Stability</u>: Landtype 82 is moderately unstable to moderately stable. Stability Class III and II.

This unit supports Site Class III and IV Douglas-fir. Other species include: Sugar pine, western white pine, incense-cedar, Port-Orford-cedar, white fir, madrone, chinkapin, tanoak, canyon live oak, oceanspray, California hazel, trailing blackberry, whiteleaf and greenleaf manzanita, bearberry, bracken fern, sword fern, grasses, and mosses.

Soil 82 is generally a deep soil derived from colluvium and residuum. Soil depth is generally 40 to 60 inches, but locally it may range from 20 to 40 inches deep. The soil materials are generally moderately well drained. Surface soil erosion potential is moderate. Erosion Class III.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 1/4 inches thick. Highly decomposed humus, 1/4 to 3/4 inches thick.


<u>Surface Layers</u>: Surface layers are loams to gravelly loams. Colors are dark brown to brown. Structure is weak very fine and fine granular to weak fine subangular blocky. Rock fragments range from 10 to 30 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 6 to 16 inches. Surface layers have moderately rapid to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly loams to clay loams. Colors are dark yellowish brown to brown. Structure is weak fine and medium subangular blocky, moderate fine and medium and moderate medium subangular blocky. Rock fragments range from 15 to 35 percent by volume. Consistence is soft to hard, friable to firm, slightly sticky to sticky, and non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 34 to 44 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: NE4, NE4, Section 26, T.40S., R.7W.

Bedrock consists of moderately hard to soft highly fractured metavolcanic rock with interspersed stringers of sediments and metasediments.

Landtype 82u is similar to Landtype 82 except that it is found in the upper forest zone, generally between 4,000 and 5,500 feet in elevation, and supports Site Class II and III Shasta red fir and white fir.

60

LANDTYPE UNIT: Landtype 83 is found on gentle terrain in the Siskiyou Mountains. Common inclusions in this unit are Landtypes 4, 15, 16, 72, and 82.

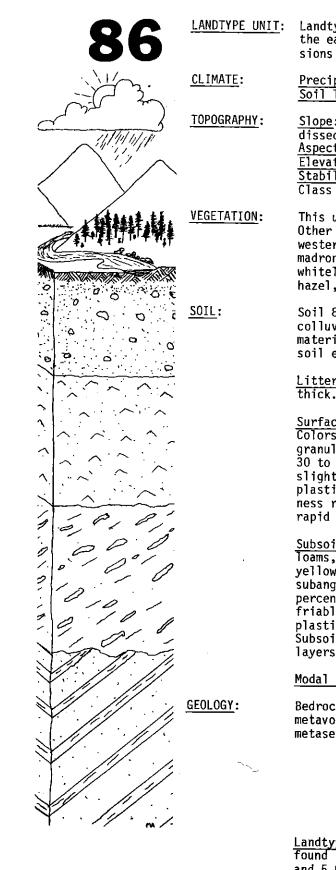
> <u>Precipitation</u>: 50 to 80 inches/year. 127 to 203 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on Landtype 83u.

<u>Slope</u>: 0 to 30 percent, rolling, benchy terrain. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 4,000 feet. 305 to 1,220 meters. <u>Stability</u>: Landtype 83 is moderately unstable. Stability Class III.

This unit supports Site Class III Douglas-fir. Other species include: Port-Orford-cedar, incense-cedar, sugar pine, western white pine, white fir, madrone, chinkapin, willow, serviceberry, ceanothus, oceanspray, California hazel, bearberry, bracken fern, sword fern, grasses, and mosses.

Soil 83 is generally a very deep soil derived from colluvium and residuum. Soil depth is greater than 60 inches, but locally is less than 60 inches deep. The soil materials are generally moderate to moderately well drained. Surface soil erosion potential is slight to moderate. Erosion Class II and III.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 1/2 inches thick. Decomposed humus 1/4 to 1 inches thick.


<u>Surface Layers</u>: Surface layers are gravelly loams to very gravelly loams. Colors are very dark brown to brown. Structure is weak fine granular to weak and moderate fine and medium granular. Rock fragments range from 20 to 50 percent by volume. Consistence is soft to slightly hard, friable non sticky to slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 10 to 20 inches. Surface layers have moderately rapid to rapid permeability.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly loams to clay loams. Colors are brown, yellowish brown, and reddish brown. Structure is weak fine subangular blocky, moderate fine and medium subangular blocky, and massive. Rock fragments range from 10 to 85 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.5 to 7.0. Subsoil thickness ranges from 20 to 95 inches. Subsoil layers have moderately slow to moderately rapid permeability.

Modal Site Location: NE4, NE4, Section 23, T.40S., R.7W.

Bedrock consists of soft to moderately hard metavolcanic rock with interspersed dikes and sills of sediments and metasediments.

Landtype Unit 83u is similar to Landtype 83 except that it is found in the upper forest zone, generally between 4,000 and 5,500 feet in elevation, and supports Site Class II and I Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 86 is found on steep to very steep sideslopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 76, and 87.

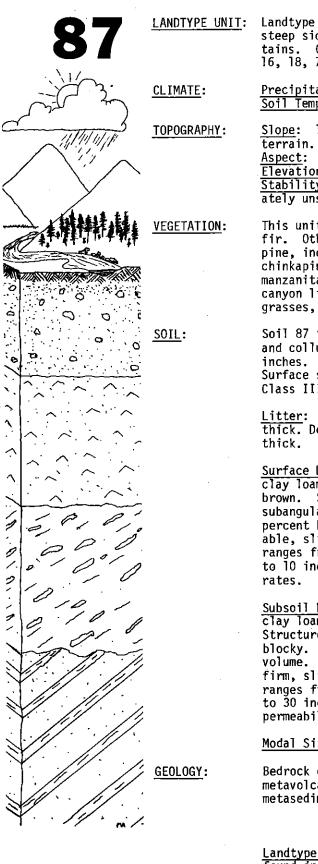
<u>Precipitation</u>: 45 to 85 inches/year. 114 to 215 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on Landtype 86u.

<u>Slope</u>: 60 to 90 plus percent, moderately, locally highly dissected terrain. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,000 to 4,000 feet. 304 to 1,216 meters. <u>Stability</u>: Landtype 86 is moderately stable. Stability Class II.

This unit supports Site Class IV and V Douglas-fir. Other species include: Incense-cedar, sugar pine, western white pine, ponderosa pine, white fir, tanoak, madrone, chinkapin, whitethorn ceanothus, greanleaf and whiteleaf manzanita, Oregon grape, poison oak, California hazel, princess pine, grasses, and mosses.

Soil 86 is a shallow soil derived from residuum and colluvium. Soil depth is 10 to 20 inches. The soil materials are generally excessively drained. Surface soil erosion potential is severe. Erosion Class IV.

Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick.


Surface Layers: Surface layers are very gravelly loams. Colors are dark brown to brown. Structure is weak fine granular to subangular blocky. Rock fragments range from 30 to 60 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky, and slightly plastic. The pH ranges from 5.8 to 6.6. Surface thickness ranges from 6 to 12 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly silt loams, loams and clay loams. Colors are dark brown to yellowish red. Structure is moderate fine and medium subangular blocky. Rock fragments range from 30 to 45 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.8 to 6.8. Subsoil thickness ranges from 8 to 14 inches. Subsoil layers have a rapid permeability rate.

Modal Site Location: SW4, SW4, Section 1, T.38S., R.9W.

Bedrock consists of hard, slightly to highly fractured metavolcanic rocks of the Galice Formation. Inclusions of metasedimentary rocks occur locally.

<u>Landtype 86u</u> is similar to Landtype 86 except that it is found in the upper forest zone, generally between 4,000 and 5,000 feet in elevation, and supports Site Class III and IV Shasta red fir and white fir.

62

LANDTYPE UNIT: Landtype 87 is found on gentle ridgetops to moderately steep sideslopes on the east side of the Klamath Moun-tains. Common inclusions in this unit are Landtypes 4, 16, 18, 77, and 86.

<u>Precipitation</u>: 45 to 85 inches/year. 114 to 215 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on Landtype 87u.

<u>Slope</u>: 10 to 45 percent, smooth to moderately dissected terrain.

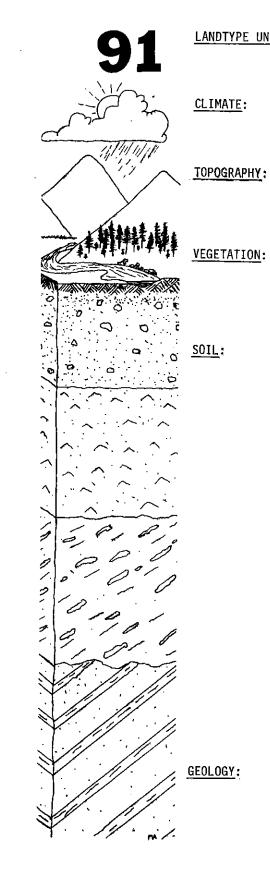
Aspect: All aspects.

Elevation: 1,500 to 4,000 feet. 456 to 1,216 meters. Stability: Landtype 87 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV, locally III, Douglasfir. Other species include: Sugar pine, western white pine, incense-cedar, ponderosa pine, tanoak, madrone, chinkapin, California hazel, Oregon grape, greenleaf manzanita, whitethorn ceanothus, Sadler oak, poison oak, canyon live oak, oceanspray, bracken fern, sword fern, grasses, and mosses.

Soil 87 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally between 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are loams to gravelly clay loams. Colors are dark grayish brown and dark brown. Structure is moderate fine and medium granular to subangular blocky. Rock fragments range from 5 to 30 percent by volume. Consistence is slightly hard, friable, slightly sticky, and slightly plastic. The pH ranges from 5.8 to 6.8. Surface thickness ranges from 6 to 10 inches. Surface layers have moderate permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are loams to gravelly clay loams. Colors are strong brown to yellowish red. Structure is massive to moderate medium subangular blocky. Rock fragments range from 10 to 35 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and plastic. The pH ranges from 5.3 to 6.5. Subsoil thickness ranges from 8 to 30 inches. Subsoil layers have moderate to slow permeability rates.

Modal Site Location: SE4, SE4, Section 1, T.38S., R.9W.

Bedrock consists of moderately hard to highly fractured metavolcanic rock of Galice Formation. Inclusions of metasedimentary rocks are interspersed locally.

Landtype 87u is similar to Landtype 87 except that it is found in the upper forest zone, generally between 4,000 and 5,000 feet elevation, and supports Site Class III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 91 is found on steep to very steep sideslopes in the Siskiyou Mountains and on the east slope of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 92, 95, and 96.

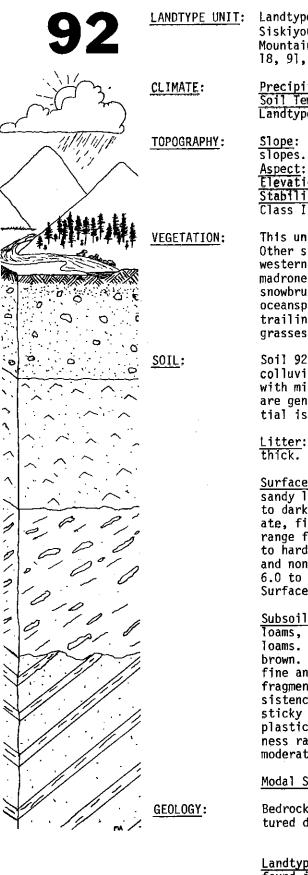
<u>Precipitation</u>: 60 to 100 inches/year. 152 to 254 cm/year. <u>Soil Temperature Class</u>: Mesic on Landtype 91, frigid on Landtype 91u, and cryic above 5,500 feet elevation.

<u>Slope:</u> 60 to 90+ percent, moderately dissected slopes. <u>Aspect:</u> All aspects. <u>Elevation:</u> 1,000 to 4,000 feet. 305 to 1,220 meters. <u>Stability</u>: Landtype 91 is moderately stable. Stability <u>Class II</u>.

This unit supports Site Class IV Douglas-fir. Other species include: Port-Orford-cedar, ponderosa pine, incense-cedar, white fir, chinkapin, tanoak, madrone, snowbrush ceanothus, blue elderberry, manzanita, wild gooseberry, wild rose, Oregon grape, trailing blackberry, princess pine, grasses, and mosses.

Soil 91 is generally a shallow soil, derived from residuum and colluvium. Soil depth is 10 to 20 inches, with minor inclusions of deeper soil. The soil materials are generally well drained. Surface soil erosion potential is very severe. Erosion Class V.

Litter: Needles, leaves, and twigs, 1/2 to 2 inches thick. Decomposed humus, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are gravelly fine sandy loams to very gravelly fine sandy loams. Colors are very dark grayish brown to dark grayish brown. Structure is weak fine granular. Rock fragments range from 25 to 50 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 4 to 10 inches. Surface layers have rapid to very rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly sandy loams to extremely stony sandy loams. Colors are dark grayish brown to grayish brown. Structure is weak, fine granular to massive. Rock fragments range from 30 to 80 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.0 to 6.0. Subsoil thickness ranges from 5 to 15 inches. Subsoil layers have rapid to very rapid permeability.

Modal Site Location: SW4, NW4, Section 22, T.40S., R.6W.

Bedrock consists of hard highly fractured diorites, granodiorites, and locally gabbros.

Landtype 91u is similar to Landtype 91 except that it is found in the upper forest zone, generally 4,000 to 7,000 feet elevation, and supports Site Class III and IV Shasta red fir and white fir.

64

LANDTYPE UNIT: Landtype 92 is found on moderately steep sideslopes in the Siskiyou Mountains and on the east slope of the Klamath Mountains. Common inclusions in this unit are Landtypes 18, 91, 93, 95, and 97.

> <u>Precipitation</u>: 60 to 100 inches/year. 152 to 254 cm/year. <u>Soil Temperature Class</u>: Mesic on Landtype 92, frigid on Landtype 92u, and cryic above 5,500 feet elevation.

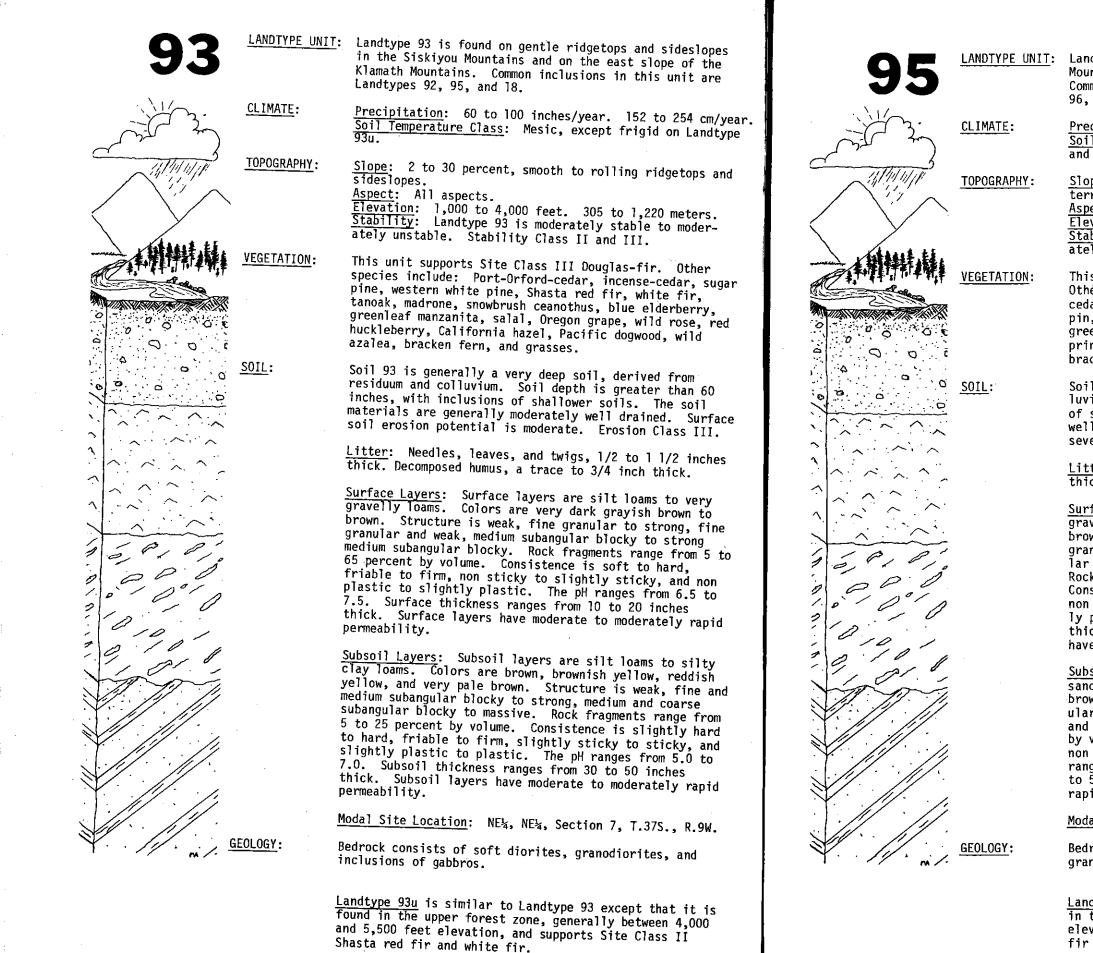
Slope: 30 to 60 percent, smooth to moderately dissected slopes. Aspect: All aspects.

Elevation: 1,000 to 4,000 feet. 305 to 1,220 meters. Stability: Landtype 92 is moderately stable. Stability Class II.

This unit supports Site Class III and IV Douglas-fir. Other species include: Port-Orford-cedar, incense-cedar, western white pine, sugar pine, white fir, ponderosa pine, madrone, chinkapin, tanoak, wild rose, blue elderberry, snowbrush ceanothus, greenleaf manzanita, wild gooseberry, oceanspray, California hazel, Pacific dogwood, poison oak, trailing blackberry, salal, sword fern, bracken fern, grasses, and mosses.

Soil 92 is generally a moderately deep soil, derived from colluvium and residuum. Soil depth is 20 to 40 inches, with minor inclusions of deeper soils. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.

Litter: Needles, leaves, and twigs, 1/2 to 1 1/2 inches thick. Decomposed humus, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are silt loams, loams, and sandy loams to gravelly loams. Colors are very dark gray to dark brown. Structure is weak, fine granular to moderate, fine and medium subangular blocky. Rock fragments range from 3 to 30 percent by volume. Consistence is soft to hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 7.5. Surface thickness ranges from 4 to 24 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly sandy loams, gravelly sandy loams, loams, silt loams and clay loams. Colors are dark yellowish brown to yellowish brown. Structure is weak fine subangular blocky, moderate fine and medium subangular blocky, and massive. Rock fragments range from 20 to 85 percent by volume. Consistence is slightly hard to hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.0 to 7.0. Subsoil thickness ranges from 30 to 55 inches. Subsoil layers have moderate to very rapid permeability rates.

Modal Site Location: NW4, NE4, Section 27, T.40S., R.6W.

Bedrock consists of moderately hard to soft highly fractured diorite and granodiorite with inclusions of gabbro.

Landtype 92u is similar to Landtype 92 except that it is found in the upper forest zone, generally above 4,000 feet elevation, and supports Site Class II Shasta red fir and white fir.

66

LANDTYPE UNIT: Landtype 95 is found on steep sideslopes in the Siskivou Mountains and on the east slope of the Klamath Mountains, Common inclusions in this unit are Landtypes 18, 91, 92, 96, and 97.

> Precipitation: 60 to 100 inches/year. 152 to 254 cm/year. Soil Temperature Class: Mesic, frigid on Landtype 95u, and cryic above 5,500 feet elevation.

Slope: 60 to 90 percent, smooth to moderately dissected terrain.

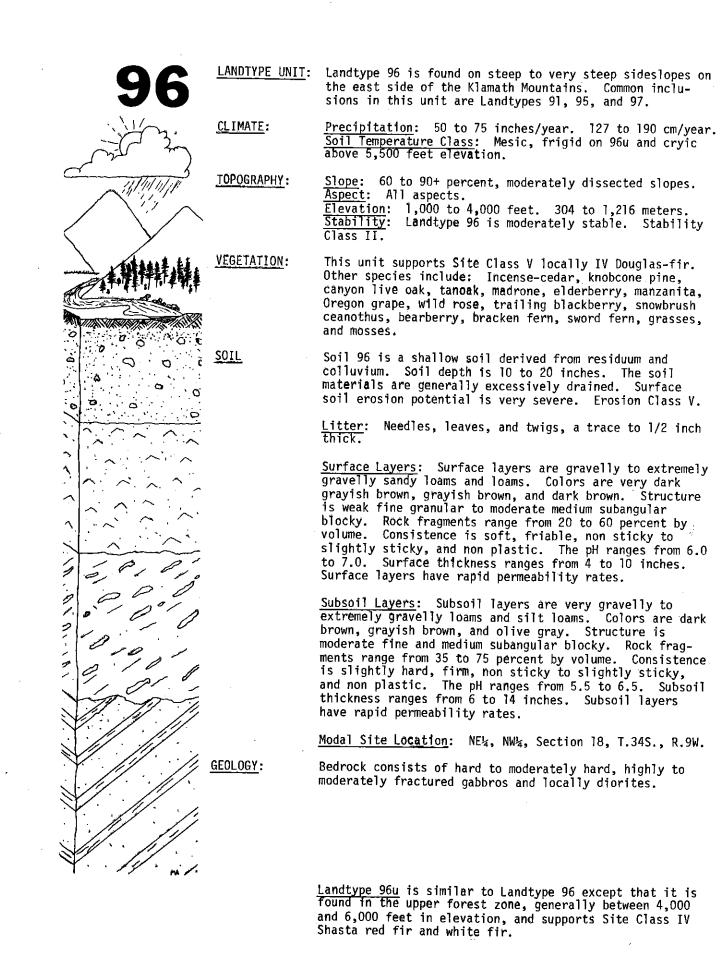
Aspect: All aspects.

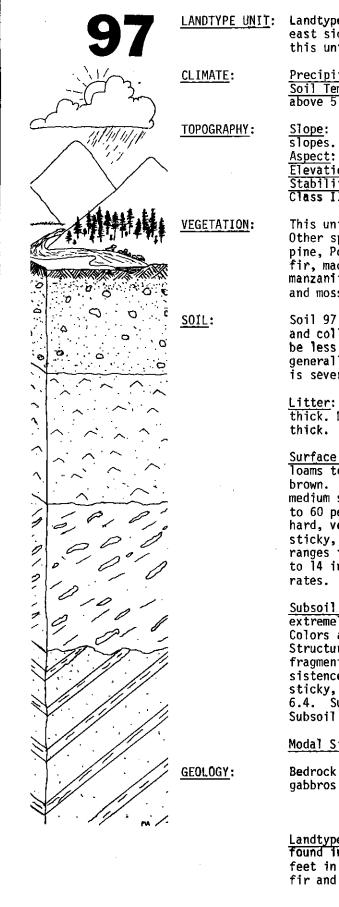
Elevation: 1,000 to 4,000 feet. 305 to 1,220 meters. Stability: Landtype 95 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western white pine, Port-Orfordcedar, incense-cedar, white fir, ponderosa pine, chinkapin, tanoak, madrone, Pacific dogwood, blue elderberry, greenleaf manzanita, bearberry, poison oak, salal, princess pine, twisted-stalk, bedstraw, starflower, bracken fern, sword fern, grasses, and mosses.

Soil 95 is generally a deep soil, on residuum and colluvium. Soil depth is 40 to 60 inches, with inclusions of shallower soils. The soil materials are generally well drained. Surface soil erosion potential is very severe. Erosion Class V.

Litter: Needles, leaves, and twigs, 1/2 to I 1/2 inches thick. Decomposed humus, a trace to 1/2 inch thick.


Surface Layers: Surface layers are gravelly to extremely gravelly fine sandy loams to silt loams. Colors are dark brown to dark yellowish brown. Structure is weak fine granular, moderate fine and medium granular and subangular blocky and strong fine and medium subangular blocky. Rock fragments range from 15 to 85 percent by volume. Consistence is slightly hard to hard, friable to firm, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.5 to 7.5. Surface thickness ranges from 10 to 22 inches. Surface layers have moderate to rapid permeability rates.


Subsoil Layers: Subsoil layers are very gravelly fine sandy loams to clay loams. Colors are dark yellowish brown to brownish yellow. Structure is weak, fine granular to strong, fine medium, and coarse subangular blocky and massive. Rock fragments range from 20 to 85 percent by volume. Consistence is soft to hard, friable to firm, non sticky to sticky, and non plastic to plastic. The pH ranges from 6.0 to 7.5. Subsoil thickness ranges from 25 to 55 inches. Subsoil layers have moderate to moderately rapid permeability rates.

Modal Site Location: NW4, SW4, Section 15, T.37S., R.9W.

Bedrock consists of soft to moderately hard diorite and granodiorite with inclusions of gabbro.

Landtype 95u is similar to Landtype 95 except it is found in the upper forest zone, generally above 4,000 feet elevation, and supports Site Class II and III Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 97 is found on moderately steep slopes on the east side of the Klamath Mountains. Common inclusions in this unit are Landtypes 92, 95, 96, and 98.

<u>Precipitation</u>: 50 to 75 inches/year. 127 to 190 cm/year. <u>Soil Temperature Class</u>: Mesic, frigid on 97u, and cryic above 5,500 feet elevation.

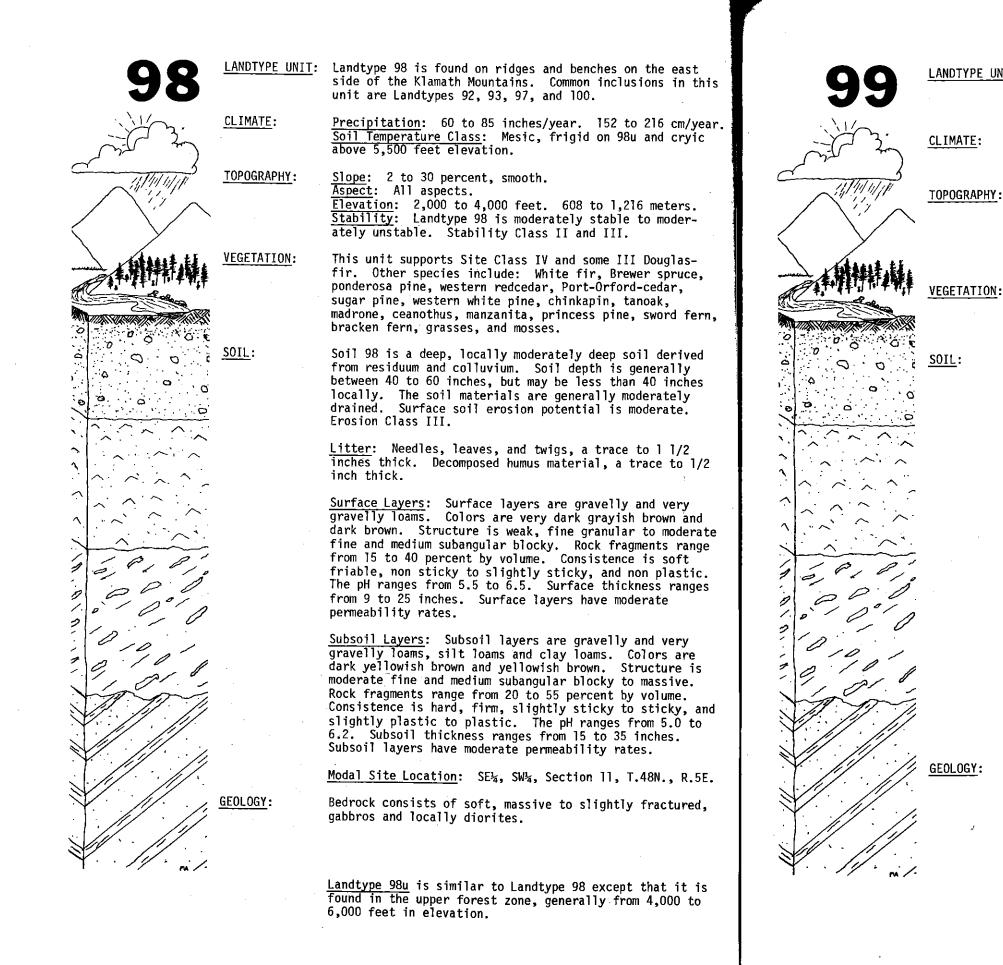
Slope: 30 to 60 percent, smooth to moderately dissected slopes. Aspect: All aspects.

Elevation: 1,000 to 4,000 feet. 304 to 1,216 meters. Stability: Landtype 97 is moderately stable. Stability Class II.

This unit supports Site Class IV and V Douglas-fir. Other species include: Incense-cedar, western white pine, Port-Orford-cedar, Brewer spruce, sugar pine, white fir, madrone, tanoak, chinkapin, snowbrush ceanothus, manzanita, bearberry, bracken fern, sword fern, grasses, and mosses.

Soil 97 is a moderately deep soil derived from residuum and colluvium. Soil depth is 20 to 40 inches but it may be less than 20 inches locally. The soil materials are generally well drained. Surface soil erosion potential is severe to moderate. Erosion Class IV and III.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick. Decomposed humus material, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are very gravelly sandy loams to silt loams. Colors are dark brown and grayish brown. Structure is weak fine granular to moderate medium subangular blocky. Rock fragments range from 30 to 60 percent by volume. Consistence is soft to slightly hard, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 6.2 to 7.0. Surface thickness ranges from 8 to 14 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly or cobbly loams and clay loams. Colors are dark yellowish brown and yellowish brown. Structure is moderate to medium subangular blocky. Rock fragments range from 40 to 80 percent by volume. Consistence is slightly hard, firm, slightly sticky to sticky, and slightly plastic. The pH ranges from 5.5 to 6.4. Subsoil thickness ranges from 10 to 26 inches. Subsoil layers have moderate to rapid permeability rates.

Modal Site Location: SW4, NE4, Section 24, T.35S., R.9W.

Bedrock consists of moderately hard, highly fractured gabbros with local diorites.

Landtype 97u is similar to Landtype 97 except that it is found in the upper forest zone, generally 4,000 to 6,000 feet in elevation, and supports Site Class III Shasta red fir and white fir.

70

LANDTYPE UNIT: Landtype 99 is found on moderately steep to steep sideslopes along the Klamath Mountain crest. Common inclusions in this unit are Landtypes 11, 31, 34, 96, 97, and 100.

> Precipitation: 60 to 100 inches/year. 152 to 254 cm/year. Soil Temperature Class: Mesic, frigid on 99u.

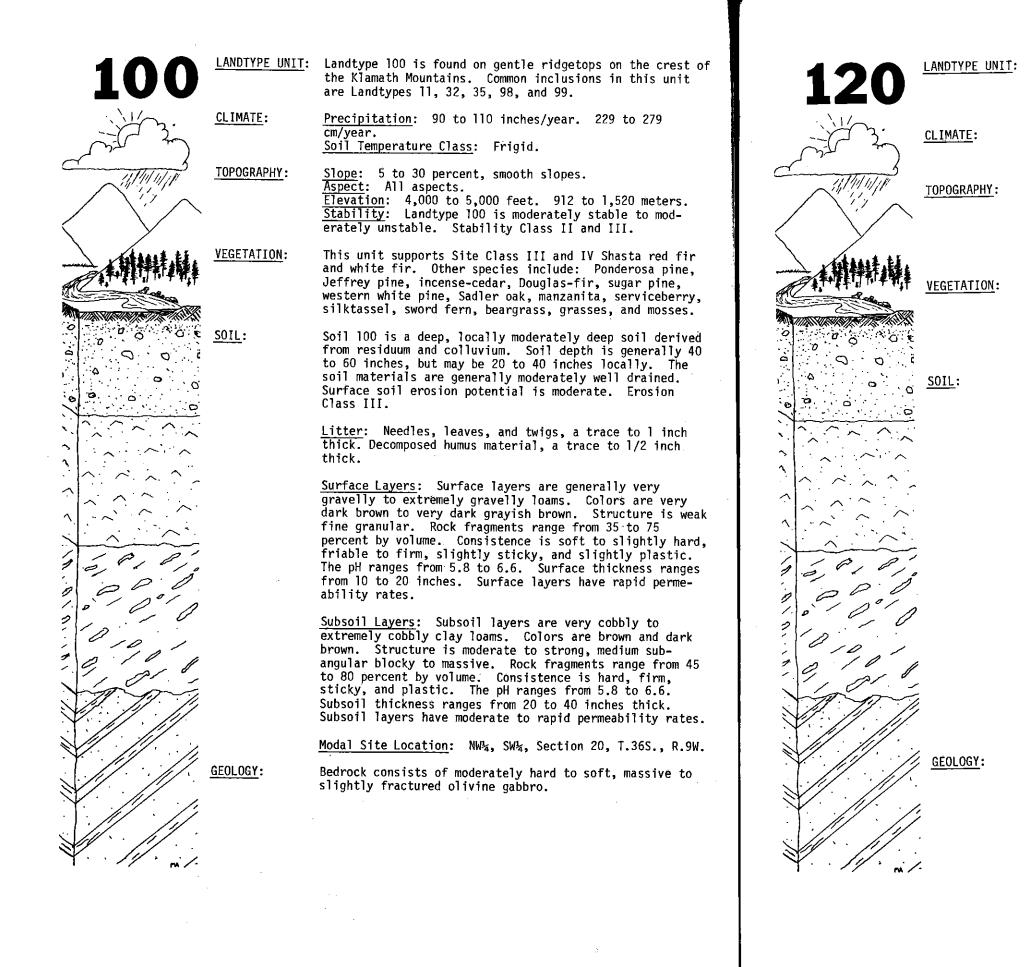
Slope: 35 to 85 percent, slightly to moderately dissected sideslopes. Aspect: All aspects. Elevation: 800 to 4,000 feet. 243 to 1,216 meters. Stability: Landtype 99 is moderately stable to mod-

erately unstable. Stability Class II and III. This unit supports Site Class V Douglas-fir. Other

species include: Ponderosa pine, Jeffrey pine, Oregon myrtle, tanoak, manzanita, serviceberry, canyon live oak, sword fern, bracken fern, and grasses.

Soil 99 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches. The soil materials are generally well drained. Surface soil erosion potential is severe to very severe. Erosion Class IV and V.

Litter: Needles, leaves, and twigs, a trace to 1 inch thick.


Surface Layers: Surface layers are very gravelly to extremely gravelly loams. Colors are very dark brown to very dark grayish brown. Structure is weak fine granular. Rock fragments range from 35 to 75 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.8 to 6.5. Surface thickness ranges from 8 to 15 inches. Surface layers have rapid permeability rates.

Subsoil Layers: Subsoil layers are extremely cobbly Toam. Colors are dark brown and dark yellowish brown. Structure is weak fine subangular blocky to massive. Rock fragments range from 60 to 85 percent by volume. Consistence is soft, very friable, slightly sticky, and slightly plastic. The pH ranges from 5.2 to 6.5. Subsoil thickness ranges from 12 to 25 inches thick. Subsoil layers have rapid permeability rates.

Modal Site Location: SE4, NW4, Section 21, T.37S., R.9W.

Bedrock consists of highly fractured olivine gabbro.

Landtype 99u is similar to Landtype 99 except that it is found in the upper forest zone, generally from 4,000 to 5,500 feet in elevation, and supports Site Class IV and V Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 120 is found on very steep sideslopes in the northern portion of the Forest on the Powers District. Common inclusions in this unit are Landtype 121 and rock outcrop.

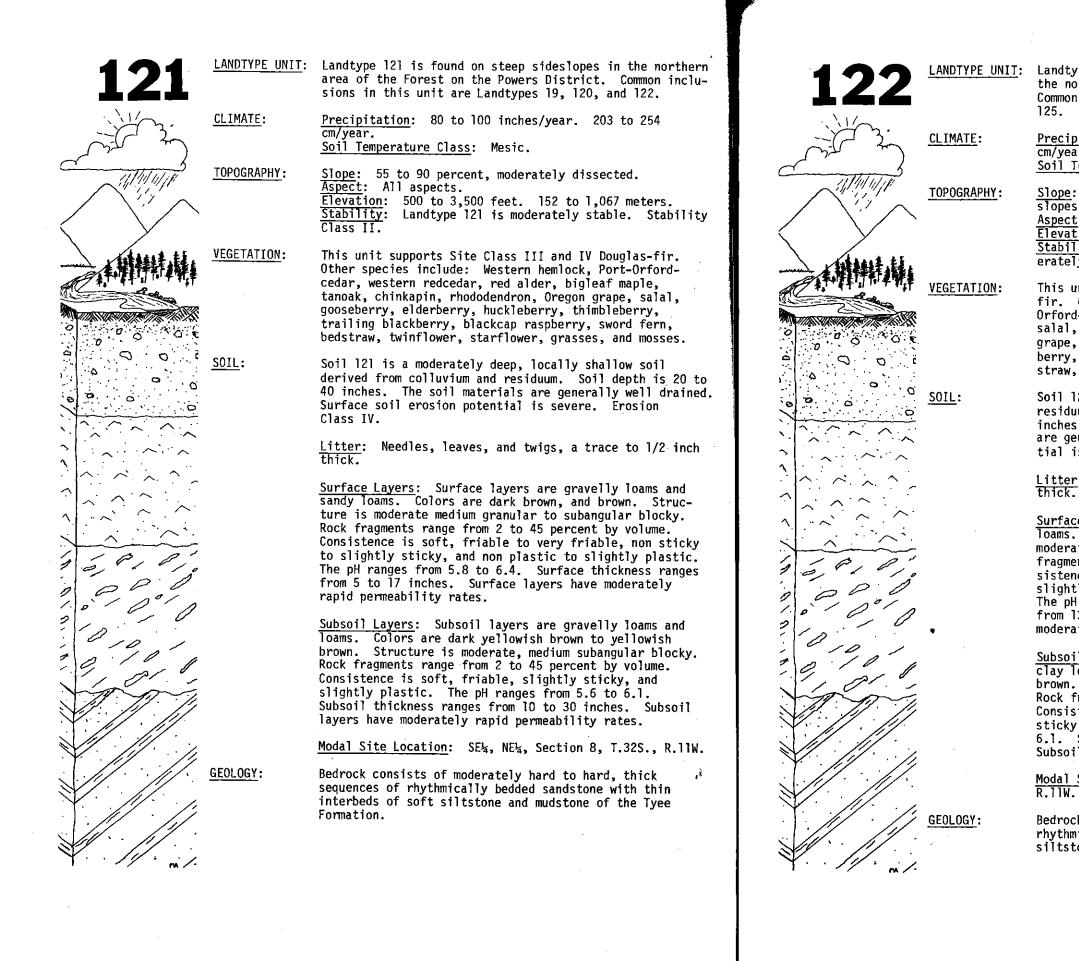
> Precipitation: 80 to 100 inches/year. 203 to 254 cm/year. Soil Temperature Class: Mesic.

Slope: 65 to 120+ percent, smooth to slightly dissected slopes.

Aspect: All aspects. Elevation: 500 to 3,500 feet. 152 to 1,067 meters. Stability: Landtype 120 is moderately stable. Stability Class II.

This unit supports Site Class IV Douglas-fir. Stocking levels may be low however. Other species include: Western hemlock, Port-Orford-cedar, tanoak, chinkapin, huckleberry, salal, Oregon grape, trailing blackberry, blackcap raspberry, grasses, twinflower, bedstraw, and mosses.

Soil 120 is a shallow soil derived from colluvium and residuum. Soil depth is generally 10 to 20 inches. The soil materials are generally excessively drained. Surface soil erosion potential is very severe. Erosion Class V.


Litter: Scattered trace amounts of twigs and litter.

Surface Layers: Surface layers are very gravelly sandy loams and loams. Colors are dark brown and brown. Structure is moderate medium granular to weak fine subangular blocky. Rock fragments range from 35 to 60 percent by volume. Consistence is loose, very friable, non sticky, and non plastic. The pH ranges from 5.8 to 6.4. Surface thickness ranges from 3 to 10 inches. Surface layers have rapid permeability rates.

Subsoil Layers: Subsoil layers are very gravelly or cobbly loams. Colors are brown and grayish brown. Structure is weak fine and very fine subangular blocky. Rock fragments range from 30 to 65 percent by volume. Consistence is soft, very friable and friable, non sticky, and non plastic. The pH ranges from 5.8 to 6.4. Subsoil thickness ranges from 4 to 14 inches. Subsoil lavers have rapid permeability.

Modal Site Location: NW4, NW4, Section 4, T.32S., R.11W.

Bedrock consists of hard to moderately hard, thick sequences of rhythmically bedded sandstone with thin interbeds of soft siltstone and mudstone of the Tyee Formation.

74

LANDTYPE UNIT: Landtype 122 is found on moderately steep sideslopes in the northern area of the Forest on the Powers District. Common inclusions in this unit are Landtypes 19, 121, and

> Precipitation: 80 to 100 inches/year. 203 to 254 cm/vear. Soil Temperature Class: Mesic.

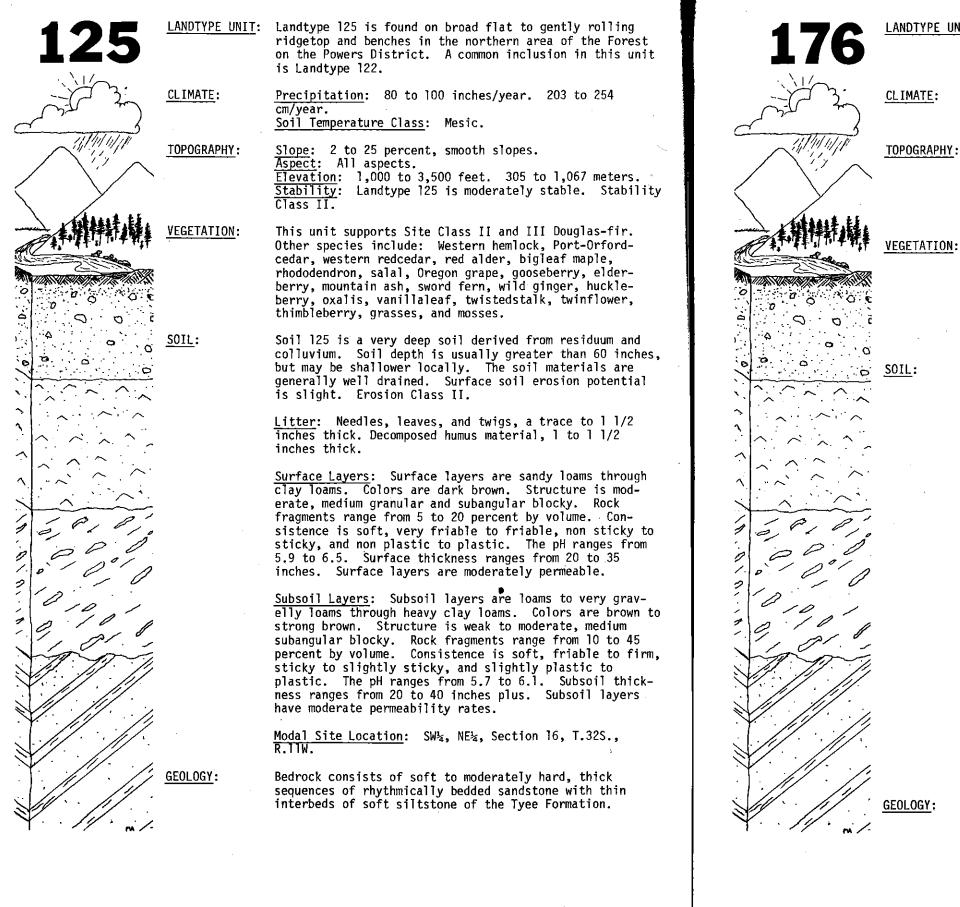
Slope: 25 to 55 percent, smooth to moderately dissected slopes.

Aspect: All aspects.

Elevation: 500 to 3,500 feet. 152 to 1,067 meters. Stability: Landtype 122 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and some II Douglasfir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, red alder, bigleaf maple, salal, rhododendron, elderberry, mountain ash, Oregon grape, vanillaleaf, huckleberry, thimbleberry, gooseberry, peasly everlasting, coltsfoot, sword fern, bedstraw, twistedstalk, twinflower, grasses, and mosses.

Soil 122 is a moderately deep to deep soil derived from residuum and colluvium. Soil depth is generally 40 to 60 inches, but exceeds 60 inches locally. The soil materials are generally well drained. Surface soil erosion potential is moderate. Erosion Class III.


Litter: Needles, leaves, and twigs, a trace to 1/2 inch

Surface Layers: Surface layers are gravelly loams and Toams. Colors are dark brown to brown. Structure is moderate medium grandular to subangular blocky. Rock fragments range from 2 to 25 percent by volume. Consistence is soft, friable to very friable, non sticky to slightly sticky, and non plastic to slightly plastic. The pH ranges from 5.8 to 6.4. Surface thickness ranges from 13 to 28 inches. Surface layers have moderate to moderately rapid permeability rates.

Subsoil Layers: Subsoil layers are loams and gravelly clay loams. Colors are dark yellowish brown to yellowish brown. Structure is moderate medium subangular blocky. Rock fragments range from 3 to 20 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky, and slightly plastic. The pH ranges from 5.6 to 6.1. Subsoil thickness ranges from 20 to 35 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NE4, SW4, Section 14, T.32S.,

Bedrock consists of moderately hard, thick sequences of rhythmically bedded sandstone with thin interbeds of soft siltstone and mudstone of the Tyee Formation.

76

LANDTYPE UNIT: Landtype 176 is found on moderately steep to very steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 46, 48, 178, 191, and 194.

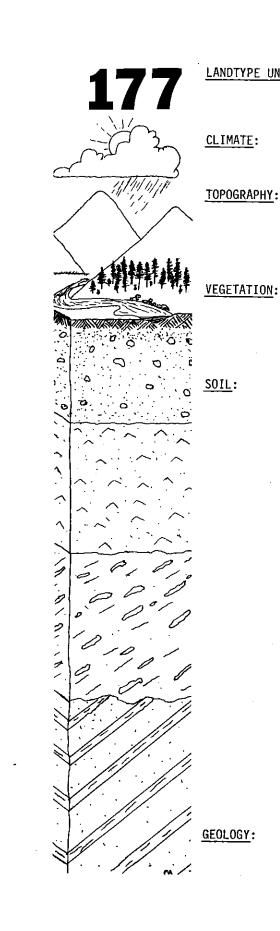
<u>Precipitation</u>: 90 to 140 inches/year. 229 to 356 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 50 to 90+ percent, moderately to highly dissected slopes.

<u>Aspect</u>: Generally north, northwest, northeast, and east. <u>Elevation</u>: 1,000 to 3,500 feet. 304 to 1,067 meters. <u>Stability</u>: Landtype 176 is moderately unstable to locally unstable. Stability Class III, locally IV.

This unit supports Site Class IV and some Site Class III Douglas-fir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, red alder, tanoak, Pacific Madrone, Canyon live oak, Oregon myrtle, California hazel, evergreen huckleberry, dogwood, chinkapin, poison oak, serviceberry, sword fern, whitethorn ceanothus, vine maple, salal, rhododendron, Oregon grape, oxalis, grasses, and mosses.

Soil 176 is a shallow to moderately deep soil derived from residuum and colluvium. Soil depth is 10 to 20 inches, but ranges to 40 inches. The soil materials are generally excessively drained. Surface soil erosion potential is severe to very severe. Erosion Class IV and


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are very gravelly loams and sandy loams. Colors are dark grayish brown to dark brown. Structure is weak very fine to medium granular and subangular blocky. Rock fragments range from 40 to 65 percent by volume. Consistence is soft, very friable to friable, slightly sticky, and non plastic. The pH ranges from 6.0 to 6.6. Surface thickness ranges from 6 to 13 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are usually very cobbly to extremely cobbly or gravelly loams and silt loams. Colors are brown, dark brown, and yellowish brown. Structure is weak, very fine and fine subangular blocky. Rock fragments range from 50 to 80 percent by volume. Consistence is soft to slightly hard, very friable to friable, slightly sticky, and non plastic. The pH ranges from 6.0 to 6.6. Subsoil thickness ranges from 6 to 24 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: SE4, NE4, Section 8, T.32S., R.13W.

Bedrock consists of hard to moderately hard fractured metasedimentary rocks of the Galice and related formations. Small inclusions of metavolcanic rock and pebbly conglomerate are interspersed locally. Hardest bedrock is usually found on steep slopes and adjacent to drainages. Highly fractured bedrock may be subject to failure.

LANDTYPE UNIT: Landtype 177 is found on gentle ridgetops to moderately steep sideslope positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 42, 176, and 178.

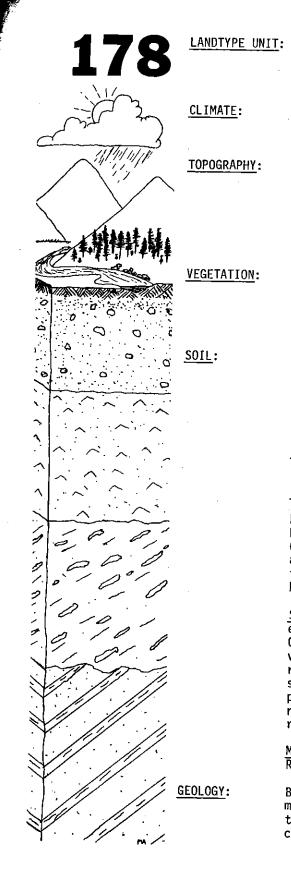
<u>Precipitation</u>: 100 to 130 inches/year. 254 to 330 cm/year. Soil Temperature Class: Mesic.

<u>Slope:</u> 20 to 55 percent, slight to moderate dissected slopes.

Aspect: All aspects. <u>Elevation</u>: 800 to 3,500 feet. 243 to 1,067 meters. <u>Stability</u>: Landtype 177 is moderately stable to moderate unstable. Stability Class II and III.

This unit supports Site Class III Douglas-fir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, red alder, tanoak, Pacific madrone, Oregon myrtle, evergreen huckleberry, dogwood, serviceberry, sword fern, rhododendron, Oregon grape, oxalis, grasses, and mosses.

Soil 177 is a deep soil derived from colluvium and residuum. Soil depth is generally 40 to 60 inches with minor inclusions of shallower soil. The soil materials are generally well drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 1/2 inches thick. Decomposed humus material, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams. Colors are dark grayish brown to dark brown. Structure is weak, fine and medium granular to subangular blocky. Rock fragments range from 20 to 50 percent by volume. Consistence is soft, very friable to friable, non sticky to slightly sticky, and non plastic. The pH ranges from 5.8 to 6.6. Surface thickness ranges from 10 to 22 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are generally very gravelly loams through light clay loams. Colors are brown and yellowish brown. Structure is moderate, fine and medium subangular blocky. Rock fragments range from 30 to 60 percent by volume. Consistence is slightly hard, friable to firm, slightly sticky, and slightly plastic. The pH ranges from 5.8 to 6.6. Subsoil thickness ranges from 20 to 38 inches. Subsoil layers have moderate to rapid permeability rates.

<u>Modal Site Location</u>: NW½, NW½, Section 35, T.33S., R.12W.

Bedrock consists of moderately hard, highly fractured metasedimentary rocks of the Galice and related formations.

LANDTYPE UNIT: Landtype 178 is found on steep to very steep sideslopes positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 48, 176, 177, and 194.

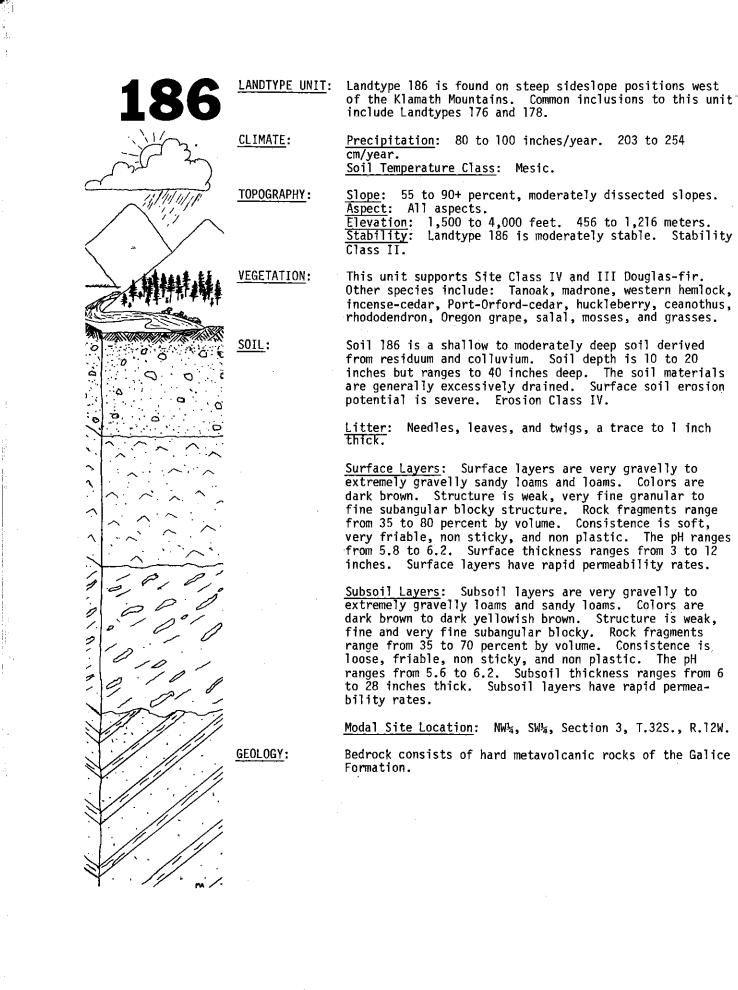
<u>Precipitation</u>: 90 to 140 inches/year. 229 to 356 cm/year. <u>Soil Temperature Class</u>: Mesic.

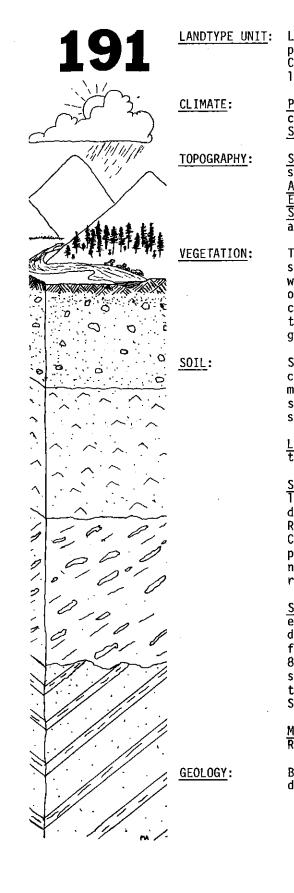
<u>Slope</u>: 60 to 90+ percent, moderate to highly dissected slopes. <u>Aspect</u>: Generally southeast, south, southwest, and west. <u>Elevation</u>: 1,000 to 3,500 feet. 304 to 1,067 meters. <u>Stability</u>: Landtype 178 is moderately stable with inclusions of moderately unstable areas. Stability Class

II, locally III. This unit supports Site Class IV and V Douglas-fir.

Other species include: Western hemlock, Port-Orfordcedar, western redcedar, red alder, tanoak, madrone, canyon live oak, Oregon myrtle, sword fern, Oregon grape, bracken fern, grasses, and mosses.

Soil 178 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches with minor inclusions of slightly deeper soils. The soil materials are generally excessively drained. Surface soil erosion potential is severe to very severe. Erosion Class IV and V.


Litter: Needles, leaves, and twigs, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are very gravelly sandy loams and loams. Colors are dark grayish brown to dark brown. Structure is weak, very fine and fine granular. Rock fragments range from 35 to 65 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 6.0 to 6.6. Surface thickness ranges from 4 to 11 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly or cobbly loams and silt loams. Colors are brown and yellowish brown. Structure is weak, very fine and fine subangular blocky. Rock fragments range from 50 to 80 percent by volume. Consistence is soft to slightly hard, friable, slightly sticky, and non plastic. The pH ranges from 6.0 to 6.6. Subsoil thickness ranges from 6 to 16 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: SE¼, SW¼, Section 14, T.33S., R.14W.

Bedrock consists of hard, moderately to highly fractured metasedimentary rocks of the Galice and related formations. Small inclusions of metavolcanic rocks and pebbly components are interspersed throughout the unit.

LANDTYPE UNIT: Landtype 191 is found on steep to very steep sideslope positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 46, 176, 192, and 194.

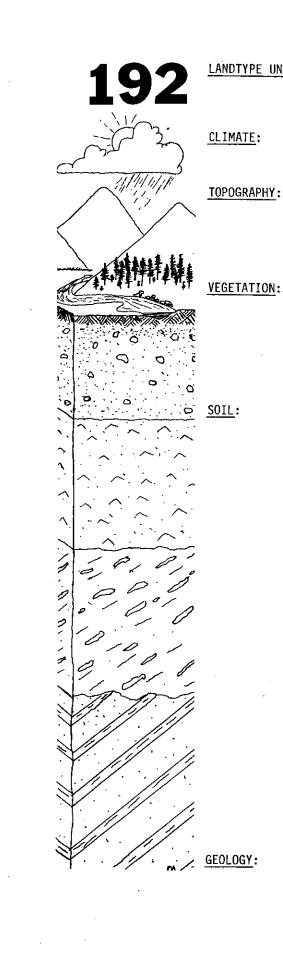
> <u>Precipitation</u>: 90 to 150 inches/year. 219 to 381 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 50 to 90+ percent, moderate to highly dissected slopes.

<u>Aspect</u>: Generally northwest, north, northeast, and east. <u>Elevation</u>: 500 to 3,500 feet. 152 to 1,067 meters. <u>Stability</u>: Landtype 191 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV Douglas-fir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, red alder, tanoak, madrone, canyon live oak, Oregon myrtle, evergreen huckleberry, dogwood, chinkapin, poison oak, serviceberry, sword fern, whitethorn ceanothus, vine maple, Oregon grape, beargrass, grasses, and mosses.

Soil 191 is a shallow soil derived from residuum and colluvium. Soil depth is generally 10 to 20 inches, but may be deeper. The soil materials are generally excessively drained. Surface soil erosion potential is very severe. Erosion Class V.


<u>Litter</u>: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are very gravelly sandy loams and loams. Colors are very dark grayish brown and dark brown. Structure is weak, fine and medium granular. Rock fragments range from 35 to 60 percent by volume. Consistence is soft, very friable, non sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 6 to 10 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly or cobbly loams. Colors are brown and dark yellowish brown. Structure is weak, very fine and fine subangular blocky. Rock fragments range from 45 to 80 percent by volume. Consistence is soft, friable, slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 8 to 15 inches. Subsoil layers have rapid permeability rates.

<u>Modal Site Location</u>: SW¼, SE¼, Section 28, T.33S., R.14W.

Bedrock consists of hard slightly to moderately fractured diorites, granodiorites, and locally granites.

LANDTYPE UNIT: Landtype 192 is found on moderately steep sideslope positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 46, 177, 191, and 193.

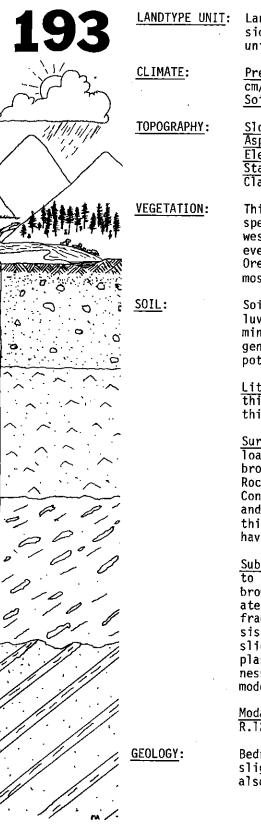
> <u>Precipitation</u>: 90 to 150 inches/year. 219 to 381 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 30 to 60 percent, moderately dissected sideslopes. Aspect: All aspects.

<u>Elevation</u>: 500 to 3,500 feet. 152 to 1,067 meters. <u>Stability</u>: Landtype 192 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class III and IV Douglas-fir. Other species include: Western hemlock, Port-Orfordcedar, western redcedar, red alder, tanoak, Sadler oak, madrone, canyon live oak, Oregon myrtle, California hazel, evergreen huckleberry, dogwood, chinkapin, cascara, poison oak, serviceberry, whitethorn ceanothus, vine maple, Oregon grape, twinflower, bedstraw, grasses, and mosses.

Soil 192 is a moderately deep soil derived from residuum and colluvium. Soil depth is generally 20 to 40 inches, with minor inclusions of deeper soils. The soil materials are generally well drained. Surface soil erosion potential is severe. Erosion Class IV.


Litter: Needles, leaves, and twigs, 1/2 to 1 1/2 inches thick. Decomposed humus material, a trace to 1/2 inch thick.

<u>Surface Layers</u>: Surface layers are loams and gravelly sandy loams. Colors are very dark brown, very dark grayish brown, and dark brown. Structure is weak, fine granular to subangular blocky. Rock fragments range from 5 to 30 percent by volume. Consistence is soft, friable, non sticky, and non plastic. The pH ranges from 5.3 to 6.3. Surface thickness ranges from 8 to 15 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly heavy loams to extremely gravelly loamy sands. Colors are dark yellowish brown, yellowish brown, and brown. Structure is weak, fine subangular blocky to massive. Rock fragments range from 20 to 75 percent by volume. Consistence is loose to hard, loose to firm, non sticky to sticky, and non plastic to plastic. The pH ranges from 5.3 to 6.2. Subsoil thickness ranges from 15 to 25 inches. Subsoil layers have moderate to very rapid permeability rates.

Modal Site Location: NE¹/₄, NW¹/₄, Section 22, T.34S., R.12W.

Bedrock consists of moderately hard, moderate to highly fractured diorite. Mineral composition ranges from granite to gabbro in local areas.

٦

Ø

1

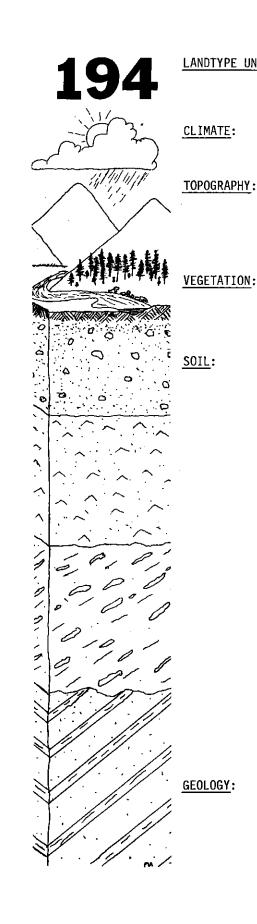
LANDTYPE UNIT: Landtype 193 is found on gentle ridgetops on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 177 and 192.

<u>Precipitation</u>: 110 to 150 inches/year. 279 to 381 cm/year. Soil_Temperature Class: Mesic.

<u>Slope</u>: 0 to 30 percent, smooth slopes. <u>Aspect</u>: All aspects. <u>Elevation</u>: 1,200 to 3,500 feet. 366 to 1,067 meters. <u>Stability</u>: Landtype 193 is moderately stable. Stability Class II.

This unit supports Site Class III Douglas-fir. Other species include: Western hemlock, Port-Orford-cedar, western redcedar, tanoak, Oregon myrtle, red alder, evergreen huckleberry, chinkapin, cascara, poison oak, Oregon grape, bearberry, ferns, beargrass, grasses, and mosses.

Soil 193 is a deep to very deep soil derived from colluvium and residuum. Soil depth is 40 to 60 inches with minor inclusions of deeper soil. The soil materials are generally moderately well drained. Surface soil erosion potential is moderate. Erosion Class III.


<u>Litter</u>: Needles, leaves, and twigs, 1/2 to 3 inches thick. Decomposed humus material, a trace to 1/2 inch thick.

Surface Layers: Surface layers are loams to gravelly loams. Colors are very dark brown, very dark grayish brown, and dark brown. Structure is weak, fine granular. Rock fragments range from 5 to 35 percent by volume. Consistence is soft, very friable to friable, non sticky, and non plastic. The pH ranges from 5.3 to 6.2. Surface thickness ranges from 10 to 18 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are gravelly clay loams to extremely gravelly loams. Colors are dark yellowish brown and yellowish brown. Structure is weak to moderate, fine and medium subangular blocky to massive. Rock fragments range from 20 to 70 percent by volume. Consistence is slightly hard to hard, friable to firm, slightly sticky to sticky, and slightly plastic to plastic. The pH ranges from 5.3 to 6.2. Subsoil thickness ranges from 30 to 42 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: NE¼, NW¼, Section 22, T.34S., R.12W.

Bedrock consists of soft to moderately hard, massive to slightly fractured diorites. Minor inclusions of granite also occur in this unit.

LANDTYPE UNIT: Landtype 194 is found on steep to very steep sideslope positions on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 48, 178, 191, and 192.

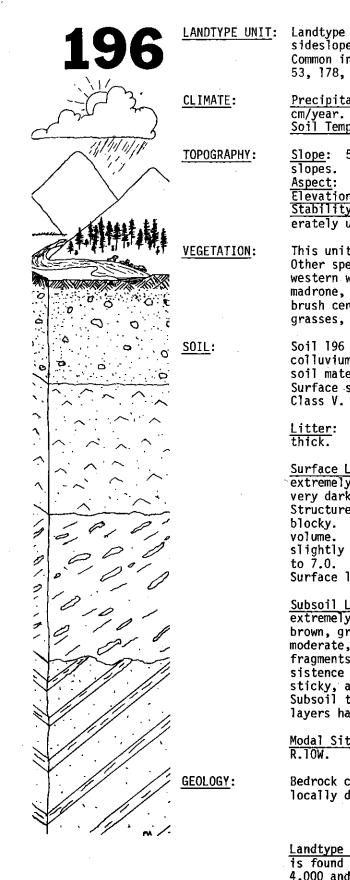
<u>Precipitation</u>: 90 to 150 inches/year. 219 to 381 cm/year. Soil Temperature Class: Mesic.

<u>Slope:</u> 60 to 90+ percent, moderately to highly dissected slopes.

<u>Aspect</u>: Generally south, southwest, southeast, and west. <u>Elevation</u>: 500 to 3,500 feet. 152 to 1,067 meters. <u>Stability</u>: Landtype 194 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV and V Douglas-fir. Other species include: Western hemlock, western redcedar, Port-Orford-cedar, red alder, tanoak, canyon live oak, Oregon myrtle, chinkapin, evergreen huckleberry, poison oak, serviceberry, grasses, forbs, and mosses.

Soil 194 is a shallow soil derived from colluvium and residuum. Soil depth is generally 10 to 20 inches. The soil materials are generally excessively drained. Surface soil erosion potential is very severe. Erosion Class V.


Litter: Needles, leaves, and twigs, a trace to 1 inch thick.

<u>Surface Layers</u>: Surface layers are gravelly to very gravelly loams and sandy loams. Colors are dark brown and very dark grayish brown. Structure is weak, fine granular and subangular blocky. Rock fragments range from 20 to 60 percent by volume. Consistence is soft, friable, non sticky, and non plastic. The pH ranges from 5.5 to 6.5. Surface thickness ranges from 5 to 10 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly sandy loams and loams. Colors are dark brown, dark yellowish brown, and yellowish brown. Structure is weak, fine subangular blocky to massive. Rock fragments range from 35 to 75 percent by volume. Consistence is slightly hard to loose, firm to loose, slightly sticky to non sticky, non plastic to slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 7 to 17 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: SE4, NW4, Section 5, T.34S., R.12W.

Bedrock consists of moderately hard to hard, slightly to moderately fractured diorites, granodiorites, and locally granite.

LANDTYPE UNIT: Landtype 196 is found on moderately steep to very steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 36, 50, 53, 178, 192, and 194.

<u>Precipitation</u>: 100 to 140 inches/year. 254 to 356 cm/year. Soil Temperature Class: Mesic.

<u>Slope</u>: 50 to 90+ percent, moderate to highly dissected slopes.

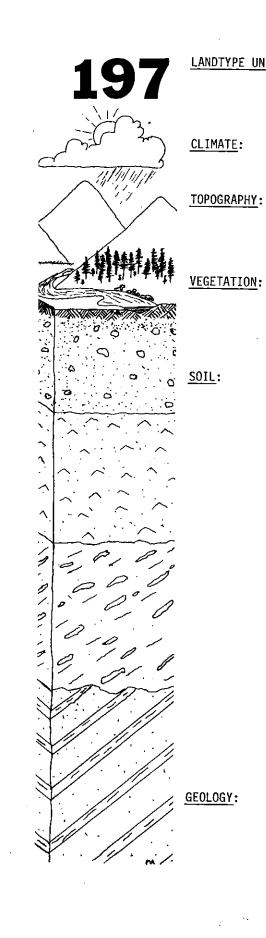
Aspect: All aspects.

Elevation: 1,500 to 4,000 feet. 456 to 1,216 meters. Stability: Landtype 196 is moderately stable to moderately unstable. Stability Class II and III.

This unit supports Site Class IV and V Douglas-fir. Other species include: Port-Orford-cedar, incense-cedar, western white pine, Brewer spruce, sugar pine, white fir, madrone, tanoak, chinkapin, kalmiopsis leachiana, snowbrush cenaothus, manzanita, twin-flower, bedstraw, grasses, and mosses.

Soil 196 is a shallow soil derived from residuum and colluvium. Soil depth is 10 to 20 inches thick. The soil materials are generally excessively drained. Surface soil erosion potential is very severe. Erosion Class V.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1/2 inch thick.


<u>Surface Layers</u>: Surface layers are very gravelly to extremely gravelly sandy loams and loams. Colors are very dark grayish brown, grayish brown, and dark brown. Structure is weak, fine granular to weak fine subangular blocky. Rock fragments range from 40 to 80 percent by volume. Consistence is soft, friable, non sticky to slightly sticky, and non plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 3 to 6 inches. Surface layers have rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly loams and silt loams. Colors are dark brown, grayish brown, and olive gray. Structure is moderate, fine and medium subangular blocky. Rock fragments range from 45 to 85 percent by volume. Consistence is slightly hard, firm, non sticky to slightly sticky, and non plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 6 to 16 inches. Subsoil layers have rapid permeability rates.

Modal Site Location: NW¼, SE¼, Section 32, T.39S., R.10W.

Bedrock consists of hard highly fractured gabbros and locally diorites.

Landtype 196u is similar to Landtype 196 except that it is found in the upper forest zone, generally between 4,000 and 5,500 feet in elevation, and supports Site Class IV Shasta red fir and white fir.

LANDTYPE UNIT: Landtype 197 includes the soil and environmental conditions described below. Landtype 197 is found on moderately steep sideslopes on the west side of the Klamath Mountains. Common inclusions in this unit are Landtypes 19, 36, 50, 53, 178, 192, and 193.

> Precipitation: 100 to 140 inches/year. 254 to 356 cm/vear.

Soil Temperature Class: Mesic.

Slope: 30 to 60 percent, moderate dissected slopes. Aspect: All aspects. Elevation: 1,500 to 4,000 feet. 456 to 1,216 meters. Stability: Landtype 197 is moderately unstable to moderately stable. Stability Class II and III.

This unit supports Site Class IV and some V Douglas-fir. Other species include: Port-Orford-cedar, incense-cedar, western white pine, Brewer spruce, sugar pine, white fir, madrone, tanoak, chinkapin, kalmiopsis leachiana, snowbrush cenaothus, manzanita, twin-flower, bedstraw, grasses, and mosses.

Soil 197 is a moderately deep soil derived from residuum and colluvium. Soil depth is 20 to 40 inches thick. The soil materials are generally excessively drained. Surface soil erosion potential is moderate to severe. Erosion Class III and IV.

<u>Litter</u>: Needles, leaves, and twigs, a trace to 1/2 inch thick.

Surface Layers: Surface layers are gravelly to very gravelly sandy loams to clay loams. Colors are very dark grayish brown, grayish brown and dark brown. Structure is weak and moderate fine granular to weak fine subangular blocky. Rock fragments range from 15 to 60 percent by volume. Consistence is soft, friable, slightly sticky, and slighty plastic. The pH ranges from 6.0 to 7.0. Surface thickness ranges from 6 to 12 inches. Surface layers have moderate to rapid permeability rates.

<u>Subsoil Layers</u>: Subsoil layers are very gravelly to extremely gravelly loams, silt loams, and clay loams. Colors are dark brown, grayish brown, and olive gray. Structure is moderate, fine and medium subangular blocky. Rock fragments range from 45 to 85 percent by volume. Consistence is slightly hard, firm, slightly sticky, and slightly plastic. The pH ranges from 5.5 to 6.5. Subsoil thickness ranges from 12 to 30 inches. Subsoil layers have moderate permeability rates.

Modal Site Location: SE%, Section 23, T.37S., R.10W.

Bedrock consists of hard highly fractured gabbros and locally diorites.

Landtype 197u is similar to Landtype 197 except that it is found in the upper forest zone, generally between 4,000 and 5,500 feet in elevation, and supports Site Class IV Shasta red fir and white fir.

General

The topography and location of the Klamath Region dictates a wide range of climatic conditions. Within the boundaries of the Siskiyou National Forest, three distinct climatic areas exist: 1) West Side Klamath Mountain Range, 2) East Side Klamath Mountain Range, and 3) Siskivou Mountain Range.

Precipitation

Due to its proximity to the Pacific Ocean the West Side of the Klamath Mountains are subjected to considerable marine influence. The coastal climate is characterized by high precipitation and humidity, abundant fog, and a more limited range of temperature extremes. This tends to lower evaporation and transpiration rates and increases soil moisture from fog condensation. The general movement of nearly all large moist air masses crossing the area is from southwest to northeast. Most rainfall occurs during the late fall, winter and early spring. Normal annual rainfall ranges from 80 to 150 inches per year. Local wind patterns influence rainfall distribution by funneling rain up specific drainages. Precipitation occurs primarily as rain and generally increases with elevation. Snowfall along the coast is minimal and transient. With increasing distances and elevation from the coast, snowfall becomes more common and more persistent. However, depth rarely exceeds 1 to 2 feet and usually melts by mid-spring.

APPENDIX I

CLIMATE

West Side Klamath Range

West Side Klamath Range - Mt. Emily

Mean temperatures during winter months are in the low to mid 40° F range, with infrequent short period extremes as low as 0° F. Mean summer temperatures are in the mid 60° F range with infrequent short period extremes ranging near 100° F. Temperature fluctuation in both degree and duration tend to increase with distance from the coast and its moderate marine influence.

The coastal influence also results in relatively high wind velocities, particularly during winter storms. These generally westerly and southwesterly winds commonly reach speeds of 40 mph, with winds of up to 100 mph occasionally re-corded near the coast and on the higher ridges. Damage from winds is usually confined to power and communication lines and to Northwesterly winds predominate during the summer months and have much timber blowdown. lower velocities.

Flooding, due to heavy rain, occurs about once in ten years and may be expected during the winter months. In the coastal drainages the most recent flood occurrences have been in 1955, 1964, and 1974. Coastal fronts which produce major floods usually cause problems on other areas of the forest. Localized storm and watershed conditions may cause extreme damage to forest roads and stream channels. Some areas are susceptible to more frequent flood damage due to rainfall, soils, debris and channel conditions.

Winter Conditions

During the fall and winter low pressure systems form in the north Pacific Ocean. Counter clockwise air circulation around these low pressure systems result in a prevailaing southwesterly air flow. This results in a wet season from mid-October to mid-April causing 75 to 80 percent of the annual rainfall. About one-half of the annual rainfall occurs during the winter months; December, January and February. The forced ascent and cooling of moisture laden air masses up the west slope of the Klamath Range causes them to release moisture.

Summer Conditions

During mid to late spring, low pressure centers move further north and are gradually replaced by high pressure systems with their clockwise circulation, resulting in a northwesterly flow of air. This air becomes warmer and drier as it moves inland, resulting in a dry season beginning in late spring, reaching a peak in summer and ending in early fall. Only 6 percent of the average annual precipitation occurs during the summer months and approximately 20 percent during the spring months. The hottest weather and lowest relative humidity occur during periods of easterly winds. Warmer drier conditions prevail with increasing distance from the coast.

East Side Klamath Range

Precipitation

By the time the incoming marine air has reached the east side of the Klamath Mountains it has been greatly modified by its passage up the west slope of the range. Considerable amounts of moisture are condensed and precipitated on the west slope and does not reach the east side of the range. Fog and humidity are decreased on the east side of the mountains and transpiration and evapo-transpiration are increased. Land surfaces, because they heat and cool faster than ocean air masses, tend to increase temperature extremes on the east side of the Klamath Range. Storm fronts generally enter from the west and southwest direction. Normal annual rainfall ranges from 35 to 80 inches per year. Snow is common at higher elevation but rarely exceeds a depth of two to three feet. Snow usually persists to midspring.

East Side Klamath Range - Bald Mountain

Temperature

Average monthly mean temperature ranges from 35 to 40° F in January to the mid to upper 60° F range in July. Short period temperature extremes of less than 0° F and greater than 100° F have been recorded but are not common.

Wind

Most of the high winds of this area move in from the southwest with oncoming storm fronts. The highest elevations usually experience the greatest wind velocities. Maximum velocities seldom exceed 50 mph. A more gentle wind from the northwest predominates during the summer months.

Flooding

Heavy flooding, due to heavy rain, occurs about once in 10 years. Flood producing storms occur chiefly during the winter months, but are not uncommon in late fall or early spring. Flooding occurs when soils are saturated and there are long periods of successive heavy rains.

Winter Conditions

During late fall, winter and early spring low pressure systems form in the north Pacific Ocean. Counterclockwise air circulation around these systems results in a southwesterly flow of air. This results in a wet season from November to mid-April in which 75 to 80 percent of the average annual precipitation falls.

Summer Conditions

High pressure systems replace low pressure centers about mid-spring, changing the circulation of air to a prevailing northwesterly direction. Air moves in across the coastal mountains becoming warmer and drier as it reaches the east side of the mountains. A dry season occurs mid to late spring and extends and intensifies through the summer, ending in early fall. Thunderstorms are more frequent during the summer months and usually enter from the south and southeast and east. Precipitation from thunderstorms is usually light, with higher elevations receiving the greatest amount of rainfall. Only 5 percent of the average annual precipitation occurs during the summer months.

Siskiyou Mountain Range

Precipitation

The Siskiyou Mountains, because of their location and orientation, exhibit an unusual climatic pattern. This area within the borders of the Siskiyou National Forest lies east of Oregon Mountain and west of Grayback and Swan mountains and extends both north and south of the Oregon-California border. The Siskiyou's are so positioned that they receive both the cold, wet polar storms characteristic of Oregon north of the Klamath Province and the warm, wet marine storms of northern California and southern Oregon. These cold and warm wet influxes combine with an existing xeric 1/ climate and an unusual east-west orientation to produce a unique climatic situation. Precipitation ranges from 50 to 90 inches per year. Rain and snow generally increase with elevation. Rain generally decreases eastward while snow generally increases. Many local variations exist to this pattern however, due to the east-west orientation of the range which lies parallel to incoming storm fronts and allows precipitation to be channeled up specific drainages according to topography and wind patterns. Because the Siskiyou Mountain area has higher elevations than the rest of the Forest, a wider range of snow accumulation occurs. At elevations of 4,000 feet, one foot of snow is the average annual snow depth, while at 4,500 feet the average is two feet. Snow at these elevations usually melts by mid-spring. Above 5,000 feet, and especially on north facing slopes, snow depth may exceed 8 feet and persist to mid-June. Thunderstorms occasionally occur in the area during the summer months, and the resulting lightning strikes are a major cause of forest fires. Precipitation during these storms is generally light, although at higher elevations the frequency and duration of summer showers may be more significant.

Temperature

Temperature increases proceed west to east along the Siskiyou Mountain Range. Midslope temperature ranges tend to be less extreme than on valley bottom and ridge positions. Average temperature for the whole unit is 53° F. Extreme temperatures of 100° F or higher and 0° or lower are infrequent. However, temperatures exceeding 100° F occur during summer months in valley positions and temperatures of 0° F occur during the winter months at the higher elevations.

Wind

Prevailing winds are from the southwest during the winter months. Maximum wind velocities of 80 mph have been recorded, but their occurrence is rare and usually limited to the higher elevations. Northwesterly winds predominate during the summer months and are usually of low intensity.

Flooding

Local flooding due to heavy rains occurs about once in 10 years and can be expected in late fall, winter or early spring. Major flooding often is a result of waves of warm heavy rain falling on an existing snowpack. The warm rains rapidly melt the snow and lead to saturated soils, high runoff rate, and peak stream discharges.

1/ Characterized by moist and cool winters and warm and dry summers.

Winter Conditions

During the fall and winter months low pressure systems drive both cold, wet influxes from the north Pacific Ocean and warm wet influxes from northern California in the area. During mid-October to mid-April 75 to 80 percent of the areas average annual precipitation occurs. As storms are driven over the Klamath Mountains, forced assent of the air masses causes them to lose moisture. The rainbearing potential of these storms lessens generally from west to east but this is modified by topography and localized wind conditions.

Summer Conditions

During mid to late spring, low pressure centers are replaced by high pressure systems resulting in warmer and drier air circulation as it moves inland. A dry warm season exists from late spring through summer. Only about 5 percent of the annual average precipitation occurs during the summer months.

Siskiyou Mountain Range - East Fork Illinois River

PRECIPITATION: MEANS, MONTHLY AND ANNUAL, 1931-1976

uan reo uan <t< th=""><th>Jan Teo Jan Teo Jan Teo Jan Jan<th></th><th></th><th>Mar</th><th>Anr</th><th>May</th><th>Jun</th><th>Inc</th><th>Aug</th><th>Sep</th><th>Oct</th><th>NON</th><th>Dan</th><th>- T</th></th></t<>	Jan Teo Jan Teo Jan Teo Jan Jan <th></th> <th></th> <th>Mar</th> <th>Anr</th> <th>May</th> <th>Jun</th> <th>Inc</th> <th>Aug</th> <th>Sep</th> <th>Oct</th> <th>NON</th> <th>Dan</th> <th>- T</th>			Mar	Anr	May	Jun	Inc	Aug	Sep	Oct	NON	Dan	- T
9.61 7.58 5.68 4.60 1.64 .64 .94 1.96 7.29 12.23 13.63 10.10 9.01 5.66 4.60 1.64 .56 .85 1.92 7.29 12.23 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.92 7.29 12.22 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.75 7.16 12.45 5.82 4.50 3.20 1.66 1.63 .91 .26 .18 .76 2.71 3.94 5.82 4.50 3.51 1.46 .39 .55 1.75 7.16 12.67 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 12.67 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68	9.61 7.58 5.03 5.00 1.64 .64 .94 1.96 7.29 12.23 13.24 13.63 10.10 9.01 5.66 4.60 1.64 .66 .94 1.95 7.29 12.23 13.59 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.92 7.29 12.22 13.59 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.92 7.29 12.22 13.59 5.82 4.50 3.61 1.64 .39 .55 1.75 7.16 12.67 15.95 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 12.67 15.95 12.40 9.71 9.63 4.99 3.57 1.98 .69 .74 2.10 6.54 8.76 11.85 11.21 8.02 7.78 4.05 3.03 1.46 .31 .46 1.22 5.25 8.70 11.17	ocation	uan		1 2 6	1 0			.39	1.59	5.13	7.67	9.14	
13.63 10.10 9.01 5.06 4.40 1.74 56 .85 1.92 7.29 12.22 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.92 7.29 12.22 5.82 4.50 3.20 1.63 1.63 .91 .26 .18 .76 2.71 3.94 5.82 4.50 3.20 1.63 1.63 1.64 .39 .55 1.75 7.16 12.67 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 12.67 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68<	13.63 10.10 9.01 5.00 4.40 1.74 56 85 1.92 7.29 12.22 13.59 14.51 10.30 10.05 5.92 4.40 1.74 .56 .85 1.92 7.29 12.22 13.59 5.82 4.50 3.20 1.63 16.13 .91 .26 .18 .76 2.71 3.94 5.51 5.82 4.50 3.20 1.63 1.61 1.66 .361 1.46 .39 .55 1.75 7.16 15.67 15.95 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 15.67 15.95 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .31 .68 3.63 4.54 6.76 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.54	uopu	9.61	b./8	5.00	A 60			94	1.96	7.29	12.23	13.24	
14.51 10.30 10.00 5.54 4.50 5.54 4.51 3.24 5.61 1.65 1.6 1.6 2.71 3.94 5.82 4.50 3.20 1.69 1.63 .91 .26 .18 .76 2.71 3.94 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 12.67 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54	14.51 10.30 10.40 5.24 5.51 5.82 4.50 3.20 1.69 1.63 .91 .26 .18 .76 2.71 3.94 5.51 5.82 4.50 3.20 1.69 1.63 .61 1.46 .39 .55 1.75 7.16 15.95 15.95 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.74 2.10 6.54 8.76 11.85 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.45 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .31 .46 1.22 5.25 8.70 11.17 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.64 6.76 8.24 4.88 3.49 1.18 <td>Brookings</td> <td>13.63</td> <td>9.01</td> <td>00.0</td> <td>00°+</td> <td></td> <td></td> <td>.85</td> <td>1.92</td> <td>7.29</td> <td>12.22</td> <td>13.59</td> <td></td>	Brookings	13.63	9.01	00.0	00°+			.85	1.92	7.29	12.22	13.59	
5.82 4.50 3.50 1.00 1.60 3.61 1.46 .39 .55 1.75 7.16 12.67 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 1.75 7.16 12.67 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54	5.82 4.50 5.40 5.40 5.61 1.46 .39 .55 1.75 7.16 12.67 15.95 16.05 12.55 10.10 4.66 3.61 1.46 .39 .55 12.67 15.95 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.85 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .31 .68 3.68 4.54 6.76 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54 6.76	ld Beach RD	14.51	cn. ul	1 60	1.63			.18	.76	2.71	3.94	5.51	
1b.09 12.39 10.10 12.39 10.10 15.54 8.76 ford 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 15 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 15 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54	10.00 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.85 12.40 9.71 9.63 4.89 3.57 1.98 .69 .74 2.10 6.54 8.76 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 4.54 6.76 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.56 4.54 6.76	ants Pass	5.82	07.01	4.66	3.61			.55	1.75	7.16	12.67	15.95	
12.40 9.71 9.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54	12.40 9.11 9.09 1.09 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 11.21 8.02 7.78 4.05 3.03 1.46 .34 .46 1.22 5.25 8.70 11.17 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54 6.76	ilahe	c0.01	0 63 0	A 80	3.57			.74	2.10	6.54	8.76	11.85	
11.21 8.02 7.79 7.79 7.70 7.7 21 .31 .68 3.68 4.54 15 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.68 4.54	11.21 8.02 7.70 7.02 7.12 1.12 1.42 7.7 .21 .31 .68 3.68 4.54 6.76 15 8.24 4.88 3.49 1.18 1.42 .77 .21 .31 .68 3.58 4.54 6.76	ort Orford	12.40	01 1	4 05	3.03			.46	1.22	5.25	8.70	11.17	
		owers illiams	8.24	3.49	1.18	1.42			.31	.68	3.68	4.54	6.76	

92

				No.		Jun	լու	Aug	Sep	Oct	Nov	Dec	Annua-
ocation	Jan	Feb	Mar	THE					6 3	53 A	50.0	47.2	51.5
	45.9	46.5	46.7	49.2		55.9	57.4	4.1C	c.0c				
andon		2 04	48.7	50.6		57.5	58.5	58.9	59.6	55.8	51.8	48.5	53.03
rookings	47.0	· · · ·	Low	50.0		56.6	58.5	58.8	58.3	54.8	51.2	48.7	52.8
Gold Beach RD	47.1	4/.0	1.04	2.00	50 4	64.6	70.6	69.4	64.4	54.7	44.5	40.7	54.4
Grants Pass	39.2	43.4	48.0			F 63	1 17	69.8	66.0	56.0	47.3	43.5	55.2
Illahe	41.0	45.0	48.1	53.4		1.00			20.2	6 43	50.7	48.5	52.9
Port Orford	46.7	47.3	48.2	50.7		57.0	2.64	1.40		6 13	40 8	44.9	52.2
Powers	43.4	46.1	47.3	50.6		59.4	63.5	63.8	01.4	· · · · ·	2		

February, March, April SNOW COURSE

Page Mt., 4,080 Ft.

		February	ary			Marci	ch			Apr	11	
		Snow	Equiv.	Water		Snow	Equiv.	Water		Snow	Equiv.	Water
ear	Snow 1/	Avg.	Water	Avg.	Snow	Avg.	Water	Avg.	Snow	Avg.	Water	Avg.
955	. 16	,	4.4	1	28	ļ	5.6	,	00	,	2.6	,
956	15	15.5	1.6	3.0	72	50.0	18.0	11.8	54	31.0	19.6	1.11
1957	24	18.3	5.0	3.7	0	33.3	0	7.9	0	20.7	0	7.4
958	2	14.3	-2	2.8	0	25.0	0	5.9	13	18.7	-1.6	6.0
959	0	11.4	0	2.2	29	25.8	8.6	6.4	00	16.6	2.6	2.3
960	9	10.5	1,3	2.1	4	22.2	1.2	5.6	-	14.0	.2	4.4
961	0	9.0	0	1.8	0	19.0	0	4.8	1	13.6	3.7	4.3
962	ę	8.3	1.0	1.7	ы	17.0	.6	4.3	17	14.0	5.6	4.5
963	-	7.4	۲.	1.5	0	15.1	0	3.8	2	12.7	4.	4.0
964	14	8.1	6.2	2.0	9	14.2	2.4	3.6	10	12.4	3.6	4.0
965	12	8.5	5.7	2.3	ę	13.2	1.6	3.5	0	11.3	0	3.6
996	36	10.8	16.0	3.5	41	15.5	17.0	4.6	33	13.1	15.0	4.6
967	ø	10.5	3.4	3.5	0	14.3	0	4.2	10	12.8	2.6	4.4
968	18	1.11	2.6	3.4	0	13.3	0	3.9	0	11.9	0	4.1
969	52	13.8	17.3	4.3	61	16.5	18.7	4.9	40	13.8	15.8	4.9
970	-	13.0		4.0	9	15.4	0	4.6	0	12.9	0	4.6
116	80	12.7	3.1	4.0	7	14.9	6.	4.4	80	12.6	2.8	4.5
972	12	12.7	2.7	3.9	4	14.3	2.4	4.3	0	11.9	8.	4.3
973	16	12.8	4.0	3.9	0	13.6	0	4.1	e	11.5	8.	4.1
974	0	12.2	0	3.7	16	13.7	3.4	4.0	9	11.2	2.6	4.0
975	3.2	11.8	.32	3.5	10	13.5	4.1	4.0	17.4	11.5	6.2	4.1
976	0	11.2	0	3.4	2.	13.5	-;	4.0	8.5	11.3	2.3	4.1
577	0	10.7	0	3.3	17.0	13.1	3.1	3.8	10.5	11.3	3.6	4.0
978	0	10.3	C	1.5	C	12 6	C	3 6	c	10 4	-	2 2

All figures listed in inches. F

SNOM COURSE February, March, April Althouse #1, 4,500 Ft.

								the bow		2010		10.00
		Snow	Equiv.	Mater	Snow	Snow Avg.	Equiv. Water	Avg.	Snow	Avg.	Water	Avg.
	Snow 1/	Avg.		- n-c					55	50 5	22.22	25.6
	0		19.1						÷0	L		1.61
		25.5							<u>0</u>	33.5		14.4
	1 11	22.0					2.0			0.00		11.5
		16.5				a a				0.00		6.6
	2	16.4								20.02		
						2				20.02		
	2					o./				17.0		
	00	1.21				2.1				17.9		
	_	0.11				6.2				17.5		
	_	10.4				7.3				15.9		
	00	10.2				6.4				15.3		
	~	10.01				5.8				15.5		
	10	10.0				7.4				1 11		
	20	10.2	÷			9.6				16.1		
	10	12.3								0.01		
	2	12.3				10.01				0.01		
	21	14.7				1.21				0.0		
		9 11				0.01				0.0		
	4	15.4				12.0				2.11		
	20	15.0				0.41				1.01		
	•;	14.8				0.11						
	=;	0.41								- 22		
	<u>e</u> ,	0.44								2.11		
	- 1	10.41								7.11		
	0	0.01				14./				17.3		
	00	4.01				14.1				11.7		
	0	5.21				14.3				17.1		
		12.4				13.1				17.3		
	-	12.0				13.1				16.8		
	12	12.3				13.1				18.3		
	53	12.7				14.8				18.5		
	43	13.7				14.7				17 9		
1.2	PI-	13.7				14.2				19.2		
	14	13.7				16.4				18.6		
	64	15.5				15.9		5.6	26	0.01	12.6	
	4	15.1				16.1				18.5		
	00	15.9				6 91						
1/61	25	15.7	8.4	4.0	85	16.1	5.6			18.0		
	25	16.0						and the second se	Cathol Service Com			

February, March, April SNOW COURSE

Althouse #2, 4,600 Ft.

Year . 1969		LEULUALY	ry			March	ch			April	11	
1969	Snow 1/	Snow Avg.	Equiv. Water	Water Avg.	Snow	Snow Avg.	Equiv. Water	Water Avg.	Snow	Snow Avg.	Equiv. Water	Water Avg.
	9.17		27.7		82.3		29.3		61.4		27.2	
1970	3.6	37.8	6.	14.3.	r:1	41.7	.5	14.9	0	30.7	0	13.6
1701	27.6	34.4	10.6	13.1	20.8	34.7	5.7	11.8	32.4	31.3	12.6	13.3
1972	25.1	32.1	8.4	11.9	20.2	31.1	8.5	0.11	0	23.5	0	10.0
1973	26.4	30.9	6.2	10.8	12.5	27.4	5.1	9.8	18.6	22.5	7.2	9.4
1974	3.9	26.4	1.6	9.2	27.1	27.3	7.2	9.4	22.1	22.4	6.9	9.5
1975	4.3	23.3	е .	8.0	20.5	26.4	8.1	9.2	38.9	24.8	14.1	10.1
1976	0	20.4	0	6.9	8.9	27.6	2.8	9*6	17.0	23.8	5.0	9.5
1977	0	18.1	0	6.2	21.4	23.9	4.4	8.0	19.6	23.3	7.5	9.3
1978	7.3	17.0	2.4	5.8	3.7	21.9	1.6	7.3	0	21.0	0	8.4

1/ All figures listed in inches.

95

APPENDIX II

GEOLOGY AND PHYSIOGRAPHY

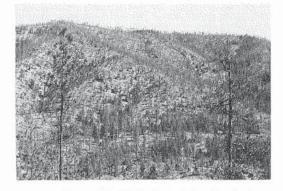
The Siskiyou National Forest is located in the Klamath geologic province. The area consists predominately of pre-tertiary sediments and volcanics that have been folded, faulted, and intruded by serpentinized masses of ultra-basic and granitoid rocks. The area is rugged with narrow canyons generally between 2,000 and 5,000 feet in elevation. Rocks of the Klamath Mountain region are much older than those of other parts of western Oregon and the area probably contains the oldest formations in the State.

The Klamath geologic province is geologically diverse and has a complex history. Many geologic processes have had a major effect upon this region including major periods of sea floor subduction at the continental border, volcanism, faulting, intrusion, erosion, mass wasting, and uplift. The overall structural pattern of the Klamath province consists of north-south trending bands which curve around to the northeast. Generally the boundaries between the bands are fault contacts, with serpentine and granitic plutons occurring in the zones of faulting.

The most apparent geomorphic processes occurring on the Siskiyou National Forest are fluviation (degradation of the land surface by running water) and mass wasting. Fluviation is most evident on the steep, rugged slopes which dominate the terrain of the Forest. Mass wasting is widespread across the Forest and commonly occurs along geologic contacts, fault zones, in highly fractured parent material, and in areas of moisture accumulation and stream channel cutting of toe slopes.

The following is a brief description of each bedrock type, its general location, and corresponding SRI units as they appear on the Siskiyou National Forest.

Metagabbro


This dark gray, medium-grained altered rock is found in the Limpy, Shan, and Upper Silver Creek areas of the Galice Ranger District. The metagabbro occurs as an elongated intrusion between meta-volcanics and meta-sediments of the Galice Formation, and is adjacent to serpentine areas. The metagabbro tends in a northeasterly direction. This bedrock type occurs in conjunction with SRI units 21 through 23.

Dacite and Rhyolite

These porphry dikes and sills are commonly white, light gray, fine grained with euhedral feldspar phenocrysts. The dacite and rhyollite occur along ridgetops in the Mt. Emily area of the Chetco Ranger District. These bedrock types occur in conjunction with SRI Units 26 through 29.

Serpentine and Peridotite

Peridotite is a green to rust colored, medium grained rock consisting of differing proportions of olivine and pyroxene that has in part been altered to serpentine and broken by innumerable braided shear planes into small blocks or curved shiny translucent plates. Serpentine ranges in color from yellow through olive greens to black. These ultrabasic rocks occur most often along faults and geologic contacts. Often there are patches of the native rock complexed within the intruding peridotite and serpentine. Segments of these ultrabasics are distributed in most areas of the Forest. The major block of serpentine extends from Eight Dollar Mountain on the Illinois Valley District, south through Rough and Ready Creek to the California boarder, west to the north fork of the Smith River, and north extending into the Kalmiopsis Wilderness. Isolated bands branch off into the Limpy Creek, Shan Creek, and Chrome ridge areas of the Galice Ranger District. A large block of serpentine peridotite is found on the west side of the Klamath Mountains in the Iron Mountain area of the Powers and Gold Beach Districts. These bedrock types occur in conjunction with SRI Units 30 through 35 on the east side of the Klamath Mountains, and SRI Units 36 through 39 on the west side of the Klamath Mountains.

Serpentinite and Peridotite East of Josephine Creek

Umpgua Formation

This formation consists of rhythmically bedded sandstones and siltstones. Beds are alternating, very thin, dark brown siltstones and slightly thicker light grayish-brown sandstones. The Umpqua Formation is found widely distributed in the north Gold Beach and Powers Districts of the Forest. A large block of Umpqua Formaton extends north from Agness through Ilahe and contacts the Tyee Formation at Bald Knob. This bedrock type occurs in conjunction with SRI Units 41 through 45.

Humbug Mountain Conglomerate

This rock type consists of massive to thickly bedded, well-indurated conglomerate which grades into dark gray sandstone. Clasts in the conglomerate consist of chert, schist, diorite, and altered extrusive volcanic rocks. The conglomerate covers a wide area of the western Powers District. Major blocks of conglomerate occur along the upper and lower reaches of the Elk River, south fork of the Sixes River, Anvil Mountain, Mt. Butler, and Copper Mountain areas of the District. This bedrock type occurs in conjunction with SRI Units 46 through 48.

Dothan Formation

The Dothan Formation is dominantly a medium-grained, well indurated graywacke sandstone, massively thick-bedded to thin-bedded and intermixed with dark gray or black layers of mudstone, shale, or siltstone, with local slaty cleavage. Volcanic rocks are interspersed within the formation as well as minor inclusions of chert and conglomerate. A large band of Dothan trending in a northeasterly direction cuts diagonally through the Forest. The Dothan Formation occupies most of the western section of the Chetco District, including most of the Winchuck, Chetco, and Pistol River drainages. This wide band continues in a northeasterly direction crossing the Illinois River, Silver Creek, Silver Peak, Indigo Creek, Upper Shasta Costa Creek, and on through Bear Camp Mountain and Marial. This bedrock type occurs in conjunction with SRI Units S0 through 55.

The Colebrooke Schist

The Colebrooke Schist is a diverse assemblage of quartz-mica phyllite, and schist, well foliated sandstone and meta-volcanics. The unit is highly contorted and sheared. Most of this material occurs in the western part of the Gold Beach Ranger District. A large block of Colebrooke Schist occurs along the lower reaches of the Rogue River west of Agness extending north to Brushy Mountain and Upper Lobster Creek and branching south in a narrow band through Quosatana Creek and the north fork of the Pistol River. This bedrock type occurs in conjunction with SRI Units 61 and 62.

Gneissic Rock

The amphibole gneiss is a banded crystalline rock made up of dark colored hornblende-rich layers and light colored silceous layers. It is believed to be metamorphosed from the Galice Formation. The gneiss occurs in a narrow northeasterly trending band from Horse Mountain up through Briggs Valley and Galice Creek. This bedrock type occurs in conjunction with SRI Units 66 through 68.

Soft Marine Sediments

The marine sediments are buff to grayish-brown, soft, finely, bedded siltstones, mudstones, and claystones. These sediments occur in a generally northeasterly trending band through Leuizenger Creek, Brushy Creek, Elk Valley, and Hazel View Summit in the southern Illinois Valley District. This bedrock type occurs in conjunction with SRI Units 71 and 72.

Galice Metasedimentary Rock

The Galice metasediments are hard, dark gray to black, fine grained, thinly layered, slaty to phyllitic mudstones interbedded with hard dark gray or buff, medium grained, lithic, poorly sorted sandstones. Minor inclusions include andesitic flows, breccias, tuffs, and agglomerates altered to greenstones. The Galice metasediments are characteristically sheared locally along contacts with other geologic formations. A large northeasterly trending block of Galice metasediments begins in the Kalmiopsis Wilderness near Hawks Rest and extends through Babyfoot Lake, Onion Camp, Fiddler Mountain, and crosses the Illinois River. North of the Illinois it passes through Sixmile Creek, Onion Creek, Secret Creek, Taylor Creek, and Galice Creek. Large areas of Galice metasediments occur in the western portion of the Powers District in proximity to Purple Mountain, Panther Mountain, Copper Mountain, and Barklow Mountain. This bedrock type occurs in conjunction with SRI Units 76 and 77 on the east side of the Klamath Mountains, and with Units 176 through 178 on the west side of the Klamath Mountains.

Metavolcanics

The metavolcanics consist of pale green to grayish-green altered flows and minor inclusions of tuff, breccia, stratified tuff, and related intrusive rocks mostly of andesitic or basaltic composition. Flows are commonly fine to coarse-grained, porphyritic, vesicular, or amygdaloidal. Bedrock is commonly moderately hard to hard in steep topography and ranges to soft on more gentle terrain with interspersed stringers of sediments and metasediments locally. A large block of these metavolcanics occur in the eastern portion of the Illinois Valley District and includes those areas surrounding Althouse Creek, French Peak, Sucker Greek, Horse Mountain, Lower Grayback Creek, and Little Grayback Mountain. This bedrock type occurs in conjunction with SRI Units 80 through 83.

Metavolcanics of the Galice Formation

The Galice metavolcanics consist of thick volcanic flows mainly porphyritic with breccias and tuffs. The Galice metavolcanics are generally harder than the metavolcanics found in the eastern portion of the Illinois Valley District. A large northeasterly trending block of Galice metavolcanics occurs adjacent to and interspersed within the Galice metasediments. The metavolcanics can be found in the Squaw Mountain area, northward past Serpentine Point, and through Onion Creek, Secret Creek, Limpy Creek, Shan Creek, Taylor Creek, and Galice Creek. A smaller block of Galice metavolcanics occurs in the Johnson Mountain area in the northern Powers District. This bedrock type occurs in conjunction with SRI Units 86 and 87 on the east side of the Planeth Mercek type occurs in conjunction with SRI Units 86 and 87 on the east side of the Klamath Mountains and 186 on the west side of the Klamath Mountains.

Granitic Rocks

The granitoid rocks consist of light gray, fine to coarse-grained granites through diorites. Diorites and quartz diorites are the most abundant members. Minor inclusions of gabbro are also found in this unit. Small granitoid rock intrusions can be found in the form of dikes and sills in many areas of the Forest. Larger stocks of granitic rocks exist in the Grayback Mountain, Upper Grayback Creek, and Upper East Fork of Williams Creek areas. Another stock extends in a band from the upper reaches of the Chetco River, through Klondike Creek, the Illinois River, and Upper Silver Creek. A smaller intrusive body can be found along the lower reaches of the Elk River near Pearse Peak. Bedrock immediately surrounding these intruding granitoid rocks are characteristically altered mineralogically and highly fractured. This bedrock type is found in conjunction with SRI Units 91 through 95 on the east side of the Klamath Mountains, and 191 through 194 on the west side of the Klamath Mountains

Gabbro

The gabbros are a moderately hard to hard, dark gray to black, fine to coarse grained basic intrusive rock. Small intrusions of gabbro in the form of dikes and sills are present in many areas of the Forest. A larger block of gabbro occurs in the southernmost extension of the Illinois Valley District encompassing the Crazy Peak, Chicago Peak, Black Butte, and Lookout Mountain areas. Another large area of gabbroic rock occurs in the southern Kalmionsis Wilderness near the Upper Chetco and Little Chetco Rivers. This bedrock type occurs in conjunction with SRI Units 96, 97, and 98 on the east side of the Klamath Mountains and with Unit 196 on the west side of the Klamath Mountains.

Olivine Gabbro

A hard, dark colored, fine to coarse-grained rock containing bluish feldspar, pyroxene, and olivine. Most of the Olivine Gabbro occurs in a band from Illinois River north through York Butte to Flat Top Mountain on the Galice Ranger District. This bedrock type occurs in conjunction with SRI Units 99 and 100.

Olivine Gabbro - Silver Creek Drainage

APPENDIX III

The Type Formation is composed of thick rhythmically bedded, buff to greenish-gray sandstone with thin interbedded dark colored mudstone. The sandstone is composed of medium to coarsegrained, micaceous, arkosic, and lithic wackes. Some conglomerates of andesite, quartzite, chert, and basalt as well as local coal beds are also found in this Unit. The Type Formation is present in a large block in the Powers District spreading from Sand Rock Mountain to Eden Ridge, all along the south fork of the Coquille River, south from Hanging Rock, along Panther Ridge to Bald Knob. This bedrock type occurs in conjunction with SRI Units 120 through 125.

100

TOPOGRAPHY

The Klamath Mountains occupy the southwestern corner of Oregon, south of the Coast Range and west of the Cascade Range. The area is generally characterized by steep rugged terrain with broken ridge systems and narrow canvons.

In the southern part of the Siskiyou National Forest (the Chetco and Illinois Valley Districts), the elevation ranges from 100 feet near the coast to approximately 5,000 feet at Pearsoll Peak on the crest of the Klamath Mountains, then drops to approximately 1,300 feet in the Illinois Valley and rises again to over 7,000 feet at Grayback Mountain on the crest of the Siskiyou Mountain range. The topography of this area varies widely, however, a general description can be made. The Kalmiopsis Wilderness is characterized by steep, rocky, brushy sideslopes and sharp ridges. South of the Chetco River convex short sideslopes and sharp ridges prevail, while north of the Chetco River longer concave slopes predominate. The Siskiyou Mountain area of the Illinois Valley District contains the highest elevations on the Siskivou National Forest and is generally characterized by an east-west orientation: steep, long, convex sideslopes; and sharp ridges.

Elevations in the middle of the Siskiyou National Forest (the Gold Beach and Galice Districts), range from 100 feet along the Rogue River at the west boundary of the Forest to 5,318 feet at the summit of Brandy Peak. Ridge direction varies from east-west in the central portion to primarily north-south in the rest of the area. Sideslopes vary from flat to extremely steep. About 10 percent of the land has slopes of 30 percent or less, 50 percent of the land has slopes between 30 and 60 percent, and 40 percent of the land has

Salmon Mountain

slopes greater than 60 percent. Rock Bluffs and slopes in excess of 100 percent are localized, and, with the exception of the Big Craggies and streamside areas, are not common. In the eastern portion of the area convex steep sideslopes and sharp ridges dominate, while in the western portion more moderate concave slopes dominate.

In the northernmost part of the Siskiyou National Forest (the Powers Ranger District) the elevation ranges from about 100 feet along the Elk River at the western boundary of the Forest to 4,319 foot Mt. Bolivar on the east boundary. Wide topographical variation exists moving west to east across this unit. The Mt. Bulter-Dry Creek area in the extreme northwest part of the Forest is characterized by consistently steep slopes, averaging about 80 percent, and extremely rugged terrain. Razorback ridgetops and steep rocky sideslopes are common throughout this area. In the northeastern portion of the Forest, a large area of gentle slopes can be found.

Valleys, such as Eden Valley and Foggy Creek, are wide in comparison to other valley areas of the Forest. Gently rolling sideslopes and long gently sloping slab-like ridgetops are also topographical features that exist almost exclusively in this area of the Forest. Very steep, almost vertical slopes can be found bordering the gently sloping sandstone slabs.

APPENDIX IV

VEGETATION

The Siskiyou National Forest lies in the Klamath Region, an area of exceptional ecological interest. The Klamath Region, between the Southern Cascade Range and the Pacific Ocean, is an old and geologically complex range. This area supports a complex pattern of natural communities in relation to steep climatic gradients, diverse parent materials, and a transitional geographic location where species common to the Pacific Northwest and California merge.

Over 1.400 plant species have been identified on the Siskiyou National Forest. Most of these can be found in the southern section of the Forest. Douglas-fir is the primary sawtimber species. It grows in association with several other coniferous species including sugar pine, Port-Orford-cedar, western hemlock, white fir, incense-cedar, knobcone pine, Jeffrey pine, ponderosa pine, western white pine, western red cedar, Brewer spruce, grand fir, Shasta red fir, and redwood. Associated hardwoods include tanoak, red alder, Pacific madrone, golden chinkapin, canyon live oak, Oregon white oak, California black oak, willow, bigleaf maple, dogwood, and Oregon myrtle. The large variation in climatic conditions and soil types combined with a severe fire history have altered vegetative cover in relation to site, density, and species composition.

Douglas-fir - Tanoak Vegetative Pattern

The southwestern portion of the Forest is less diversified than the southeastern Siskiyou Mountain area. Douglas-fir and tanoak are the predominate tree species in the southwest portion of the Forest. Extensive stands of tanoak occur in the area. Madrone, chinkapin, and blueblossom ceanothus are frequent understory species. Intense brush competition characterizes this portion of the Forest.

The Siskiyou Mountains in the southeast portion of the Forest contain a diverse mosaic of vegetation. The middle elevations or mixed conifer zone have Douglas-fir as the predominant timber species. Considerable hardwood competition from tanoak and madrone is present in this zone. Tanoak occurs most frequently on the better sites and madrone occurrence is usually correlated with recent fire or disturbance. Between 3,000 to 4,000 feet, depending usually correlated with recent life of disturbance. Detween 5,000 to 4,000 rect, depending upon aspect, white fir becomes the dominant understory species. At approximately 5,000 feet shasta red fir becomes the dominant tree species. Some white fir and mountain hemlock are also present at the higher elevations.

The middle section of the Siskiyou National Forest contains most of those species found in the south section. Species density, frequency, and distribution fluctuate according to changing environmental conditions. Tanoak is less prominent as an overstory and understory species. West of the Klamath Mountains, alder dominates along draws and waterways, especially in wet and disturbed areas. Douglas-fir is the dominant timber species. Port-Orford-cedar and western hemlock are found on the wetter, more protected sites. West of the Klamath Mountains, huckleberry, ceanothus, salal, rhododendron, and Oregon myrtle are common understory species. East of the Klamath Mountains canyon live oak, madrone, and Oregon white oak increase in number and distribution. Douglas-fir is still the prominent timber species, but stocking levels may be low on unfavorable aspects. Sugar pine and ponderosa pine are more abundant in this area of the Forest. Ceanothus, poison oak, and manzanita are common understory species. Pacific dogwood and bigleaf maple occur frequently along drain-

Peridotite and Serpentine bedrock areas have dramatic species composition changes. Jeffrey ages. pine and incense-cedar become dominant overstory species. Stocking is usually low and crown closure seldom exceeds 10 to 40 percent. Whiteleaf manzanita, wedgeleaf ceanothus, silktassle, western azalea, and grasses are common understory species.

Mt. Butler-Dry Creek

The primary tree species found in the Mt. Butler-Dry Creek area in the northwest corner of the Forest are: Douglas-fir, western hemlock, and tanoak. Other tree species include: Western red cedar, Port-Orford-cedar, sugar pine, grand fir, knobcone pine, Pacific yew, madrone, Oregon myrtle, red alder, bigleaf maple, canyon live oak, and Pacific dogwood. A large number of other shrubs, herbs, and grasses are also found in the various plant communities within this area. These include five or more fern species, two huckleberry species, nine maple species, rhododendron, salal, Oregon grape, manzanita, and poison oak.

Large variation in productivity and species composition occurs between north and south slopes in this area of the Forest. North slopes are typically dominated by Douglas-fir

The typical old-growth stand in this area has 40 to 70 percent crown closure, while the typical second-growth stand has 70 to 100 percent crown closure. Considerable amounts of tanoak, western hemlock, rhododendron, salal, and Douglas-fir occur in the understory. As much as one-third of all south aspects in this area can be classified as dense brushfields or hardwood stands. Tanoak, canyon live oak, and chinkapin dominate these areas. Douglasfir, when it occurs, is the predominant species. Conifer stocking is low, however, with only 10 to 40 percent crown closure. Little or no conifer regeneration is present in the understory of this area. The lower slopes of these unfavorable aspects have higher confer

Mt. Butler

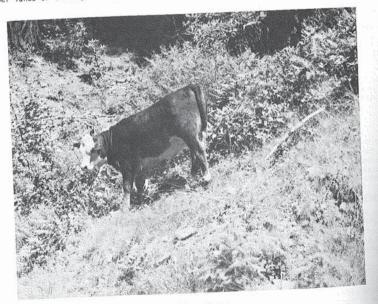
stocking levels, since environmental conditions are more favorable. Red alder occurs principally along the coast in wet disturbed areas. Port-Orford-cedar and bigleaf maple occur largely in wet, protected areas such as in secondary streams and draws. Western red cedar and western hemlock are most commonly found on wet, older disturbed areas.

Northeastern Portion

In the extreme northeastern portion of the Forest vegetation types tend to be more typical of the westside Douglas-fir zone. Douglas-fir is the primary species. Associated species include Port-Orford-cedar, western hemlock, sugar pine, tanoak, madrone, bigleaf maple, red alder, vine maple, rhododendron, and salal. Timber stands tend to be well-stocked. Brush competition appears to be lower than in any other area of the Forest.

APPENDIX VI

APPENDIX V


RANGE

Lands used for grazing livestock primarily occur in the southeastern part of the Forest on the Illinois Valley Ranger District. The various soils have strikingly different production and suitabilities. The most limiting factor is brush and tree competition. Management of these lands are varied to meet the demands of multiple-use management. Livestock grazing is often a secondary use of the land and must conform to the needs of timber production or wildlife habitat in critical deer or elk winter-range areas. Adjacent private lands also have an important impact on the management needs and decisions in the area.

In forested areas, livestock forage is transient. Grass and other forage species increase as the timber is harvested. Then, as the stand becomes re-established, the forage production decreases.

In some areas, cattle use and deer winter range are in conflict. Use by cattle must be limited to the spring season and a period of rest provided for restoration of plant vigor. On these areas, cattle are used mainly to form the plants for deer use and not for cattle production.

Other areas of conflicting use include small wet and dry non-forest areas that dot the timber lands of the high Siskiyou Mountains.

Transitory Range

WILDLIFE

Game and non-game wildlife species in the Forest are an important part of the living enviromment. Wildlife require an adequate supply of food, water, and cover. The change or destruction of food and cover plants can cause a reduction in fish and animal numbers. Forest roads, necessary for timber removal, must be properly located and timber harvest methods carefully planned to protect wildlife habitat.

Wildlife that live in a particular area depend upon the types of habitat available. Under natural conditions various kinds and combinations of vegetation grow in response to varying soil conditions. Suitability of soils for different kinds of wildlife differs according to soil fertility, climatic conditions, and soil properties that affect water-holding capacity. Aspect and slope are also important because they are related to proximity of water, feeding, and cover areas. Important game and non-game wildlife habitat requirements can impact goals of Forest Management.

Deer and elk use areas of dense vegetation for cover. Timber harvest along ridge lines lowers the quality of these important wildlife cover areas. Browse production is increased as forest canopy is opened, however, browse is less critical on the west side of the Cascade Range.

Southerly aspects and low elevations produce forage plants for wildlife use during winter and early spring. Deer and elk concentrate where slopes are free of snow. Plantations adjacent to these areas receive heavy browsing and may need to be protected. Roads traversing south slopes and low elevations degrade wildlife habitat by encouraging harassment and illegal harvest of wildlife during winter months. Opening the forest canopy increases the snow accumulation, causing areas to be less desirable for deer and elk during critical winter months.

Spotted Owl (Courtesy of Nietro, B.L.M.)

Soils and associated vegetation influence the distribution of many species of rodents. Rodent concentration areas such as clearcuts, meadows, and natural forest openings affect the understory vegetation in adjacent mature timber stands. Rodent populations generally increase when timber is removed. Gophers, porcupines, rabbits, deer mice, chipmunks, and other rodents are associated with open and forested plant communities of the area.

Many important birds of prey feed and nest in the mature forest canopy. They are generally dependent on large trees for nest sites and roosting places. Several birds feed on rodents and insects that cause tree damage. Management of these species includes their protection.

Increases in sedimentation and water temperature are the two adverse factors which influence fish populations on the Forest. Temperature is dependent on quality of riparian habitat. The adverse impact of sedimentation depends on time, location, and magnitude of occurrence. Forest practices involve surface disturbance that contributes to stream bedload and detriforest practices involve surface disturbance that contributes to stream bedload and detrimental effects on aquatic habitat. Soils of the inventory area respond differently to management techniques and erosion control measures. Soil texture in combination with degree, location, and time of disturbance affects water quality and aquatic life. The drainage system of the Forest supports major runs of anadromous fish including coho and chinook salmon, steelhead, sea-run cuthroat trout, green sturgeon, and shad. Native cutthroat and rainbow trout inhabit the many minor drainageways.

APPENDIX VII

DEFINITIONS OF MANAGEMENT INTERPRETATIONS 1/

This appendix contains the definitions for the management interpretations used in the Soil Resource Inventory. These definitions are used in compiling information for the tables of Engineering, Erosion and Hydrology, Range and Wildlife, Recreation, and Timber Management.

Engineering

Interpretations for engineering include characteristics for roads, foundations, bedrock, and some miscellaneous interpretations. These interpretations are explained and defined in this section. Generally, the following interpretations and ratings are based only on the soil material or bedrock. The interpretations pertaining to roads are based on standard Forest Service regulations and construction methods presently used.

Unified and AASHO Classification

Each soil is classified as to its Unified and AASHO Classification. Most soils will be classified into one class. Those soils with significant layers of different soil materials will have a classification for each layer designated. The classification will be made for some representative soils by laboratory testing. Those soils not tested will be classified by comparing their properties to those tested.

Suitability for Use as Topsoil Source

This rating evaluates each soil as to its suitability for use as topsoil. It does not specify any particular use of the topsoil. Ratings are based on soil characteristics.

<u>Suited</u> - Soil texture ranges from sandy loam to clay loam; gravel content is less than <u>35 percent</u> and soil layer is at least 36 inches thick.

<u>Unsuited</u> - This rating indicates the soils do not satisfy the requirements specified <u>under</u> "Suited". However, soils rated "Unsuited" may still satisfy a particular requirement. See the "Table of Soil Characteristics" for soil texture, thickness, and gravel content.

Suitability of Soil as Sand and/or Gravel Source

This interpretation indicates the suitability of each landtype as a possible source of sand and/or gravel. It does not indicate the kind of quality of sand or gravel, or refer to any specific use of the sand and/or gravel.

<u>Suited</u> - This rating indicates that sand and/or gravel is present and the following conditions are satisfied: There is a layer present which is composed of 80 percent, by volume, of sand and/or gravel. This layer is at least 48 inches thick.

<u>Unsuited</u> - This rating indicates that sand and/or gravel is generally not present in amounts which satisfy the requirements under "Suited". However, soils rated "Unsuited" may still satisfy a particular requirement. See the Table of Soil Characteristics for soil depth and gravel content.

1/ Unless otherwise noted, the following definitions were developed for use in Soil Resource Inventories, R-6.

Soil Suitable for Sand and Gravel Source

Suitability of Soil as a Possible Clay Source

This rating indicates the suitability of each soil as a possible source of clay. It does not indicate the kind or quality of clay, or refer to any specific use of the clay.

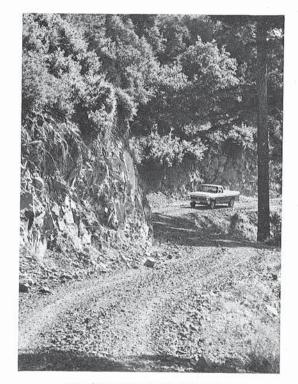
Suited - This rating indicates that the soil is a possible source of clay. Soils with this rating have the following: Texture ranges from clay loam to clay. Gravel content is less than 35 percent. This layer is at least 24 inches thick.

Unsuited - Soils with this rating generally are not possible sources for clay.

Suitability of Bedrock for Road Rock

This interpretation indicates the <u>general</u> suitability of rock when used as road rock for base course or wearing surface. These ratings are based on rock hardness, density, and susceptibility to weathering and breakdown. Soils are not rated when depth to bedrock is greater than 60 inches. (Cautionary note: This information is for broad planning purposes only. Specific onsite characterization data are required to accurately determine rock suitability).

Unsuited - Rock is soft and breaks down rapidly under logging traffic.


Poor - Rock is only moderately hard and breaks down easily under logging traffic, usually in one or two years' time.

Fair - Rock is hard and dense but tends to break down under logging traffic after about two to four years' use.

Good - Rock is hard, dense, and resists breakdown under logging traffic.

Limitations of Bedrock for Road Rock

This column indicates the major limitation of the bedrock for road rock use.

Native Rock Suited for Road Surfacing

Estimate of Road Rock Thickness

This interpretation refers to estimated amount of road rock (base course and wearing surface) generally needed on heavy-vehicle, all-weather-use roads constructed on each landtype. Factors involved in making this interpretation include field observation, texture, and plasticity of soil, depth of bedrock, drainage, and kind of subgrade the road generally will have--common material or bedrock. Ratings are based on compacted fills and on the use of high quality rock. (Cautionary note: This information is for broad planning purposes only. Specific onsite characterization data are required to accurately determine thickness needs).

Very thin - Generally less than 8 inches.

Thin - Approximately 8 to 18 inches.

Thick - Approximately 18 to 32 inches.

Very thick - Generally over 32 inches.

Consideration for Road Location and Construction

This column indicates the major considerations for road location and construction through each landtype. The rating evaluates the impact of road construction on other resources and/or road construction problems likely to be encountered.

Method of Excavation

This interpretation refers to excavation methods most commonly used and required for each landtype. This includes soil, bedrock, and cemented and/or compacted layers in the soil. Methods are blading, ripping, and/or blasting. (Cautionary note: These appraisals are subject to change as machinery capabilities change).

Cutbank and Ditch Erosion Potential

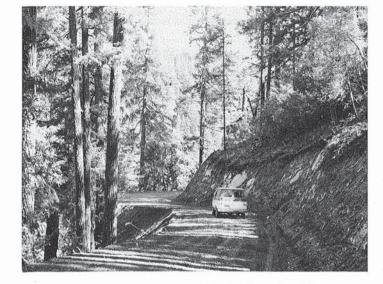
This interpretation indicates the potential for subsoil erosion by running water on each landtype. Subsoil refers to that material from approximately the 40-inch depth extending to bedrock. It includes erosion which takes place along road ditches and on cutslopes. Rating is of soil material only and does not apply when cutbank or ditch is in bedrock. Factors considered in making ratings are field observations, texture and structure of subsoil materials, permeability, compaction, and climate.

Low - Factors indicate that little or no subsoil erosion is likely to occur.

Moderate - Factors indicate that the subsoils have moderate erosion potential.

High - Factors indicate that the subsoils are likely to erode severely.

Susceptibility to Cutbank Sloughing and Raveling


This rating evaluates each unit for its susceptibility to sloughing or raveling after excavation. Ratings are based on cutbanks at least 10 feet high. Factors include field observations, soil and bedrock characteristics, backslope ratio, frost action, climate, and potential for revegetation.

Low - Sloughing and/or raveling is a minor problem requiring occasional road main-

Moderate - Sloughing and/or raveling cause some damage. Annual road maintenance is

High - Sloughing and raveling occur at a rate that often plugs culverts and fills usually adequate. inside ditches. Frequent road maintenance with heavy equipment such as front-end

loader is required.

Moderate Susceptibility to Cutbank Sloughing and Raveling

Estimated Cutslope Ratio

This interpretation estimates the cutslope ratio which generally will result in the most stable cutbank condition. Ratings made are for cutbanks at least 10 feet high and pertain both to soil and bedrock material. Ratings are based on soil and bedrock factors and on observations. (Specific onsite characterization data is needed to determine the proper ratio).

Steep - Cutbank ratio from vertical to 4:1

Moderate - Cutbank ratio from about 1:1 to 15:1

Flat - Cutbank ratio flatter than 12:1

Probability of Cutbank Failures

This interpretation indicates the probability of failures in cutbanks following road construction or excavations for buildings. Failures are considered to be at least 10 cubic yards of material in volume. Ratings are based on cutbanks of at least 10 feet in height and refer to more than a 50 percent chance for failures. These ratings are the same as in the Mantle Stability Surveys.

- I. <u>Very stable</u> practically no probability of cutbank failures.
- Stable probability of more than 3 failures per mile of road cutbank.
- III. Moderate stable probability of 4 to 8 failures per mile of road cutbank.
- Unstable probability of 9 to 15 failures per mile of road cutbank.
- IV. Very unstable - probability of more than 15 failures per mile of road cutbank.

Suggestion for Cutbank Stability Problems

This rating gives suggestions, when applicable, to increase stability of cutbanks or reduce damage from raveling and sloughing.

Failure Potential on Road Waste and Fills

This interpretation rates the landtype units as to the susceptibility of failure occurring on fill and sidecast waste material and related damage to resources. Failures are defined as a loss or partial loss of road fill or sidecast material on the fillslope. Considered are initial and subsequent failures caused by construction, erosion, and additional sidecast during maintenance. Failures result in damage to various resources. Stream sedimentation levels are increased, resulting in an adverse effect on both water quality and fisheries. Timber growth potential is affected as fillslope areas no longer contribute to production. Occasionally the failures do damage to the road itself. The ratings are based on current road construction practices and procedures, and on type of soil materials, natural drainage of the site, landform, slope of the fill, and field observation.

Low - Failure on road waste and fills is sufficiently low to result in only minor damage to resource values.

Moderate - Failures on road waste and fills occur with sufficient frequency to cause moderate damage to resource values.

High - Failures on road waste and fills occur at a rate and magnitude sufficient to cause major damage to resource values.

Erosion Potential on Road Waste and Fills

This interpretation rates the landtype units as to the susceptibility of erosion occurring on fill and sidecast waste material and related damage to resources. Erosion is a loss of surface soil from fill or sidecast.

This erosion contributes sedimentation to streams. Timber growth potential is affected as fillslope areas no longer contribute to production. The ratings are based on current road construction practices and procedures, and on type of soil materials, natural drainage of the site, landform, slope of the fill, and field observation.

Low - Erosion on road waste and fills is sufficiently low to result in only minor damage to resource values.

Moderate - Erosion on road waste and fills occurs with sufficient magnitude to cause moderate damage to resource values.

High - Erosion on road waste and fills occurs at a magnitude sufficient to cause major damage to resource values.

Suitability of Road Waste and Fillslopes to Seeding

This interpretation indicates the probable success of fillslope seeding. Factors considered in making ratings are soil characteristics, elevation, slope, climate, snowpack, and frost hazard. Ratings are based on current methods and practices of seeding, grass species, fertilizer application, and time of seeding.

Poor - Probability of success is low. Seeding, generally, is not successful and requires three or more reseedings and special treatments.

Fair - Success is likely on about 50 percent of area treated. Requires one or two followup treatments. Seeding usually becomes well established within two years. Little followup seeding necessary.

Good - Probability of high success. Seeding usually becomes well established within two years. Little followup seeding is necessary.

Limitations to Road Waste and Fillslope Seeding

This indicates the major limitations to success of fillslope seeding, such as raveling, droughtiness, stoniness, coarse soil textures, and predominance of subsoil,

Suggestions for Road Waste and Fillslope Seeding

This indicates special treatment to be given, when applicable, to increase the chance of success of fillslope seeding. A statement indicates the necessary requirements other than normal fillslope seeding practices carried on by the Forest.

Suitability of Cutbanks to Seeding

This interpretation indicates the probable success of cutbank seeding. Factors considered in making ratings are soil characteristics, elevation, slope, climate, snowpack, and frost hazard. Ratings are based on current methods and practices of seeding, grass species, fertilizer application, and time of seeding.

Poor - Probability of success is low. Seeding generally is not successful and requires three or more reseedings and special treatments.

Fair - Success is likely on about 50 percent of area treated. Requires one or two followup treatments. Seeding is usually spotty; some areas become easily established, while others fail completely.

Good - Probability of high success. Seeding usually becomes well established within two years. Little followup seeding necessary.

Limitations to Cutbank Seeding

This indicates the major limitations to success of cutbank seeding, such as doughtiness, stoniness, coarse textures, subsoil, and exposed rock.

Suggestions for Cutbank Seeding

This indicates special treatment to be given, when applicable, to increase the chance of success of cutbank seedings, such as hand or machine terracing, mulching, fertilization, and special seed mixtures.

TABLE OF INTERPRETATIONS

ENGINEERING TABLE I

Landtype No. 1/	Classi Uni- fied 4/	fications AASHO <u>4</u> /	Suit- ability for Use as Topsoil Source	Suit- ability of Soil for Sand and/or Gravel Source	Suit- ability of Soil as a Possible Clay Source	Suit- ability of Bed- Rock for Road Rock	Limitations of Bedrock for Road Rock	Esti- mate of Road Rock Thick- ness	Consideration for Road Location and Construction	Method of Ex- cavation	Cutbank and Ditch Erosion Potential	Suscept- ibility to Cutbank Slough- ing and Ravelling	Esti- mated Cut- slope Ratio	Prob- ability of Cutbani Failure
1	N/A	N/A	Unsuited	Unsuited	Unsuited	Good	Metavolcanics, granites, and gabbros-none	Very thin	Steep slopes, rock falls, and, poor alignment	Blasting	N/A	High	Steep	I
2	N/A	N/A	Unsuited	Unsuited	Unsuited	Fair to unsuited	Metasediments and sediments break down rapidly under heavy use	Very thin to thin	Steep slopes, rock falls, slough, and poor alignment	Blasting and ripping	N/A	High	Steep	I to II
з	N/A	N/A	Unsuited	Unsuited	Unsuited	Good to unsuited	Peridotite and serpentine (serpentine will break down rapidly under heavy use)	Very thin, locally thin	Rock falls and poor alignment	Blasting and ripping	N/A	High to moderate	Steep	I to II
4	GMU	A-1-6(0)	Suited	Unsu1ted	Suited	Unsu1ted	Soft and sapro- litic	Very thick	Slump basins and unstable areas; wet areas require extra cul- verts; keep cuts and fills to a minimum; minimum standard road; roll grade	81ading	High	Hfgh	Flat	IV to V
5	GMu	A-1-6(0)	Unsuited	Unsuited	Suited, locally unsuited	Unsuited	Soft and sapro- litic	Very thick	Slump basins and unstable areas; wet areas require extra cul- verts; keep cuts and fills to a minimum; minimum standard road; roll grade	Blading	High	High	Flat	1V to V
6	N/A	N/A	Unsuited	Unsuited	Unsuited	N/A	N/A	Very thick	Wet non-forest land	Slading	N/A	N/A	N/A	N/A
7	N/A	N/A	Unsuited	Unsuited	Unsuited	Unsuited to fair	Variable hard- ness	Thin	Local shallow soils and rock outcrops		Moderate	Moderate	Steep	tt
8,8c	SMu GMu GMGC	A-5(1) A-2-5 A-2-4 A-2-6(0)	Sufted	Unsuited	Suffed	Unsufted	Soft and sapro- litic	Very thick	Slump basins and unstable areas require extra cul- verts; keep cuts and fills to a minimun; minimum standard road; roll grade	Blading	High	High	Flat	V and IV
9,90	SMu GMu GMGC	A-5(1) A-2-5 A-2-4 A-2-6(0)	Suited	Unsuited	Suited, locally unsuited	Unsuited	Soft and sapro- litic	Very thick	Slump basins and unstable areas require extra cul- verts; keep cuts and fills to a minimum; minimum standard road; roll grade	81ading	Htgh •	High	Flat	V and IV

1/ Consult Appendix - Engineering Test Data, Soil Resource Inventory Report for complete engineering analysis of each landtype. 3/ Indicates surface soil. 3/ Indicates subsoil. 3/ See individual components for engineering classification (Appendix).

TABLE OF INTERPRETATIONS

			Suit- ability for Use	Suit- ability of Soil for Sand and/or	Suit- ability of Soil as a Possible	Suit- ability of Bed- Rock for	Limitations of Bedrock for	Esti- mate of Road Rock Thick-	Consideration for Road Location and Construction	Method of Ex- cavation	Cutbank and Ditch Erosion Potential	Suscept- ibility to Cutbank Slough- ing and Ravelling	Esti- mated Cut- slope Ratio	Prob- ability of Cutbank Failure		Landtype No. 1/	Classif Uni- fied <u>4</u> /	AASHO 4/	Suit- ability for Use as Topsoil Source	Suit- ability of Soil for Sand and/or Gravel Source	Suit- abilit of Soi as a Possib Clay Source
andtype U	assif ni- fied	cations AASHO	as Topsoil Source	Gravel Source	Clay Source	Road Rock	Road Rock	ness		Blading	Low		Steep	п		22	ML.	A-4(4)	Unsuited	Unsuited	Unsuit to sui
<u>У</u>	<u>4/</u> Mu	4/ A-4-0	Unsuited	d Unsuited	Unsuited	n/A	n/A	Thick	Local wet areas and old stream chan- nels may re- quire extra			moderate				26	ol. Smu	A-4(0)	Unsuited	Unsu'i ted	Unsut
									drainage fea- tures. Floor ing may be a problem	3-			1000	to II to		27	ОН	A-7-5(6)	Unsuited	Unsuited	Unsul
					4 Umen(†0	a N/A	N/A	Thin	None	Blading	Low to moderat		Steep modera Steep			28	SMu	A-4(0)	Unsuited	Unsuited	Unsut
	SMd SMu	A-1-b(0 A-4-0)) Unsuit Unsuit	ed Unsuite	ed Unsuite	ed N/A	N/A	Thick	Local wet areas and o stream chan nels may re	-	I Fore	Low to moderat				29	OH	A-7-5(6)	Unsuited	Unsuited	Unsu
									quire extra drainage fe tures. Flo ing may be problem	a- a				rate 11 to		31	SMu GMu	A-2-6(0) A-2-7-0 A-6(3)	Unsuited	Unsuited	Unsu
13	GM	/ A1,A2	2/ Unsu	ited Unsul	ited Unsui	ted N/A	N/A	Thin thic	to Local wet k areas may guire thic	re- ker	ng Moder	ate Modera	18 10 00	m		32	SMu ML	A-5(0) A-7-5(10	Unsuited)	l Unsuite	d Unsu but loca suit
	GM,	y ,						Thi	and extra verts	Blad	ing Moder	rate Moder igh to hi	ate Mod gh	erate II t III	0	34	SMu	A-2-6(0)	Unsuite	d Unsuite	d Qnsu
14	GM SM GM	37		uited Unsu			N/A	Th		may Blan	ling Low	Mode	ate Ste	ep 11		35	SMu	A-5(0)	Unsuite	d Unsuite	d Unsu
15	57	A-2	-4(0) Uns (1)	suited Sui	ted Unsu	ited N/A	10.0		Local we areas an stream c nels may	d old han- re-						36	SMU SMd	A-2-7(0 A-2-4(0		d Unsuite	id Unsi
									duire ex drainage tures	fea-	then Mor	jerate Mod	erate M	derate 11		37	ML SMu	A-7-5(6 A-2-7(0) Unsuite	d Unsuit	ed Sui uns
-		ми Л-	4(2) U	nsuited Un	suited Un	suited N/	r _A Ν/Α	Ţ	hin to None hick	s0 #1	pping			oderate V		38	GMd	A-1-9(0) Unsuite	ed Unsuit	ed Uns
16				Insuited U	ited	suited N	/A N/A		thick age to and oth	her r	ading, Hi cal ipping	3				39	SHu	A-2-7()) Unsuit	ed Unsuit	ed Uns
				10 10 1		insuffed ?	r/A N/A		Thin to Potent	ial dam- f	lading, M one ipping	oderato M	derate	Moderate 1		4	SM	I A-4(1)	Unsuit	ed Unsuit	
1	8		4-7-5(5) A-5 A-5(4)	Unsuited 1	Unsuited o				and of resources	nces from al slides		Moderate M	oderate	Moderate	m	4	GC GM	A-2-6(A-1-6(0)	ed Unsui	
		м.	A-4(8)	Unsuited	Unsuited	Unsuited	h/A %/A		age t		local ripping	to high	o high				SC GC	A-2-6(A-6(1)	0)		
	19	CH	A-7-5(7) A-7-5(12) A-7-5 A-4						natu	rat strucs	Blasting	Moderate	Moderate	Steep	11 ta 111		13 SM	u A-4(1)	Unsui	ted Unsul	ted Un
	21	ML.	A-2-7(0) A-4(0)	Unsuited	Unsuited	Unsuited	Fair None		and	p slopes, low soils, local rock crops	ripping				_	-					
							l Resource Inven		+ for complete	engineerin	g analysis	of each la	ndtype.				1 in	nsult Appen dicates sur dicates sub e individua	face soil.		

TABLE OF INTERPRETATIONS

ENGINEERING TABLE 1

						-								
type /	Classif Uni- fied <u>4/</u>		ability	of Soil	of Soil a	Sult- ability of Bed- Rock for Road Rock	Limitations of Bedrock for Road Rock	Rock Thick-	Consideration for Road Location and Construction	Method of Ex- cavation	Cutbank and Ditch Erosion Potential		Cut- slope Ratio	Prob- ability of Cutbank Failure
2	ML	A-4(4)	Unsuited	Unsuited	Unsuited to suited	Fair	None	thick	May be local- ized unstable areas	Ripping and blading	Moderatë	Low to moderate	Moderate	11 to 111
6	ol. Sma	A-4(0)	Unsuited	Unsuited	Unsuited	Poor	Breaks down rapidly under heavy use	Thin	Steep slopes, shallow soils, and local rock outcrops	and	High	Moderate	Steep	II to III
27	OH	A-7-5(6)	Unsuited	Unsuited	Unsuited	Poor	Breaks down rapidly under heavy use	Thin to thick	None	Ripping and blading	High	Low to moderate	Steep	II to III
28	SMu	A-4(0)	Unsuited	Unsuited	Unsuited	Poor	Breaks down rapidly under heavy use	Thin	Steep slopes, shallow solls, and local rock outcrops	and	High	Moderate	Steep	II to III
29	OH	A-7-5(6)	Unsuited	Unsuited	Unsuited	Poor	Breaks down rapidly under heavy use	Thin to thick	None	Ripping and blading	High	Low to moderate	Steep	II to III
31	SMu GMu	A-2-6(0) A-2-7-0	Unsuited	Unswited	Unsuited	Unsuited to poor	Breaks down rapidly under heavy use	This	Shallow soils and local rock outcrops	Blasting k and ripping	High	Moderate	Steep	п
32	SNu ML	A-6(3) A-5(0) A-7-5(10		Unsuited	Unsuited but locally suited	Unsuited	Soft and sapro- litic	- Thick	Local wet areas, slump basins, and unstable area	Ripping and blading s	Moderate to high	Moderate to high	Moderat	e III and IV
34	SMu	A-2-6(0)	Unsuited	Unsuited		Unsuited to fair	Breaks down rapidly under heavy use	Thin	Steep slopes, shallow sofls and local roc outcrops	, and	High	Moderate	Steep	II
35	SMa	A-5(0)	Unsuited	Unsuited	Unsuited	Unsuited to fair	Breaks down rapidly under heavy use	Thin to very thin	Shallow softs and local roo outcrops	s Blasting ck and ripping	Moderati	e Low to moderate	Steep	II to I
36	SMu SMd	A-2-7(0 A-2-4(0		i Unsuite	d Unsuited	Unsuited to poor		Thin to thick	Shallow soil: and local un- stable areas	 and 	g High	Moderati to high		II to III
37	ML SMu	A-7-5(6 A-2-7(0		d Unsuite	d Suited U unsuited	to Unsuite 1	d Breaks down rapidly under heavy use	Thick	Local slump basins and u stable areas	Ripping n- and blading	Moderat to high	i to high		
38	GMd	A-1-9(0) Unsuite	d Unsuite	d Unsuite	d Unsuite	d Breaks down rapidly under heavy use	Thick	Local slump basins, un- stable areas and steep slopes	Ripping and , blading		Moderat to high	e Steep	111
39	SHu	A-2-7(0)) Unsuite	d Unsuite	d Unsuite	d Unsuite to poor	d Breaks down rapidly under heavy use	Thin t thick	o Shallow soll and local ro outcrop		and	te Moderat	te Steep	п
41	SMu SC GMu	A-2-6(0)	ed Unsuit	ed Unsuite	d Poor	Breaks down rapidly under heavy use	Thin	Steep slope shallow soft and sloughing	ls, and	2211-11100-01	High	Steep	11 6
4		A-2-7(0) Unsuite 0)	ed Unsuit	ed Unsuite	d Poor	Breaks down rapidly under heavy use		to Sloughing	Ripping and blading	g	High	Moder	111
	3 SM	1.1		ed Unsuit	ed Unsuit	ed Poor	Breaks down rap(dly unde heavy use	Thin r	Steep slope shallow soi and sloughi	ls, and		High	Steep	in

Data, Soil Resource Inventory Report for complete engineering analysis of each landtype. Junitates surface soil. Indicates surface soil. Junitates subsoil. See Individual components for engineering classification (Appendix).

.

TABLE OF INTERPRETATIONS

ENG	INEE	RIN	16 T	ABL	E.

andtype No. 1/	Classif Uni- fied 4/	fications AASH0 <u>4</u> /	Suit- ability for Use as Topsoil Source	Suit abil of So for So and Gra Sou	ity ab oil of Sand a /or Pc vel	Soil a s a o ssible R Clay	Suit- bility f Bed- uck for Road Rock	Bed	tations of rock for ad Rock	Esti- mate of Road Rock Thick- ness	Co - Lo	nsideration for Road cation and unstruction	Method of Ex- cavation	D En Pot	tbank and itch osion ential I	Cutbank Slough- ing and Ravelling	Esti- mated Cut- slope Ratio	Prot abili of Cutbi Faili III	ity ank ure
45	SMu	A-2-7	Unsuited to suite	Unsu	ited U	nsuited f	001	11th brea rap	and sapro- c generally ks down idly under yy use	Thick	M S a	et areas.	Ripping and blading	Mod			to flat	and IV	and the second
46	GMu	A-1-5(0)	Unsuited	Unsi	uited U	Insuited	Insuited to poor	Bre und to	aks down er heavy use small round- gravels	Thin	a 5	nd shallow	Blasting and ripping	2		to high	Steep	II	Distant in
48	GMu	A-1-6(0)	Unsuited	Uns	wited (Unsuited	Unsuited to poor	und	aks down er heavy use small round- gravels	Thin		Steep slopes, shallow soils, and rock falls	ripping			Moderate to high		1	のの言語
50	SMu	A+2-7	Unsuite	d Uns	suited	Unsuited	Fair	(st of	canics-none, mall amounts Dothan sedi- nts may be termixed)	2010	to	Steep slopes, shallow soils, and rock falls	and		igh	High to moderate	Steep	1000	
51	SMU, SMd GP-GP GMd	A-4(0) A-2=7(0 Mu A-5-(2) A-1-6(0)	d Un	suited	Unsuited	Fair	Sebr	diments cak down pidly under avy use	Thi		Steep slopes, and shallow soils	Blastin and rippin	10	igh	Moderate to high		1	
52	SMU GMU	A-1-a(A-5(1) A-2-4(A-7-5()) Unsuit	ed Ur	nsutted	Unsuited	Poor	Sc 1	oft and sapro tic	- Thi	ck	Sloughing	Rippin and bladin		ligh	Moderate to low	Modera to ste		1
53	GMU SMu	A-2-7(A-2-5(A-2-7(0) 0) Unsuit 0)	ed Ur	nsuited	Unsuited	Fair	d	ediments bre own rapidly nder heavy u		in	Steep slopes, and shallow solls	Blasti and rippin	ng	High	High to moderate		to 1	
54	SC GMu	A-6(4) A-2-5(ed U	insuited	Unsuited	Poor	6	enerally sof nd saproliti	t Th c th	in to ick	Sloughing	Rippin and bladin		High	Moderate to low	noderi	te	
55	0L	A-5(4	Unsul to su	ted U ited	insu i ted	Unsuited locally suited	, Unsult	ed S	oft and sapr itic	o- Th	ick	Local slump basins, un- stable areas and sloughin	Bladi g	ng -	High	Moderat locally high	e, Moder		III and IV
61	sc	A-7-5	(7) Unsui	ted (Unsuited	Unsuite	i Poor		Schists bread down very rapidly unde heavy use	tì	hin to hick	Steep slopes and shallow soils	Rippi and bladi		High	High	Steep		111
62	SC SM GM		5	ted	Unsu i tei	d Unsuite locally suited	d, Poor		Soft and sap litic	ro- T	hick	Local slump basins, un- stable area and sloughi	Blad s, ng	ing	High	Kigh	Moder		HI loc ly
6	ML 5 5M	A-4(:	8) Unsu	ited	Unsuite	d Unsuite	d Fair poor	to	Interspersed areas of so		hin	Steep slope and shallow soils		ting	High	High	Stee	2	111
6	6M 7 SP			fted	Unsuite	d Unsuit	ed Fair poor	to	rock Intersperse areas of so	i 1 fter	Thin t thick			ting	Modera to hig	ate High gh	Stee		11
	i8 9	Ru A-2-	5(2) Suit	ed to	Unsuite	ed Unsuit	ed Unsu	ited	rock Weathered.	soft	Thick	None	and	oing ding	Moder to his	ate Modern gh	te Mode to 1	rate lat	11
		Mu A-1	unsi -6(0) Unsi		Unsuit	ed Unsuit	ed Poor unsu	to 1ted	Softer, pla rock inter- spersed		Thin	Steep diss ed slopes shallow so	ect- R1p and and	ping	High 9	High moder	to Ster ate	P	11

Consult Appendix - Engineering Test Data, Soil Resource Inventory Report for complete engineering analysis of each landtype.
 Indicates subsoil.
 See individual components for engineering classification (Appendix).

TABLE OF INTERPRETATIONS

ENGINEERING TABLE I

andtype No. 1/	Classi Uni- fied _4/	fications AASHO <u>4</u> /	Suit- ability for Use as Topsoil Source	Suit- ability of Soil for Sand and/or Gravel Source	Suit- ability of Soil as a Possible Clay Source	Suit- ability of Bed- Rock for Road Rock	Limitations of Bedrock for Road Rock	Esti- mate of Road Rock Thick- ness	Consideration for Road Location and Construction	Method of Ex- cavation	Cutbank and Ditch Erosion Potential	Suscept- ibility to Cutbank Slough- ing and Ravelling	Esti- mated Cut- slope	Prob- ability of Cutbank Failure
72	SMu	A-1-6(0)	Unsuited	Unsuited	Unswited	Unsuited	Meathered, soft	Thin to thick	None .	Ripping and blading	High	Moderate	Steep to moderate	ш
76	ML SMu GP-GMd GP-GMd	A-2-4(0) A-2-6(0) A-4-(0) A-1-6(0) A-2-5(0) A-2-5(0) A-1-9(0) A-4 A-1-9	Unsuited	Unsuited	Unsufted	Fair to good	Softer, platy rock inter- spersed	Thin	Steep slopes, shallow soils, and local out- cropping	and	High	High	Steep	II to III
77	MH ML	A-5(10) A-7-5(10) A-5(4) A-7-5(14)		Unsuited	Unsuited	Poor to fair	Softer, platy rock inter- spersed	Thin to thick	None	Blading and ripping	H1gh	High	Steep to moderate	II to III
81	SC SMu CL SMd	A-2-4 A-4(4) A-2-4(0) A-4(0)	Unsu í ted	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and local rock outcrops	and	High	Moderate	Steep	II to III
82	SC MH 2/ GM,GM- GC 3/	A-7-5(17) A-7-5(4) A-7-5(2) A-2-4(0) A-2-6(0) A-6(2) A-7-5(6) A-4 <u>2</u> / A-1, A-2 <u>3</u> /	Unsu I ted	Unsuited	Unsu1ted	Fair to good	None	Thin to thick	None	Blasting and ripping	Moderate to high	Moderate	Steep	II to III
83	мн	A-7-5(6)	Unsuited	Unsuffed	Unsuited, locally suited	Unsuited	Soft and sapro- litic	Thick	None	Ripping and blading	Moderate to high	Moderate to low	Moderate	II to III
86	SMu	A-5(1) A-4(2) A-6(2)	Unsuited	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and local rock outcropping	and	High	Moderate	Steep	II to III
87	SMu	A-5(1)	Unsuited	Unsuited	Unsuited	Fair to good	None	Thin	None	Blasting and ripping	High	Moderate	Steep	II to III
	GM 2/ SM 3/	A-1 2/ A-2 <u>3</u> /	Unsuited	Unsuited	Unsuited	Good	None .	Thin	Steep slopes, shallow soils, and local rock outcrops	and	High	Moderate to high	Steep	II to III
92	SMu	A-2-7(1)	Unsuited	Unsuited	Unsuited	Poor to unsuited	Most bedrock is soft and gran- ular (gruss)	Thin to thick	None	Blasting and ripping	High	Moderate to high	Steep	II to III
93			Unsuited	Unsuited	Unsuíted	Unsuited	Gruss	Thick		Blading and ripping	Nigh	Moderate	Moderate	II to III
	ML 2/ GM-GM. GM	A-4(2) A-1,A-2 <u>3</u> /	Unsuited	Unsuited	Unsuited	Poor to unsuited	Most bedrock is soft and gran- ular (gruss)	Thin	Steep slopes	Blasting and ripping	High	Moderate to high	Steep	11 to 111
	GMu	A-2-7(0)	Unsuited	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and local rock outcrops.	and	High	High	Steep	11 to 111
97	GMu	A-2-7(0)	Unsuited	Unsuited		Fair to poor	Most bedrock is too soft for road rock	Thin to thick		Blasting and ripping	High .	Moderate to high	Steep	II to III

Consult Appendix - Engineering Test Data, Soil Resource Inventory Report for complete engineering analysis of each landtype. Indicates surface soll. Indicates subsoil.

TABLE OF INTERPRETATIONS

ENGINEERING TABLE I

Landtype No. 1/	Classif Uni- fied <u>4</u> /	ications	ability	of Soil for Sand	as a	Suit- ability of Bed- Rock for Road Rock	Limitations of Bedrock for Road Rock	Rock	Location and	Method of Ex- cavation	Cutbank and Ditch Erosion Potential	Suscept- ibility to Cutbank Slough- ing and Ravelling	Cut- slope	Prob- ability of Cutbani Failure
98	GMu	A-2-7(0)	Unsuited	Unsuited	Unsuited		Soft and weathered	Thick	100 S	Blading and ripping	Hígh	Moderate	Moderate	11 to 111
99	SMd MH 3/	A-2,A-1 2/ A-4(0) A-7-5(9) <u>3</u> /	Unsuited	Unsuited	Unsuited	Fair to good	Soft and weathered in fractures	Thin		Blasting and ripping		Moderate to high	Steep	II to
100	ML.	A-5(4)	Unsuited to suited	Unsufted	Unsuited	Poor to unsuited	Soft and weathered	Thin to thick	Horre	Blading and ripping	Moderate to high	Moderate	Moderate	11
120	None	None	Unsuited	Unsuited	Unsuited	Fair	Poorly cemented	Very thin to thin	steep slopes	Blasting and ripping	Moderate	Moderate	Steep	II to III
121	SMu	A-2-6(0)	Unsuited	Unsuited	Unsuited	Fair	Soft and poorly cemented	Thin	and be seen to be	Ripping and blasting	Moderate	Low to moderate	Steep	II to III
122	SK-SMu	A-1-5(0)	Suited to unsuited	Unsuited	Unsuited	Poor .	Soft and poorly cemented	Thin to thick		Ripping and blading	Moderate	Low to moderate	Moderate to steep	
125	SMu	A-2-6(0)	Suited	Unsuited	Unsuited	Unsuited	Soft	Thick	Local wet spots may re- quire base course and ex- tra culverts	Blading	Moderate	Low to moderate	Flat to moderate	
176	SMu	A-2-7(0)	Unsuited	Unsuited	Unsuited	Poor to fair	Breakdown under heavy logging traffic	Thin	Steep slopes, shallow solls, and slide potential	Blasting and ripping	High	Moderate to high	Steep	11 to 111
177	GMu ML	A-1-5(0) A-5(2)	Unsuited	Unsuited	Unsuited	Poor to fair	Breaks down under heavy logging traffic	Thin to thick	None	Blasting and ripping	Moderate to high	Moderate to high	Moderate to steep	II to
178	SMd	A-1-6	Unsuited	Unsuited	Unsuited	Poor to fair	None	Thin	Steep slopes, shallow soils, some localized outcrop, and slide potential	and	High	High	Steep	II to III
186	SMu	A-5(1)	Unsuited	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and some localized outcropping	Blasting and ripping	High	Moderate to high	steep	11 to 111
191	CM SM	A-1,A-2	Unsuited	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and slide potential	Blasting and ripping	l High	Moderate to high	steep	11 to 111
192	SMu	A-2-7(1)) Unsuited	Unsuited	Unsuited	f Fair to good	Soft rock, locally	Thin to thick	None	Blasting and ripping	g High	Moderate to high	e Steep	
193	SMu	A-2-7(1) Suited	Unsuited	Unsuite	i Unsuited	Soft, sapro- litic	Thick	None	Ripping and blading	High	Moderati	e Moderat	III
194	м	A-4-(2)	Unsuited	d Unsuite	d Unsuite	d Good	None	Thin	Steep slopes, shallow soils and slide potential	Blastin , and ripping		High	Steep	11 tr 111

1/ Consult Appendix - Engineering Test Data. Soil Resource Inventory Report for complete engineering analysis of each landtype. 2/ Indicates surface soil. 3/ Indicates subsoil. 4/ See individual components for engineering classification (Appendix).

121

TABLE OF INTERPRETATIONS

ENGINEERING TABLE 1

Landtype No.]/	Classi Uni- fied <u>4</u> /	AASHO	Suit- ability for Use as Topsoil Source	Suit- ability of Soil for Sond and/or Gravel Source	Suit- ability of Soil as a Possible Clay Source	Suit- ability of Bed- Rock for Road Rock	Limitations of Bedrock for Road Rock	Esti- mate of Road Rock Thick- ness	Consideration for Road Location and Construction	Method of Ex- cavation	Cutbank and Ditch Erosion Potential	Suscept- 1bility to Cutbank Slough- ing and Ravelling	Esti- mated Cut- slope Ratio	Prob- ability of Cutbank Failure
196	GMu	A-2-7(0)	Unsuited	Unsuited	Unsuited	Good	None	Thin	Steep slopes, shallow soils, and slide potential	81asting and ripping	Hfgh	High	Steeep	II to III
197	GMU	A-2-7(0)	Unsuited	Unsuited	Unsuited	Fair to Poor	Most bedrock is too soft for road rock	Thin to thick	Some local unstable areas	Blasting and ripping	Moderate to high	Moderate to high	Steep	II to III

.....

1/ Consult Appendix - Engineering Test Data, Soil Resource Inventory Report for complete engineering analysis of each landtype. 3/ Indicates surface soil. 3/ See Individual components for engineering classification (Appendix).

TABLE OF INTERPRETATIONS

				Live					
ndtype No.	Suggestions	Failure Potential on Road Wastes and Fills	Erosion Potential on Road Wastes and Fills	Suit- ability of Road Waste and Fill Slope for Seeding	Limitations to Road Waste and Fill Slope Seeding	Suggestions for Road Waste and Fill Slope Seeding	Suit- ability of Cut- banks to Seeding	Limitations to Cutbank Seeding	Suggestions for Cutban Seeding
			N/A	N/A	Flooding	N/A	N/A	Flooding	K/A
0	M/M	N/A	N/A	N/A		N/A	N/A	Rock outcrop	A/A
1	AL A	High	22.02	N/A		N/A	N/A	Rock outcrop	N/A
2	17.6	High	N/A	N/A	hour of the off	N/A	N/A	Rock outcrop	N/A
3	N/A	High	N/A	N/A	serpentinitic influence				
4	Seed grass; drain off excess water; bench cutslopes; intercept and remove subsurface water; horizontal drains and retaining walls may be useful: plant brush or trees where applicable	High	High	Good	Eroston and slough	1/ Keep slopes vegetated; plantings of willow may be useful	Good	Erosion, slough, and frost heave	
5	Seed grass; drain off excess water; bench cutslopes; intercept and remove subsurface water; horizontal drains and retaining walls may be useful	High	Righ	Good to fair	Erosion, slough, and serpentin- itic influence	1/ Keep slopes vegetated; plantings of willow may be useful	Good to fair	frost heave, and serpentinitic in- fluence	1/2/
6	N/A	Low	Low	Good	High water table	Use willows for soil where it is too wet for grass	N/A	N/A -	N/A
1	R/A	Low to moderate	Moderate	Fair	Droughty soils, and short growing season	3/ 3/	Fair	Shallow, droughty soils, and rock out- crops	134
8,80	Seed grass; drain off excess water; bench cutslopes; intercept water; horizontal drains and retaining walls may be useful; plant brush or trees where applicable		High	Good	Erosion and slough]/ Keep slopes vegetated; planting; of willow may be useful		Erosion and slough	עצע
9,9c	Seed grass; drain off excess water; bench cutslopes; intercept and remove subsurfact water; horizontal drains and retaining walls may be useful; elant brush or trees		High	Good	Erosion and slough	1/ Keep slopes vegetated	Good	Erosion and slough	
10	where applicable N/A	Low	Low	Fair to poor	Droughty and stony serpentin- itic soils	1/ 4/ Repeated fer- tilization and lim may be required to establish seedling:	ing	Stony, droughty soils, and serpen- tinitic influence	Y Y Y
11	N/A	Low to	Moderat	e Fair	Droughty solls	<u></u> ⊻ 4∕	Fair	Droughty and gravel ly solls	
12	Andrea and A	moderat Low	Low	Fair t poor	 Droughty, stony, and serpentiniti soils 	1/ 2/ Repeated fer c tilization and lim may be required to establish seedling		Stony, droughty soil, and serpentin itic influence	
13	N/A	Low	Moderat	te Fair	Wet, cold soils; frost heaving; and gravelly soils		Fair	Frost heave, ravel erosion, and gravelly soils	
14	N/A	Modera	te High	Fair	Cold soils; fro: heaving; and gravelly soils	st <u>1/3/</u>	Fair	Frost heave, ravel erosion, and gravelly soils	. עש

NTERPRETATIONS
1

ENGINEERING TABLE II

andtype No.	Suggestions for Cutbank Stability Problems	Failure Potential on Road Wastes and Fills	on Road Wastes	Suit- ability of Road Waste and Fill Slope for Seeding	Limitations to Road Waste and Fill Slope Seeding	Suggestions for Road Waste and Fill Slope Seeding	Suit- ability of Cut- banks to Seeding	L1mitations to Cutbank Seeding	Suggestions for Cutbank Seeding
15	N/A	Low	Low	Good to fair	Gravelly and droughty soils	¥ 4/	Fair to good	Ravel and gravelly soils	У
16	Seed grass; local wet areas may require extra culverts or horizontal drains	Low to moderate	Moderate	Good to fair	Gravelly and droughty soils	<u> Y</u> <u>Y</u>	Good	Ravel and gravelly soils	У
17	Seed grass; drain off excess water; bench cutslopes; intercept and remove excess water; horizontal drains and retaining walls may be useful; plant brush or trees where applicable	High	High	Good	Erosion and slough	J/ Keep slopes vegetated; plantings of willow may be useful	Good	Erosion and slough	<u>1/ 2/</u>
18	Seed grass; local wet areas may require extra culverts or horizontal drains; plant brush or trees where applicable	Low to moderate	Moderate	Good to fair	Gravelly and droughty soils	¥ 4/	Good	Ravel and gravelly soils	У
19	Seed grass; local wet areas may require extra culverts or horizontal drains; plant brush or trees where applicable	Moderate	Moderate to high	Good	Gravelly soils	1/ Keep slopes vegetated; plantings of willow may be useful locally	Good	Ravel, slough, and gravelly solls	<u>)</u> /
21	Seed grass on soil portion	Moderate	High	Poor to fair	Gravelly and droughty areas	1/4/	Fair to poor	Ravel and gravelly areas	1/ 4/
22	Seed grass; plant brush or trees where applicable	Moderate	Moderate	Good to fair	None	У	Fair to good	None	У
26	Seed grass on soil portion	High	High -	Fair to poor	Gravelly and droughty soils	<u>V 4</u> /	Poor to fair	Gravelly, shallow, and droughty soils	1/ 4/
27	Seed grass	Moderate to low	High	Fair	Droughty soils	1/ 4/	Fair	Droughty soils	1/ 4/
28	Seed grass on soil portion	High	High		Droughty and nutrient poor solls	1/ 4/ Repeated fer- tilization may be required to establish seedlings	Poor	Gravelly, shallow, droughty soils	1/ 4/
29	Seed grass	Moderate to low	High	fair	Gravelly and droughty, nutrient poor soils	1/ 4/ Repeated fer- tilization may be required to establish seedlings	Poor to fair	Droughty soils	1/4/
31	Seed grass on soll portion only	Moderate	High		Droughty, gravelly, and serpentinitic soils	1/ 4/ Repeated fer- tilization and liming may be required to establish seedlings	Poor	Gravelly, droughty, serpentinitic soils	¥ 4∕
32	Seed grass		Low to moderate	fair	Droughty, gravelly, and serpentinitic soils	1/ 4/ Repeated fer- tilization and liming may be required to establish seedlings	Poor	Gravelly, droughty, serpentinitic soils	. <u>₩</u> 4/
34	Seed grass on soil portion only	Moderate to high	High		Droughty, pravelly, and serpentinitic soils		Poor	Gravelly, droughty, serpentinitic solls	1/ 4/
35	Seed grass on soil Portion only		Low to moderate		Droughty, pravelly, and perpentinitic colls	1/ 4/ Ropeated fer- tilization and liming may be required to establish seedlings	Poor	Gravelly, droughty, serpentinitic soils	1/ 4/

Y Seed grass, fertilize, and mulch. Y Prepare rough cutslopes to catch grass seeds and fertilizer. Y Use species adaptable to cold writer conditons. Use species adaptable to droughty soils.

Seed grass, fortlize, and mulch.
 Prepare rough cutsiopes to catch grass seeds and fortlizer.
 Use species adaptable to cold winter conditons.
 Use species adaptable to droughty soils.

123

TABLE OF INTERPRETATIONS

Landtype No.	Suggestions for Outbank	Failure Potential on Road Wastes and Fills	Erosion Potential on Road Wastes and Fills	Suit- ability of Road Waste and Fill Slope for Seeding	Limitations to Road Waste and Fill Slope Seeding	Suggestions for Road Waste and Fill	Suit- ability of Cut- banks to Seeding	Limitations to Cutbank Seeding	Suggestions for Cutbank Seeding
36	Seed grass on soil portion only	Moderate	High	Poor to fair	Cobbly, gravelly, serpentinitic, and ravelly soils		Poor të fair	Cobbly, gravelly and serpentinitic soils	<pre>1/ 4/ (May want to seed with grass that is adapted to serpentinitic conditions)</pre>
37	Seed grass	Moderate to high	Moderate	Poor to fair	Cobbly, gravelly, and serpentinitic soils	<pre>1/ (May want to seed with grass that occurs naturally on serpentine)</pre>	Poor to fair	Cobbly, gravelly and serpentinitic soils	1/ (May want to seed with grass that is adapted to serpentinitic conditions)
38	Seed grass	Moderate to high	High	Poor to fair	Cobbly, gravelly, and serpentinitic solls	<pre>1/ 4/ (Nay want to seed with grass that occurs naturally on serpentine)</pre>	Poor to fair	Cobbly, gravelly and serpentinitic solls	<pre>1/ 4/ (May want to seed with grass that is adapted to serpentinitie conditions)</pre>
39	Seed grass	Moderate	Moderate	Poor to fair	Gravelly, cobbly, and serpentinitic soils	<pre>]/ 4/ (May want to seed with grass that occurs naturally on serpentine)</pre>	Poor to fair	Cobbly, gravelly and serpentinitic soils	1/ 4/ (May want to seed with grass that is adapted to serpentinitie conditions)
41	Seed grass on soll	Moderate to high	High	Poor	Gravelly and droughty solls	1/ 4/	Poor	Gravelly and droughty sofls	<u>V</u> 4/
42	portion only Seed grass; plant brush or trees where applicable	Moderate	High	Poor to fair	Gravelly soils	У	Poor to fair	Gravelly soils	У
43	Send grass on soil portion only	Moderate to high	High	Poor	Gravelly and droughty soils	3/ 4/	Poor	Gravelly and droughty soils	¥ 4/
45	Seed grass; local wet areas may require extra culverts or horizontal drains; plant brush or trees where applicable	Moderate	Moderate	Fair to good	None	У	Fair to good	None	У
46	Seod grass	High	High	Poor	Gravelly, droughty, and nutrient poor soils	1/ 1/	Poor	Gravelly, droughty, and mutrient poor soils	<u>V</u> 4
48	Seed grass	High	High	Poor	Gravelly, droughty, and nutrient poor solls	¥ ¥	Poor	Gravelly, droughty, and nutrient poor soils	y 4
50	Seed grass on soil portion only	High	High	Fair to poor	Gravelly and droughty solls	<pre>1/ 4/ Keep slopes vegetated</pre>	Poor to fair	Gravelly, shallow, and droughty soils	¥¥
51	Seed grass on soil portion only	High	High	Fair	Gravelly and droughty soils	1/ 4/ Keep slopes vegetated	Fair to poor	Gravelly, shallow, and droughty soils	1/4/
52	Seed grass; plant brush or trees where applicable	Moderate	High	Good	Erosion and slough	1/ Keep slopes vegetated	Good	Erosion and slough	
53	Seed grass on soll portion only	High	High	Poor to fair	Gravelly, droughty, and nutrient poor soils	1/ 4/ Repeated fer- tilization may be required to establis seedlings	Poor h	Gravelly, shallow, and droughty soils	עע
54	Seed grass	Moderate	, Xigh	Fair	Gravelly, droughty, and nutrient poor soils	1/ 4/ Repeated fer- tilization may be be required to estal lish seedlings	Fair to poor	Gravelly and droughty soils	1/ 1/

_						and the second				
	55	Seed grass; local wet areas may require extra culverts or horizontal drains; plant brush or trees where applicable	Moderate to high	High	Good	Erosion and slough	<u>1</u> / Keep slopes vegetated; plantings of willow may be necessary locally	Good	Erosion and slough	<u>V</u> 2/
	61	Seed grass on soil portion only .	High	High	Fair to good	Eroston and slough	1/ Keep slopes vegetated	Fair to good	Shallow soils, erosion, and slough	1/2/
	62	Seed grass; plant brush or trees where applicable	High	High	Good	Erosion and slough	<pre>1/ Keep slopes vegetated</pre>	Good	Erosion and slough	<u>V</u> 2/
	66	Seed grass on soil portfon only	Moderate to high	High	Poor	Gravelly and droughty soils]/ Keep slopes vegetated	Poor	Gravelly and droughty soils	1/4/
	67	Seed grass on soil portion only; plant brush or trees where applicable	Moderate to high	High	Poor to Fair	Gravelly and droughty soils	<u>1/ 4/ Keep slopes</u> vegetated	Poor to fair	Gravelly and droughty soils	¥¥
	68	Seed grass; plant brush or trees where applicable	Moderate	Moderate	Fair to good	None	У	Fair to good	None	У
	71	Seed grass on soil portion only	High	High	Fair	Gravelly and droughty solls	1/ 4/ Keep slopes vegetated	Fair to poor	Gravelly, shallow, and droughty soils	<u>1</u> / <u>4</u> /
	72	Seed grass; plant brush or trees where applicable	Moderate to low	High	Good to fair	Erosion, slough, and gravelly soils	<u>1</u> /	Fair to good	Gravelly soils	У
	76	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and nutrient poor sofls	<u>1/ 4/ Keep slopes</u> vegetated	Poor	Gravelly, droughty, and nutrient poor soils	¥¥
	77	Seed grass; plant brush or trees where applicable	Moderate to high	High	Poor to fair	Gravelly and droughty soils	<u>]/ 4</u> / Keep slopes vegetated	Poor	Gravelly and droughty soils	¥4
	81	Seed grass on soil portion only	Moderate to high	High	Fair	Gravelly and droughty soils	1/ 4/ Keep slopes vegetated	Poor to fair	Shallow, gravelly, and droughty soils	1/4/
	82	Seed grass; plant brush or trees where applicable	Moderate to high	Hfgh	Fair to good	Slough and gravelly soils	<pre>]/ Keep slopes vogetated</pre>	Fair	Gravelly soils	У
	83	Seed grass; plant brush or trees where applicable	Moderate	Moderate	Good	Slough	<u>1</u> /	Good	Slough	У
	86	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and nutrient poor soils	<u>1/ 4/</u> Keep slopes vegetated	Poor	Gravelly, droughty, and nutrient poor soils	<u>¥</u>
	87	Seed grass on soil portion only; plant brush or trees where applicable	Moderate to high	High	Poor	Gravelly and droughty soils	1/ 4/ Keep slopes vegetated	Poor	Gravelly and droughty soils	¥ ¥
	91	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and highly erosive solls	1/4/ Keep slopes vegetated	Poor	Shallow, gravelly, droughty, and highly erosive sofls	1/ 4/
	92	Soud grass; plant brush or trees where applicable	Moderate to high	High	Fair to poor	Gravelly, droughty, and highly erosive soils	1/ 4/ Keep slopes vegetated	Poor to fair	Gravelly, droughty and highly erosive soils	1/4/
	93	Seed grass; plant brush or trees where applicable	Moderate	High	Fair to good	Slough and highly erosive soils	1/	Fair	Highly erosive soils	V

TABLE OF INTERPRETATIONS

ENGINEERING TABLE II

Suit-ability of Cut-banks to Seeding

Limitations to Cutbank Seeding

Suggestions for Cutbank Seeding

Suggestions for Road Waste and Fill Slope Seeding

Suit-ability of Road Maste Limitations and Fill to Road Slope for Maste and Fill Seeding Slope Seeding

Failure Erosion Potential Potential on Road on Road Wastes Wastes and Fills and Fills

Suggestions for Cutbank Stability Problems

Landtype No.

Seed grass, fertilize, and mulch.
 Prepare rough outslopes to catch grass seeds and fertilizer.
 Use species adaptable to cold winter conditions.
 Use species adaptable to droughty soils.

Seed grass, fertilize, and mulch. Prepare rough cutslopes to catch grass seeds and fertilizer. Use species adaptable to cold winter conditons. Use species adaptable to droughty soils. 1/2/3/4/

TABLE OF INTERPRETATIONS

ENGINEERING TABLE LL

Landtype No.	Suggestions for Cutbank Stability Problems	Failure Potential on Road Nastes and Fills	Erosion Potential on Road Wastes and Fills	Suit- ability of Road Waste and Fill Slope for Seeding	Limitations to Road Waste and Fill Slope Seeding	Suggestions for Road Waste and Fill	Suit- ability of Cut- banks to Seeding	Limitations to Cutbank Seeding	Suggestions for Cutbank Seeding
95	Seed grass on soil portion only	Moderate to high	High	Poor to fair	Gravelly, droughty, and highly erosive soils	1/ 4/ Keep slopes vegetated	Poor	Shallow, gravelly, droughty, and highly erosive soils	V 4/
96	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Keep slopes vegetated	Poor	Shallow, gravelly, droughty, and erosive soils	עע
97	Seed grass; plant brush or trees where applicable	Moderate	High	Fair	Gravelly, droughty, and erosive sofls	1/ 4/ Keep slopes vegetated	Fair to poor	Gravelly, droughty, and erosive soils	IJ \$J
98	Seed grass; plant brush or trees where applicable	Moderate	Moderate	Fair to good	Erosion and slough	Ŋ	Good to fair	Erosive solls	У
99	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Keep slopes vegetated	Poor	Gravelly, droughty, and erosive soils	<u>у</u> д
100	Seed grass	Moderate	Moderate	Fair	Erosion and slough	1/	Fair to good	Erosive soils	У
120	Seed grass on soll portion only	Moderate to high	Moderate to high	Poor	Gravelly, droughty, and nutrient poor soils]/ Repeated fortili- zation may be required to establish seedlings		Gravelly and droughty soils	¥ 4
121	Seed grass; plant brush or trees where applicable	Moderate	Moderate to high	Fair	Droughtiness	1/ Keep slopes vegetated	Fair	Droughtiness	У У
122	Seed grass; plant brush or trees where applicable	Moderate to low	Moderate to high	Good	None	1/ Keep slopes vegetated	Good	Droughtiness	У
125	Local met areas may require horizontal drains or extra culverts; plant brush or trees where applicable	Low	Low	Good	None	У	Good	Droughtiness	У
176	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	<u>]/ 4</u> / Keep slopes vegetated	Poor	Gravelly, droughty, and erosive soils	у У
177	Seed grass; plant brush or trees where applicable	Moderate	High	Poor to fair	Gravelly and erosive soils	1/ 4/ Keep slopes vegetated	Poor to fair	Gravelly and erosive solls	ע ע
178	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Repeated fer- tillzation may be required to establis seedlings	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Repeate fertilization may be neces- sary to estab lish seedling
186	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Keep slopes vegetated	Poor	Gravelly, droughty, and erosive soils	¥¥
191	Seed grass on soil portion only	Moderate to high	Kigh	Poor	Gravelly, droughty, and highly erosive soils	1/ 4/ Keep slopes vegetated	Poor	Gravelly, droughty, and erosive soils	
192	Seed grass; plant brush or trees where applicable	Moderate	Hfgh	Poor	Gravelly, droughty, and highly erosive soils	$\frac{1}{1}$ $\frac{4}{4}$ Keep slopes vegetated	Pour	Gravelly, droughty, and erosive soils	¥¥
193	Seed grass	Moderate	High	Fair to good	Erosion and slough	Ľ	Fair to good	Droughtiness	У

127

/ Seed grass, fortilize, and m	wich.
--------------------------------	-------

Seed grass, fortilize, and muich.
 Prepare rough cutslopes to catch grass seeds and fertilizer.
 Use species adaptable to cold winter conditons.
 Use species adaptable to droughty solls.

TABLE OF INTERPRETATIONS

ENGINEERING TABLE II

Landtype No.	Suggestions for Cutbank Stability Problems	Failure Potential on Road Wastes and Fills	Erosion Potential on Road Wastes and Fills	Suit- ability of Road Waste and Fill Slope for Seeding	Limitations to Road Waste and Fill Slope Seeding	Suggestions for Road Waste and Fill Slope Seeding	Suit- ability of Cut- banks to Seeding	Limitations to Cutbank Seeding	Suggestions for Cutbank Seeding
194	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and highly erosive soils	<u>1/ 4/</u> Repeated fer- tilization may be required to establish seedlings	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Repeated fertilization may be neces- sary to estab- lish seedlings
196	Seed grass on soil portion only	Moderate to high	High	Poor	Gravelly, droughty, and erosive soils	1/ 4/ Repeated fer- tilization may be required to establish seedlings	Poor	Gravelly and droughty soils	1/ 4/
197	Seed grass; plant brush or trees where applicable	Moderate to high	Moderate	Fair to poor	Cobbly, often droughty solls	1/ Keep slopes veg- etated	Poor to fair	Gravelly, often droughty solls	1/

V Seed grass, fertilize, and mulch. V Prepare rough cutslopes to catch grass seeds and fertilizer. V Use species adaptable to cold winter conditons. V Use species adaptable to droughty soils.

Erosion and Hydrology

Erosion and some hydrologic interpretations include erosion and water management interpretations. Interpretations for erosion include the two major kinds of erosion--surface and mass movement. Surface erosion pertains only to surface soil loss by runoff and overland flow. Mass movement pertains to all types of soil and bedrock movement which occur below the soil surface, such as landslips, slumps, slides, rockfall, and landflow.

Natural Stability

This rating is based on the relative stability of the landtype units as they occur in the natural state. This includes any movement or loss other than surface erosion. Kind of movement includes slumps, slides, and all kinds of deep-seated failures. This rating applies throughout Region 6.

- I. <u>Stable</u> occasional failures.
- II. Moderately stable several failures are observed.
- III. Moderately unstable common failures are observed.
- IV. Unstable many failures are observed.
- V. <u>Very unstable</u> entire area shows evidence of recent and past failures.

Nature of Mass Movement

This is an estimation of the kind and/or size of mass movement observed.

Expected Mass Movement as a Result of Man's Activities

This rating indicates the expected mass movement resulting from man's activities as compared to stability under natural conditions. Ratings are based on soil and bedrock characteristics, slopes, revegetation potential, and effects of timber removal, road construction, and fire.

 $\underline{\text{Unchanged}}$ - the expected mass movement is relatively unchanged from that of the natural state.

Increased - the expected mass movement is greater than that of the natural state.

 $\underline{\mbox{Greatly increased}}$ - the expected mass movement is much greater than that of the natural state.

Surface Soil Erosion Potential

This rating is based on expected losses of surface soil when all vegetative cover, including litter, is removed. Evaluations of climate, slope gradient and length, soil characteristics, hydrologic characteristics of the soil, and bedrock materials of each landtype unit are considered in making ratings.

- I. <u>Very slight</u> little loss of surface soil material is expected. Less than 50 cubic feet per acre per year.
- II. <u>Slight</u> little loss of soil materials is expected. Some minor sheet and rill erosion may occur. 50 to 100 cubic feet per acre per year.
- III. <u>Moderate</u> some loss of surface soil materials can be expected. Rill erosion and some small gullies or sheet erosion may be occurring. Sheet erosion can be determined by some soil pedestals and observable accumulation of soil materials along the upslope edge of rocks and debris. At this level of erosion there is a possible fertility loss. 100 to 300 cubic feet per acre per year.

- IV. Severe considerable loss of surface soil materials can be expected. Rill erosion, numerous small gullies, or evidence that considerable loss from sheet erosion may occur. Sheet erosion is indicated by frequent occurrence of soil pedestals and considerable accumulation of soil materials along the upslope edge of rocks and debris. This is accompanied by a probable fertility loss. 300 to
- V. Very severe large loss of surface soil material can be expected in the form of many large gullies and/or numerous small gullies or large loss from sheet erosion. Sheet erosion loss is exhibited by numerous examples of soil pedestals and extensive accumulation of soil materials along the upslope edge of rocks and debris. This is accompanied by a fertility loss. Greater than 600 cubic feet per acre per

Grass Seeding Requirements for Timber Harvest Units 1/

 \underline{Low} - this rating indicates that grass seeding is usually not necessary.

Moderate - this rating indicates that grass seeding may be required when the surface Titter Tayer is removed from the soil by either logging activities or slash burning.

High - This rating indicates that grass seeding will be required to maintain soil productivity and water quality when the surface litter layer is removed by logging activities or slash burning, and may be required when the litter layer is still intact because of the high erosion hazard of the area.

Subsoil Erosion Potential

This interpretation indicates the potential for subsoil erosion by water for each unit. It includes erosion which takes place after the surface soil has been removed (at least to 12inch depth) such as in skid trails and firebreaks. Factors considered in making ratings are texture and structure of subsoil materials, slope, permeability, compaction, climate, and

Low - factors are such that little or no erosion may occur. Very little evidence of

Moderate - considerable erosion occurring such as rills and small gullies. Factors indicate considerable erosion is likely to occur.

High - factors indicate severe erosion may occur.

Suggestions for Controlling Subsoil Erosion

In this column suggestions are given, when applicable for controlling erosion.

Water Yield Class

This interpretation is an indication of the rate and amount of water yield expected from each soil. It is based on factors such as soil characteristics, infiltration rates, permeability, slope, climate, vegetation, and drainage patterns.

Class I - These soils have a high water detention storage capacity and a low rate of runoff. Little water is yielded to peak flows until detention storage capacity is exceeded or unless the soils are initially saturated or frozen. They are important in sustaining high base flow due to a relatively large volume of water held in detention

 $\underline{\text{Class II}}$ - These soils have a moderate water detention storage capacity and a moderate rate of runoff. Water contributes to both peak flows and base flow.

 $\underline{1}/$ Grass seeding requirement based on extent of slash burning and whether or not surface litter layer is burned off or not.

Group A - Soils having high infiltration rates even when thoroughly wetted, consisting Group D - Soils having very slow infiltration rates when thoroughly wetted, consisting Silt and Clay Sediment Yield Potential This interpretation indicates the potential for water sedimendation and pollution from silt and clay particles carried in suspension following timber harvest, road construction, or other activities. Factors considered in making ratings are soil texture and structure,

water. The water transmission rate is tow unless the storage capacity is exceeded. Rocks in this class include sandstones because of their texture, fracture, and bedding characteristics, and basalts where water occurs in large tubes and other cavities or in Class II - This indicates that the bedrock has a moderate capacity to store water. The rate of water transmission is moderate. Rocks in this class are generally hard to rate or water transmission is moderate. Nucks in this class are generally naru to moderately hard, moderately fine-textured, and moderately to highly fractured silt-<u>Class III</u> - This indicates that the bedrock has a relatively low capacity to store water. The rate of water transmission is rapid. Rocks generally in this class are fractured coarse crystalline rocks such as granite, gabbro, and gneiss, and other hard-

Class III - These soils have a low water detention storage capacity and a high rate of

runoff. The storage capacity is low and easily exceeded with most of the water con-

This interpretation indicates the relative capacity of bedrock to store and transmit water.

<u>Class I</u> - This indicates that the bedrock has a relatively high capacity to store water. The water transmission rate is low unless the storage capacity is exceeded.

The rating is based on bedrock kind, texture, type and extent of fracturing, frequency of

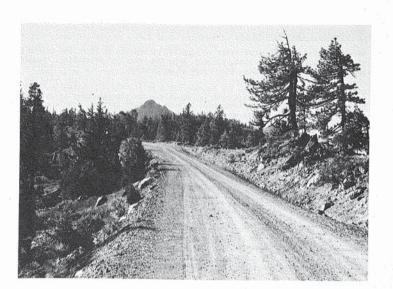
tributing to peak flow. Little water is yielded to sustain base flow.

jointing, bedding characteristics, and degree of weathering.

Class IV - This indicates that the bedrock has both low storage capacity and low rate of water transmission. Rocks in this class are generally highly weathered, fine tex-

Hydrologic Group

This interpretation is a grouping of soils into four classes, indicating the general infil-tration and water movement ability of the soil and bedrock materials. This method of ratings has been developed by the Soil Conservation Service. The four groups are the


Bedrock Hydrologic Characteristics

chiefly of deep, well to excessively drained sands and/or gravel. These soils have a high rate of water transmission and would result in a low runoff potential.

Group B - Soils have moderate infiltration rates when thoroughly wetted, consisting chiefly of moderately deep to deep, moderately well to well drained soils, with moderately fine to moderately coarse textures. These soils have a moderate rate of water

Group C - Soils having slow infiltration rates when thoroughly wetted, consisting chiefly of 1) soils with a layer that impedes the downward movement of water, or 2) soils with moderately fine to fine texture and a slow infiltration rate. These soils

chiefly of 1) clay soils with high swelling potential, 2) soils with a high permanent water table, 3) soils with claypan or clay layer at or near the surface, and 4) shallow soils over nearly impervious materials. These soils have a very slow rate of water

High Potential for Sediment Yield

Impacts of Sedimentation Upon the Fisheries

Impact of sediment yield on fisheries is extremely difficult to evaluate because it is highly dependent upon the following:

 Time of occurrence - should streambed sedimentation occur when fish spawn is in the gravel, the eggs can be killed by lack of intra-gravel water movement and reduction of dissolved oxygen levels.

2. <u>Quantity</u> - even a small amount of sediment can be lethal to salmonid fish spawn, especially if it occurs at lower flows when velocity is insufficient to carry sediment out of the gravel.

3. <u>Impacts upon aquatic insect life</u> - aquatic insects provide the major source of food for juvenile salmon, steelhead, and resident trout. Many species of aquatic insects have a much higher dissolved oxygen requirement than fish and are destroyed by sedimentation and resulting dissolved oxygen depletion.

4. <u>Carrying capacity</u> - sediment often fills in rearing pools, thus reducing fish carrying capacity of stream environment.

5. Emergence - sedimentation can prevent juvenile salmonids from emerging from gravel.

The above items are only a few of the adverse impacts of sedimentation. Soil particle size is not the only criteria for evaluating impacts of sedimentation upon aquatic life.

Low - Sedimentation levels of silt and clay particles are not expected to be significant following management activities. Soils are generally moderately coarse-textured.

<u>Moderate</u> - Sedimentation levels of silt and clay particles may be significantly increased following management activities with moderate loss of water quality and damage to fisheries. Soils are generally medium-textured.

High - Sedimentation levels of silt and clay particles are expected to be high following management activities. Streams become turbid and there is considerable loss of water quality and damage to fisheries. Soils are generally fine to moderately finetextured.

Expected Sediment Size

This interpretation indicates the expected sediment size reaching the streams resulting from erosion of each unit. This interpretation is a statement of the two dominant separates expected (gravel, sand, silt, or clay) from each soil unit. The ratings are presented in two columns. The first column indicates the separates expected from the surface soils, and the second indicates the separate expected from the subsoils.

EROSION AND HYDROLOGY - E

					EROSI	ON AND HYL	ROLOGY						
andtype No.	Natural Stability	Nature of Mass Movement 1/	Expecter Mass Movemeni as a Result of Man's Activitie	t Surface t Soil Erosion	Tinber		Sug- ges- tion for Con- trol ing Sub- soil Ero- sion	V	d acter		Sedi- mentatio Yield Potentia		Sediment Size Subsoil
0	Stable	N/A	Unchanged	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1	Stable	Rock falls and debris slides	Unchanged	N/A	N/A	N/A	N/A	N/A	11 and 111	N/A	N/A	N/A	N/A
2	Stable	Rock falls and debris slides	Unchanged	N/A	N/A	N/A	N/A	N/A	I, II and III	, N/A	N/A	N/A	N/A
3	Stable	Rock falls and debris slides	Unchanged	N/A	N/A	N/A	N/A	N/A	I and	N/A	N/A	N/A	N/A
4	Unstable (locally very unstable)	Slumps	Increased (Tocally greatly increased	to severe	Moderate to high	Moderate to high	<u>2/</u>	1	ĮΫ	D	Moderate to high	Gravel, silt, and clay	Gravel, silt, and clay
5	Unstable to very unstable	Slumps and channel scour	Increased to greatly increased	Severe	Righ	Moderate to high	2/	1	IV	D	Moderate to high	Gravel, silt, and clay	Gravel, silt, and clay
6	Stable	N/A	Unchanged	\$1fght to moderate	N/A	Low	2/	1 •	III and IV	0	Moderate to high	Sand and silt	SITE
7	Moderately stable	Debris slides	Increased	Very severe to severe	N/A	High	<u>2/</u>	III	ш	В		Gravel, sand, and silt	Gravel, sand, and silt
	Unstable to very unstable	Slumps, land flows, and channel scour	Increased to greatly increased	Severe to to very severe	High	High	<u>y</u>	I	t٧	D	High	Gravel, silt, and clay	Gravel, silt, and clay
3c	Very unstable to unstable	Land flows, slumps, and channel scour	Greatly increased	Very severe to severe	High	High	2/	1	IV	D	Kigh	Gravel, silt, and clay	Gravel, silt, and clay
9	Unstable to very unstable	Slumps, debris slides, and channel scour	Increased to greatly increased	severe to	High	High	<u>2</u> /	I and []	IV .	D	High	Gravel, silt, and clay	Gravel, silt, and clay
	Very unstable to unstable	Slumps, debris slides, and channel scour	Greatly increased	Very severe	High	High	2/	I and II	IV	D		Gravel, silt, and clay	Gravel, silt, and clay
	Stable to moderately stable	Creek bank ravel	Unchanged	Moderate	Moderate	Moderate	2/	1	N/A	A	Moderate	Gravel, sand, silt and clay	Gravel, silt, and clay
	Moderately instable	Debris slides	Increased	Moderate to severe	Moderate to high	Moderate to high	2/	п	N/A	A	Moderate	Gravel, sand, and sfit	Gravel, sand, and silt
:	itable to moderately itable	Occasional small slumps	Unchanged	Moderate	Moderate	Moderate	2/	I	N/A	A		Silt and clay	10000000
	doderately stable	Occasional deep seated slumps	Unchanged	Slight to moderate		Low to moderate	2/	11	N/A		Low	Gravel, sand, and silt	Gravel, sand, and silt
1	oderately table to oderately instable	Occasional small debris slides and channel scour	Increased	Severe	High	Moderate to high	2/	п		8	Low	Gravel, sand, and silt	Gravel, sand, and silt
1	oderately table	Creek bank ravel	Unchanged	Moderate	Moderate	Moderate	2/	r	N/A ' J		Moderate (Gravel, sand. and silt	Gravel, sand,
5	oderately table to oderately hstable	Debrts stides		Moderate I to severe	Moderate to high	Moderate	2/	I and II	N/A J			Gravel, sand, and silt	silt, and clay Gravel, sand, and silt

17 These definitions are from Highway Research Roard, <u>Landslides and Engineering Practice</u>, Special Report #28, Washington, D.C. 1958. Water bars: prevent water concentration; revegetate barren areas; consider mulch of May, straw, or chips. 37 Greas seeding requirements based on extent of slash burning and whether or not surface litter layer is burned off.

EROSION AND HYDROLOGY

TABLE OF INTERPRETATIONS

EROSION AND HYDROLOGY

and type No.	Natural Stability	Nature of	Expected Mass Movement as a Result of Man's Activities		Timber Harvest	Sub- soil Ero- ion Poten- tial		Water			Sedi- mentation Yield Potential	<u>Expected S</u> Surface Soll	ediment Size Subsoil	Land type No.	Natural Stability	Nature of Mass Movement	Expected Mass Movement as a Result of Man's Activities	Soil	Grass Seeding Require- ment for Timber Harvest Units <u>3</u> /	Sub- soil Ero- ion Poten- tial	Sug- ges- tions for Con- trol- ling Sub- soil Ero- sion	Water Yield	acter	Hydro- - logic	Sedi- mentation Yield Potential	Expected Surface Soil	Sediment Size Subsoll
17	Very unstable	Slumps, debris	Greatly increased	Severe		High	2/	1	N/A	D	High	Gravel, sand, and silt	Gravel, silt, and clay	39	Moderately stable	Occasional slumps	Unchanged to increased	Moderate	Moderate	Moderate	2/	11	111	c	Moderate to high	Gravel, silt, and clay	Gravel, silt, and clay
18	Moderately unstable	channel scour Debris slides and occasional channel scour	Increased	Moderate to severe	Moderate to high	Moderate	2/	п	N/A			and silt	Gravel, sand, and silt	41	Moderately stable to moderately unstable	Debris slides and occasional slumps	Increased	Severe	High	High	2/	11	11	c	Moderate	Gravel, sand, and silt	Gravel, silt, and clay
19	Moderately unstable to unstable	Contraction and the second	Increased	Moderate to severe	Moderate to high	Moderate to high	2/	11	n/A	B and D	to high	Gravel, sand, and silt	and clay	42	Moderately stable to moderately unstable	Occasional debris slides and slumps	Increased	Moderate	Moderate	Moderate	3/	п	п	8	Moderate to high	Sand, silt, and clay	Silt and clay
21	Moderately stable	Occasional debris slides	Unchanged to increased	Severe	Moderate to high	Moderate	2/	п	II and III	В		Gravel, sand, and silt	and clay	43	Moderately stable	Debris slides and occasional slumps	Increased	Severe to very severe	High	High	2/	II to III	п	c	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
22	Moderately stable to	Small slumps	Unchanged to Increased	Moderate	Moderate	Moderate	2/	I and II	and III	c	Moderate	Sand, silt, and clay	Gravel, silt and clay	45	Moderately unstable	Slumps	Increased	Slight to moderate	Low	Low	<u>2/</u>	1	I and []	В	Moderate to high	Sand, silt, and clay	Silt and clay
26	moderately unstable Moderately stable	Occasional debris slide	Increased	Severe to very severe	High	High	<u>3</u> /	ш	111	C and D	Moderate	Sand and silt	Sand and sil	46	Moderately stable to moderately unstable	Debris slides, channel scour- ing, and occa- sional slump	Increased	Severe to very severe	lligh	High	2/	111	t11	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
27	Moderately	and channel scour Occasional debris slides	Increased	Moderate, locally	High	Moderat to high	n <u>2</u> /	II	111	в	Moderato to low	Sand and sill	: Sand and sil	48	Moderately stable to moderately unstable	Debris slides, channel scour- ing, and occa- sional slumps	Increased	Severe to very severe	High	High	<u>2</u> /	111	111	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
28	stable Moderately stable	Occasional debris slides and channel	Increased	severe Very severe to severe	High	High	2/	ш	111	C and D	Moderate	Sand and silt	t Sand and sil	50	Moderately stable	Occasional debris slides and channel scour	Increased	Severe	High	High	2/	111	п	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
29	Moderately stable	scour Occasional debris slides	Increased	Moderate to sever		Moderat to high		п	m	В	Moderati to low	e Sand and sil		51	Moderately stable to moderately	Debris slides and channel scour	Increased	Severe	High	Hîgh	2/	ш	п	D		Gravel, sand, and silt	Gravel, sand. silt and clay
31	Moderately stable	Occasional debris slides	Increased	Severe to moderate) High	Moderat to high	e <u>2</u> /	111	II and III	D	High	and clay	. Gravel, silt and clay	52	unstable Moderately unstable to	Small slumps	Increased	Moderate	Moderate	Moderate	2/	11	ll and	с	Moderate	Sand and silt	Sand, silt, a
32	Moderately stable to moderately	Slumps	Increased	Moderate	Moderate	e Moderat	te <u>2</u> /	п	111	C	High	Silt and cla	y Silt and cl	53	moderately stable Moderately	Occasional	Increased	Severe	High	High	2/	ш		D	Moderate	Gravel, cand	Gravel, sand,
34	Moderately stable to	Debris slides	Increased	Severe	High	High	2/	111	II and III	0	High	Gravel, silt and clay	Gravel. sil		stable	debris slides and channel scour									to high	and silt	and silt
	moderately unstable	scour Occasional	Unchanged	1 Moderate	Moderat	e Modera	te 2/	111	II and	D	Moderat	e Sand and si	It Silt and cl	54	Moderately stable to moderately unstable	Small slumps	Increased	Moderate	Moderate	Moderate	2/	п	11	c	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
35	Moderately stable	debris slides		d Severe	High	Severe		11	111 111	с	High	Gravel, sil	t, Gravel, sil and clay	55	Moderately unstable (locally	Slumps and channel scour- ing	Increased	Moderate	Moderate	Moderate	<u>2</u> /	I	14	D	High to moderate	Sand, silt, and clay	Sand, silt, an clay
36	Moderately stable to moderately unstable	debris slides and slunps												ଗ	unstable) Moderately	Debris slides,	Increased	Severe	Kigh	High	2/	111	11	8 and	Moderate	Sand and silt	Sand and silt
37	Moderately stable to locally	Debris slides and slumps	Increase	d Severe	High	Seven	2/	11	ш	c	High	Gravel, sil and clay	and clay	57	Moderately	channel scour- ing, and small slumps					2		j.	C	to high		
. 38	unstable Moderately unstable	Debris slides channel scour and occasiona	91	d Severe	High	Seven	<u>2/</u>	п	III	B ar C	nd High	Gravel, sil and clay	t, Gravel, sil and clay	66	unstable to unstable Moderately	Slumps and channel scour Debris slides		Moderate. locally severe Severe	0.075			п		C	noderate	Sand and silt	
		and occasiona slumps tions are from His prevent water conc							a Shac	1al Rep	ort #28.)	lashington, D.C.	1958.	-	stable	and channel scouring	Increased	SEVERE	nign	HIGH	4	111	m	D		Gravel, sand. and silt	Gravel, sand and silt

135

.

1/ These definitions are from Highway Research Doard, Landslides and Engineering Practice, Special Report #28, Washington, D.C. 1958. Water bars; prevent water concentration; revegetate barrem areas; consider mulch of hay, straw, or chips. J Grass seeding requirements based on extent of slash burning and whether or not surface litter layer is burned off.

EROSION AND HYDROLOGY

Landtype No.	Natural Stability	Nature of Mass.Movement 1/	Expected Mass Movement as a Result of Man's Activities	Surface Soil Erosion Potential	Grass Seeding Require- ment for Timber Harvest Units <u>3</u> /	Sub- so11 Ero- ion Poten-	Sug- ges- tions for Con- trol- ling Sub- soil Ero- sion	Water Yield Class	Bed- rock Hydro- logic Char- acter- istics	logic	Sedi- mentation Yield Potential	Expected Se Surface Soil	diment Size Subsoll
67	Moderately stable to moderately unstable	Debris slides and slumps	Increased	Moderate	High to	Moderate	3/	п	ш	B and C	Moderate to high	Sand, silt, and clay	Silt and clay
68	Moderately stable to moderately unstable	Slumps	Increased	Slight to moderate	Low	Low	2/	I and II	111	8	to high	Silt and clay	
71	Moderately stable	Occasional debris slides and channel scour	Increased	Severe	High	High	2/	111	11	C and D	Moderate	Sand and silt	
72	Moderately stable to moderately unstable	STumps	Increased	Moderate	Moderate	Moderate	2/	п	u	В	Moderate	Sand and silt	Sand, silt and clay
76	Moderately stable	Occasional debris slides and channel scours	Increased	Severe	High	High	2/	111	II to III	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
77	Moderately stable to moderately unstable	Slumps	Increased	Moderate	High	Moderate	2/	п	11 to 111	B and C	Moderate	Gravel, sand, and silt	Sand, silt, and clay
81	Moderately stable	Occasional debris slides and channel scour	Increased	Severe	High	High	2/	111	I and II	B and C	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
82	Moderately unstable to moderately stable	Slumps, occasional debris slides, and channel scour	Increased	Moderate	Moderate to high	Moderate	2/	п	1 and 11	B and C	to high		
83	Moderately unstable	\$1umps	Increased	Slight to moderate	Low to moderate	Low to moderate	2/	1	I and II	B and C	Moderate	Sand and silt	
86	Moderately stable	Occasional debris slides and channel scouring	Increased	Severe	High	High	2/	ш	ti1	C and D	Moderate	and silt	
87	Moderately stable to moderately unstable	Slumps	Increased	Moderate	High	Moderate	<u>2</u> /	11	ш	B and C	Moderate to high	Gravel, silt, and clay	
91	Moderately stable	Occasional debris slides and channel scour	Increased	Very severe	High	High	2/	ш	ш	C and D	Noderate	sand	Gravel and sand
92	Moderately stable	Occasional debris slides and channel scouring	Increased	l Severe	High	High	2/	11	111	8	Moderate to high		Sand, silt, and clay
93	Moderately stable to moderately unstable	Stumps	Increased	1 Moderate	Moderati to high	a Moderati	: <u>2</u> /	I	ш	A and B	i Moderate	e Sand and silt	Sand, silt, and clay

These definitions are from Highway Research Board, <u>Landslides and Engineering Practice</u>, Special Report #28, Washington, D.C. 1958.
 Water bars: prevent water concentration; revegetate barren areas; consider mulch of hay, straw, or chips.
 Grass seeding requirements based on extent of slash burning and whether or not surface litter layer is burned off.

TABLE OF INTERPRETATIONS

EROSION AND HYDROLOGY

Landtype No.	Natural Stability	Nature of Mass Movement]/	Expected Mass Movement as a Result of Man's Activities	Surface Soil Erosion Potential	Grass Seeding Require- ment for Timber Harvest Units 3/	Sub- soll Ero- ion Poten- tial	Sug- ges- tions for Con- trol- ling Sub- soll Ero- sion	Water Yield Class	Bed- rock Hydro logic Char- acter- istic		Sedi- mentation Yield Potential		Sediment Size Subsoll
95	Moderately stable to moderately unstable	Debris slides, channel scour, and occasional slumps	Increased	Very severe	High	High	2/	11	111	A and 8	High to moderate	Gravel, sand, and silt	Gravel, sand, silt, and clay
96	Moderately stable	Occasional debris slides and channel scour	Increased	Very severe	High	Hfgh	2/	ш	ш	D	Moderate to high	Gravel, sand, and silt	Gravel, sand, and silt
97	Moderately stable	Occasional debris slides and channel scour	Increased	Severe to moderate	High	High to moderate	2/	п	111	8	Moderate to high	Gravel, sand, and silt	Gravel, sand, silt, and clay
98	Moderately stable to moderately unstable	Slumps	Increased	Moderate	Moderate to high	Moderate	<u>2</u> /	1	ш	A and B	Moderate	Sand and silt	Sand, silt, and clay
99	Moderately stable to moderately unstable	Debris slides, channel scour, and slumps	Increased	Severe to very sovere	High	High	<u>2</u> /	11	ш	8	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
100	Moderately stable to moderately unstable	Slumps	Increased	Moderate	Moderate	Moderate	2/	I and II	111	В	Moderate	Sand and silt	Sand, silt, and clay
120	Moderately stable	Debris slides, channel scour, and occasional slumps	Increased	Very severe	High	High	2/	111	I	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
121	Moderately stable	Debris slides and occasional slumps	Increased	Severe	High	High	2/	п	ı	B and C	Moderate	Sand and silt	Sand and silt
122	Moderately stable to moderately unstable	\$1umps	Increased	Moderate	Low to moderate	Moderate	2/	I and II	I	8	Moderate	Sand, silt, and clay	Sand, silt, and clay
125	Moderately stable	Occasional slumps	Usually unchanged	51ight -	Low	Low	<u>2/</u>	ı	I	в	Moderate	Sand, silt, and clay	Sand, silt, and clay
176	Moderately unstable to locally unstable	Channel scour- ing, debris slides, and slumps	Increased	Severe to very severe	High	High	2/	ш	II to III	C and D		Gravel, sand, and silt	Gravel, sand, and silt
177	Moderately stable to moderately unstable	Slumps	Increased	Moderate to severe	Moderate to high	Moderate	2/	11	II to III	8		Gravel, sand, silt, and clay	Gravel, sand, silt, and clay
178	Moderately stable to moderately unstable	Channel scour- ing, debris slides, and slumps	Increased	Severe to very severe	High	High	<u>2/</u>	ш	11 to 111	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt
185	Hoderately stable	Occasional channel scour- ing, debris slides and slumps	Increased	Severe	Klgh	High	2/	111	III	C and D		Gravel, sand, and silt	Gravel, sand, and silt
191	Moderately stable to moderately unstable	and the second se	Increased	Very severe	High	H1gh	<u>2/</u>	ш	111	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt

U These definitions are from Highway Research Board, <u>Landslides and Engineering Practice</u>, Special Report #28, Washington, D.C. 1958. Water bars: prevent water concentration; revegetabe barren areas; consider mulch of hay, straw, or chips. U Grass seeding requirements based on extant of slash burning and whether or not surface litter layer is burned off.

EROSION AND HYDROLOGY

Landtype No.	Natural Stability	Nature of Mass Movement <u>J</u> /	Expected Mass Movement a Result of Man's Activities	Surface Soil Erosion Potential	Grass Seeding Require- ment for Timber Harvest Units <u>3</u> /	Sub- soil Ero- ion Poten- tial	Sug- ges- tions for Con- trol- ling Sub- soil Ero- sion	Water Yield Class	Bed- rock Hydro- logic Char- acter- istics		Yield	Expected 5 Surface Soil	ediment Size Subsoil
192	Moderately stable to moderately unstable	Channel scour- ing and debris slides	Increased	Severe	High	Xigh	<u>3</u> /	п	111	B	Moderate	Sand, silt, and clay	Sand, silt, and clay
193	Moderately stable	Occasional slumps	Unchanged to increased	Moderate	Moderate	Moderate	2/	I and II	ш	в	Moderate	Gravel, sand, and silt	Sand, silt, and and silt
194	Moderately stable to moderately unstable	Channel scour- ing and debris slides	Increased	Very severe	High	High	2/	ш	ш	C and D	Moderate	Gravel, sand, and silt	Gravel, sand, and silt .
196	Moderately stable to moderately unstable	Debris slides and channel scour	Increased	Very severe	High	High	<u>2</u>]	ш	111	D	Moderate to high	Gravel, sand, and silt	Gravel, sand, and silt
197	Moderately unstable to moderately stable	Slumps and debris slides	Increased	Moderate to severe	Moderate to high	Moderate to high	2/	п	111	B	Moderate to high	Gravel, sand, and silt	Gravel, silt, and clay

These definitions are from Highway Research Board, <u>Landslides and Engineering Practice</u>, Special Report #28, Washington, D.C. 1958. Water bars; prevent water concentration; revegetate barren areas; consider mulch of huy, straw, or chips. Grass seeding requirements based on extend of slash burring and whether or not surfice litter layer is burrend off.

Range and Wildlife

Range and wildlife management interpretations are presented to enable better management through utilization of soil information. These interpretations are oriented toward use by domestic livestock, deer, and elk.

Limitations for Domestic Livestock and Wildlife Use

This interpretation indicates the major topographic and site limitations existing on the landtype unit that would hinder use by domestic livestock and wildlife. Some examples include: steep slopes, rocky slopes, cliffs, high elevations, and winter availability. Forage, or the potential for estabilishing good forage, is not considered in this interpretation.

Susceptibility to Soil Compaction

This interpretation indicates the soil's inherent ability to resist compaction by hoofed animals. Soil properties important to this interpretation are: soil texture, structure, bulk density, pore size, and distribution and rate of infiltration.

 \underline{Low} - Soil properties indicate that the soil will resist compaction by livestock and wildlife use.

<u>Moderate</u> - Soil properties indicate that the soil has tendencies to become compacted under livestock and wildlife use. Time of grazing on these soil units is important.

<u>High</u> - Soil properties indicate that soil compaction will be severe unless livestock use is withheld until the soils have dried adequately.

Susceptibility to Soil Displacement

This interpretation indicates the general susceptibility of the soil to be displaced by livestock grazing and wildlife browsing. Soil displacement is the downslope movement of the soil.

Animal trampling causes loosening of soil particles which are moved downslope by gravity, wind, and water. Displacement is based on soil texture, slope, and field observations.

 $\underline{\text{Low}}$ - Soil displacement is likely to be insignificant. Slopes are usually less than 35 percent.

Moderate - Soil displacement occurs. Lateral displacement less than three feet on slopes.

 $\frac{\text{High}}{\text{three}}$ - 35 to 60 percent soil displacement is severe. Lateral displacement greater than three feet on slopes that exceed 60 percent.

Limitations for Wildlife Use

This interpretation indicates the major topographic and site limitations existing on the landtype unit that would hinder use by wildlife.

Key Species

Key species refers to wildlife to be managed and the major browse and cover plants supported by soils of the area. A dash indicates that a great variety of conditions occur.

Wildlife Habitat Considerations

This includes important considerations for wildlife habitat, for example, critical winter range, rodent infestation problems, and tree plantation damage.

RANGE AND WILDLIFE MANAGEMENT

	Limitations for Domestic	Suscep- tibility to Soil	to Soil		Key Species			
No.	Livestock and Wildlife Use	Compact- ion 1/	Displace- ment 2/	Wildlife	Browse	Cover	Uildlife Habitat Considerations	Remarks
0	Gravelly, stony areas	LOW	Low	Black-tailed deer and elk	W111ow			Deer and elk watering areas
1,2,3	Steep rocky cliffs	Low	High (where soil exists)	Black-tailed deer and elk		Douglas-fir, Shasta red fir, Jeffrey pine, incense-cedar	High rodent populations in soil areas included within rock outcrop units	Deer and elk feed in open brushfields, particularly brushfield on the serpentinitic rock outcrop (unit 3). Cover is on adjacent forested soils
4	Steep headwall areas	High	Low to high	Black-tailed deer	Medgeleaf ceanothus, deer- brush ceanothus, snowbrush ceanothus, serviceberry, tralling blackberry, grasses, sedges, and legumes	Douglas-fir, ponderosa pine, incense-cedar	Critical winter range	Deer and elk feed on open southerly aspects Cover is on slump benches and in drainage ways
5	Steep headwall areas	High	Low to high	Black-tailed deer and olk	Wedgeleaf ceanothus, silk- tassel, serviceberry, grasses, and sedges	Douglas-fir, Jeffrey pine, Incense-cedar	Plantation browsing	Deer and elk feed on open southerly aspects Cover is on slump benches and in drainage ways
6	None	High	Low	Black-tailed deer	Serviceberry, elderberry, willow, grasses, legumes, and sedges	Meadow	High rodent populations	Deer and elk feed in open brushfields and meadows. Cover is on adjacent forested soils
7	None	Moderate	Moderate	Black-tailed deer	Serviceberry, elderberry, snowbrush ceanothus, wostern bitter cherry, grasses, legumes, and sedges	Meadow	High rodent populations	Deer and elk feed in open brushfields and meadows. Cover is on adjacent forested soil:
8,8c, 9,9c	Steep headwall areas	High	Law to high	Black-tailed deer and elk	Trailing blackberry, elder- berry, blueblossom ceano- thus, grasses, sedges, and legumes	Douglas-fir, hemlock, Port- Orford-cedar, tanoak, madrone, Oregon myrtle, western red- cedar, rhado- dendron, red alder, chinka- pin, evergreen huckleberry <u>3</u> /	Plantation browsing	Cover is on slump basi and in drainage ways
10,12	None	Low to moderate		Black-tailed deer	Wedgeleaf ceanothus, silk tassel, serviceberry, grasses, and sedges	Douglas-fir, Jeffrey pine, incense-cedar	Critical winter range	Deer and elk feed in open stock common to these serpentinitic areas
11	None	Low		Black-tailed deer	thorn ceanothus, service-	Douglas-fir, incense-cedar, madrone, tanoak	Critical winter range	Deer and elk feed on open southerly aspects
13,14	High elevation	Low	Low to moderate	Black-tailed deer and elk		Shasta red fir, white flr		Deer and elk feed in openings on south slope
	None	Low		Black-tailed deer and elk	whitethorn ceanothus, trailing blackberry, snow- brush ceanothus, redstem	Douglas-fir, incense-cedar, madrone, tanoak, chinkapin, red alder <u>3</u> /		Deer and elk feed in openings
16,18	None	Low		Black-tailed deer and elk		Douglas-fir, madrone, tanoak	plantation browsing	Deer and elk feed in openings and use these streamside areas ex- tensively for cover
		100						

1/ Soil compaction by wildlife is much less than that caused by livestock or that resulting from man's activities. 2/ Soil displacement by livestock and wildlife is much less than that resulting from man's activities. 3/ Red alder, being a deciduous tree, is generally valuable to wildlife as summer cover only.

1.000

RANGE AND WILDLIFE MANAGEMENT

TABLE OF INTERPRETATIONS

RANGE AND WILDLIFE MANAGEMENT

			0	and the state of the					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Constraint and the second s	
	Limitations for Domestic	Suscep- tibility to Soil	tibility to Soil		Key Species		Wildlife Habitat		Landtwo	Limitations for Domestic Livestock an	to Soi	y tibilit to Soi	y 1	Key Species			
andtype No.	Livestock and Wildlife Use	Compact- ion _1/	Displace- ment 2/	Wildlife	Browse	Cover	Considerations	Remarks	No.	Wildlife Use	ion 1/	= U1sp/ac ment 2/	e- Wildlife	Browse	Cover	- Wildlife Habitat Considerations	Remarks
17,19	None	Moderate	Moderate	Black-tailed deer and elk	Blueblossom ceanothus, trailing blackberry, salal, grasses, sedges, and legumes	Douglas-fir, Port-Orford- cedar, western red cedar, western hemlock, Oregon myrtle, chinkapin, tanoak, madrone, red alder, rhododendron, evergreen huckleberry <u>3</u> /		Deer and elk feed in openings and use these streamside areas ex- tensively for cover	61, 121, 176,186, 191,196		modera t	e	deer and eli	Blueblossom ceanothus, tralling blackberry, salal, grasses, sedges, and legume	Douglas-fir, western red s cedar, Port- Orford-cedar, western hemlock Oregon syrtle, chinkapin, tanoak, madrome rod alder, rhododendron, evergreen huckleberry 3/		Deer and elk feed in openings and seek cover in draws and thickets on side slopes
86,76, 86	Steep slopes	Low	High	Black-tailed deer and elk	Whitethorn ceanothus, blueblossom ceanothus, snowbrush ceanothus, red- stem ceanothus, legumes, grasses, and sedges	madrone, tanoak		Deer and elk feed in openings on south slopes and use cover on morth slopes and in drainage ways	42,52,62 122,177, 192,193, 197	, None	Moderate to high	e Low to moderate	Black-tailed deer and el)	Blueblossom ceanothus, tralling blackberry, salal, grasses, sedgos, and legumes	Douglas-fir, Port-Orford- cedar, western hemlock, western red cedar, Oregon myrtle.	Plantation browsing	Deer and elk feed in openings and seek cover in draws and lower slopes or wherever thickets exist
22,67,68, 77,87	None		Moderate to low	Black-tailed deer and elk	Whitethorn ceanothus, blueblossom ceanothus, snowbrush ceanothus, red- stem ceanothus, legumes, grasses, and sedges	madrone, tanoak	Critical winter range, plantation browsing	openings on south slopes							chinkapin, tanoak, madrone, red alder, rhododendron, evergreen huckleberry 3/		
26	Steep slopes	Low	High		Blueblossom ceanothus, salal, grasses, legumes, and sedges	Douglas-fir, western hemlock, Port-Orford- cedar, western red cedar, chin- kapin, madrone, tanoak		Deer and elk feed in openings, seek cover in thickets	53,120, 178,194	. Steep slopes, rocky areas		High	deer and elk	Blueblossom ceanothus, salal, grasses, sodges, and legumes	Douglas-fir, chinkapin, tanoak, madrone, rhododendron	in openings common to	Deer and elk browse in the many openings found on these landtypes and seed cover on adjacent north slope areas
27	None	Low	Low to moderate		Blueblossom ceanothus, trailing blackberry, salal, grasses, and legumes	Douglas-fir, western hemlock, Port-Orford- cedar, western red cedar, chin- kapin, Oregon myrtle, madrone, tanoak	- - 2: - 6:	Deer and elk feed in openings, seed cover in thickets	45,65, 125	None	High	Low to moderate	Black-tailed deer and elk	Blueblossem ceanothus, trailing blackberry, salal, grasses, sedges, and legumes	western hemlock, Port-Orford- cedar, western red cedar, Oregon myrtle, chinkapin, tanoak, madrone, red alder,		Good deer and elk cover areas. Some browsing in limited openings
28	Steep slopes	Low	High	Black-tailed deer and elk	Blueblossom ceanothus (locally), salal, grasses, and sedges	Douglas-fir, chinkapin, madrone, tanoak	High rodent populations in openings	s Deer and elk feed in numerous natural open- ings	54	None	Low				rhododendron, evergreen huckleberry 3/		
29	None	Low	Low to moderate	Black-tailed deer	Blueblossom ceanothus (locally), salal, grasses, and sedges	Douglas-fir, chinkapin, madrone, tanoak	High rodent population in openings	numerous natural open- ings		inone.	LUN	moderate	deer and elk	Salal, grasses and sedges	Douglas-fir, chinkapin, tanoak, madrone, rhododendron	High rodent populations in openings common to area	the openings found on this landtype and seek cover on adjacent north
31,34	Water availa- bility	Low	Moderate to high	Black-tailed deer	Wedgeleaf ceanothus, silk- tassel, grasses, and sedges	Jeffrey pine, incense-cedar	Critical winter range	Deer feed in open stands common to these serpen- tinitic areas	п	Steep slopes	Low to moderate	High	Black-tailed deer	Whitethorn ceanothus, blueblossom ceanothus,	Douglas-fir, madrone, tanoak	Critical winter range	slope areas Deer browse in openings, particularly on south
32,35	Water availa- bility	Moderate to low	Low	Black-tailed deer	Wedgeleaf ceanothus, silk- tassel, grasses, and sedges	Jeffrey pine, incense-cedar, Douglas-fir	Critical winter range	Deer feed in open stands common to these serpen- tinitic areas	72	None	Moderate	Low to	Black-tailed	snowbrush ceanothus, grasses, and sedges Whitethorn ceanothus,	Douglas-fir,	Critical winter range	slopes Deer browse in openings,
36,38	None	Moderate to low	Moderate to high	Black-tailed deer and elb	Blueblossom ceanothus, silk tassel, grasses, and sedges	- Douglas-fir, Port-Orford- cedar, incense- cedar	Plantation browsing	Deer feed in open stands connon to these serpen- tinitic areas			to high	moderate	deer	blueblossom ceanothus, snowbrush ceanothus, red stem ceanothus, legumes, grasses, and sedges	medrone, tanoak	er render annet range	particularly on south slopes
37,39	None	Moderate	e Low	Black-tailed deer and eli	1 Blueblossom ceanothus, silk c tassel, grasses, and sedges	cedar, incense-	Plantation browsing	Deer feed in open stands common to these serpen- tinitic areas	81	Steep slopes	Low	High	81ack-tailed deer	Whitethorn ceanothus, snowbrush ceanothus, grasses, and sedges	Douglas-fir, madrone, tanoak		Deer browse in openings, particularly on south slopes
						cedar			82,83	None	High	Low to moderate	Black-tailed deer		Douglas-fir, madrone, tanoak		Doer browse in openings, particularly on south slopes

V Soil compaction by wildlife is much less than that caused by livestock or that resulting from man's activities. Soil displacement by livestock and wildlife is much less than that resulting from man's activities. Were alder, being a deciduous tree, is generally valuable to wildlife as summer cover only.

 $\frac{1}{2}$ Soil compaction by wildlife is much less than that caused by livestock or that resulting from man's activities. $\frac{3}{2}$ Soil displacement by livestock and wildlife is much less than that resulting from man's activities. $\frac{3}{2}$ Red alder, being a decludous tree, is generally willushe to wildlife as summer over only.

RANGE AND WILDLIFE MANAGEMENT

	Limitations	Suscep- tibility	Suscep- tibility to Soll		Key Species		Wildlife Habitat	
Landtype No.	for Donestic Livestock and Wildlife Use	to Soil Compact- ion 1/	Displace- ment 2/	Wildlife	Browse	Cover	Considerations	Renarks
91,95,96	Steep slopes, extremely erosive soils		High	Black-tailed deer	Whitethron ceanothus, blueblossom ceanothus, snowbrush ceanothus, legumes, sedges, and grasses	Douglas-fir, madrone, tanoak	Critical winter range	Deer browse in openings, particularly on south slopes
92,92,97 98	, None	Moderate	Low to moderate	Black-tailed deer	Whitethorn ceanothus, blueblossom ceanothus, redstam ceanothus, snowbrush ceanothus, legumes, grasses, and sedges	Douglas-fir, madrone, tanoak	Critical winter range	Deer browse in openings
99	Steep slopes, rocky areas	Low	Kigh	Black-tailed deer and elk	Whitethorn ceanothus.	Douglas-fir, madrone, tanoak	Critical winter range	Deer browse in the many openings common to this landtype
100	None	Moderate	LOW	Black-tailed deer and elk	Whitethorn ceanothus.	Douglas-fir, Shasta red fir, white fir, tanoak	Plantation browsing in summer months	Deer browse in opening:

Soil compaction by wildlife is much less than that caused by livestock or that resulting from man's activities. Soil displacement by livestock and wildlife is much less than that resulting from man's activities. Red alder, being a deciduous tree, is generally valuable to wildlife as summer cover only.

Recreation

High Suitability for Dispersed Camping

Interpretations for recreation pertain primarily to recreation development. They are based on soil and bedrock properties, drainage, landform, and vegetation. Factors such as aesthetics and accessibility are not considered when making these ratings. The following interpretations are some most generally needed for planning recreation developments.

Landtype Suitability for Recreation Area Development

This rating is based on soil and bedrock characteristics and topographic features of each unit as related to recreation development such as campground and picnic sites. Factors important to this interpretation are soil depth, texture, structure, permeability, drainage, topography, and susceptibility to flooding.

Unsuited - this rating indicates that soils and/or topography are of a nature which would prohibit recreation development without extensive modification.

Low - These soil units have major limitations to recreation development, but limited development is feasible.

Moderate - This rating indicates that the soil unit is generally suitable for recreation development, but has minor limitations.

High - These soils are particularly well suited for recreation development. Generally, they have no limitations.

Landtype Limitations for Recreation Development

This indicates the major soil limitations to recreation development.

Treatment to Increase Suitability

This indicates, when applicable, the treatment necessary to increase the suitability for recreation development.

Soil and Site Damage Susceptibility

This interpretation applies to recreational areas after development. Each soil that is suitable or can be made suitable for campground development is rated for its susceptibility to damage of soil and/or site by normal recreation use. Site includes vegetation as well as soil conditions. Factors used in determining ratings include erosion potential, soil compactibility, and vegetative growth potential.

Low - These soils resist compaction and have low erosion potential. The native vegetation is hardy and not readily destroyed. These soils will withstand and hold up well under continual use.

Moderate - These soils are not readily compacted or eroded and vegetative types are somewhat hardy. In general, these soils and site can sustain continual use but require some rehabilitation.

High - These soils are fragile and easily damaged and have vegetation that is not hardy, and generally herbaceous. Under normal use, the vegetation will very likely be destroyed, the soil compacted and/or eroded to such a degree that periodic nonuse and major rehabilitation will be required.

Susceptibility to Dustiness

This interpretation pertains only to the soils suitable for recreation development, and applies primarily to unsurfaced roads within recreation areas.

Low - Factors indicate dust will not be a problem.

Moderate - Under normal conditions dust will not be a problem, but under heavy use and droughty conditions dust very likely will be a problem.

High - Factors indicate dust will be a problem. Dust abatement measures are necessary under normal conditions and use.

Susceptibility to Muddiness

This interpretation pertains only to the soils suitable, or those that can be made suitable, for recreation development. This interpretation rates each soil as to its susceptibility to becoming muddy. The rating is limited to the surface soil under normal conditions. Factors include soil characteristics, climate, and drainage.

Low - Muddiness is not likely to be a problem. Factors indicate soils are not susceptible to muddiness.

Moderate - Soils become muddy at times for short periods, occasionally causing problems. Road rock is usually necessary.

High - Soils are very likely to become muddy and stay muddy for long periods. Road rock is necessary. Campground closure may be necessary during wet periods.

Trail Suitability

This interpretation indicates the suitability of each soil for trails. Factors include soil and bedrock characteristics, drainage, climate, and slope.

Poor - These soils have properties which severely limit their use for trails. Extensive treatment measures are required.

Moderate - These soils have some limitations for trail development. Certain treatment measures may be required.

Well - These soils have no limitations for trail development.

Limitation for Trails

This indicates the limitations for trails.

Consideration for Trail Improvements

This indicates some treatment measures to be considered in improving suitability and protecting trails.

Suitability for Sewage Filter Field

This interpretation evaluates the soil as to its suitability as a sewage filter field. Ratings are based on soil depth, texture, permeability, drainage, and slope. Only those soils suitable for recreation development are rated. Onsite investigation is recommended before design or installation of filter systems.

Poor - These soils have properties which make them poorly suited as sewage filter fields. Sewage filter disposal in these soils would be ineffective and create major problems.

Moderate - These soils have properties which limit their use as sewage filter field. They require a large filter area for adequate drainage, which limits the capacity of the campground.

Well - These soils are well suited to sewage filter use and offer only minor limitations, if any.

Soil Limitation to Sewage Filter Field Use

This indicates the major limitations to sewage filter field use.

	EATI	

Landtype No.	Landtype Suit- ability for Recreation Area Develop- ment	n Landtype Limitations for Recreation Development	Suggester Treatment to Increase Suit- ability	i Soil and Site Damage Suscep- tHbility	tibility to Busti-	Suscep tibility to Muddi- ness		Limitations for Trails	Considerations for Trail Improvements	Suit- ability for Sewage Filter Field	Soil Limitation for Sewage Filter Field Use
0	Unsuited	Flooding hazard	N/A	N/A	N/A	N/A	Poor	Flooding hazard	N/A	N/A	N/A
1,2,3	Unsuited	Steep, rocky slopes	N/A	N/A	N/A	N/A	Poor	Steep, rocky slopes: cliffs	N/A	N/A	N/A
4	Low to Unsuited	Unstable soils, wet areas, muddiness, un- suited filter field charac- teristics	N/A	Noderate	Moderate	High	Poor	Unstable soils, muddiness, soil erosion, wet areas	Surface trails, drain wet areas, water bar; puncheons	Poor	Restricted filte field drainage, fine-textured soils, unstable soils
5	Unsuited	Unstable soils, wet areas, un- suited filter field charac- teristics, muddi- ness	N/A	N/A	N/A	N/A	Poor	Unstable soils, muddiness, soil erosion, wet areas	Frequent water bars, surface trails, drain wet areas, puncheons	N/A	N/A
5	Unsuited	High water table, muddiness	Drainage	High	Low	High	Poor to moderate	Muddiness, high water table	Use puncheons, build up sub- grade, drain wet areas	Poor	High water table
7	Moderate to low	Some steep slopes, shallow soils	N/A	Moderate to high	Moderate, locally high	Low	Moderate locally poor	Soil erosion, coarse-textured soils	Water bar	Poor to moderate	Shallow soils, steep slopes
8	Low to Unsuited	Unstable soils, wet areas, muddi- ness, unsuited filter field characteristics	N/A	Moderate	Moderate	High	Poor	Unstable soils, muddiness, soil erosion, wet areas	Surface trails, drain wet areas, water bar, puncheons	Poor	Restricted filte field drainage, fine-textured soils, unstable soils
8c	Unsuited	Unstable soils, wet areas, un- suited filter field character- istics, muddiness	N/A	n/a	n/A	N/A	Poor	Unstable soils, muddiness, soil erosion, wet areas	Frequent water bars, surface trails, drain wet areas, puncheons	N/A	N/A
9		Unstable soils, wet areas, muddi- ness, unsuited filter field characteristics	N/A	Moderate	Moderate	High	Poor	Unstable soils, muddiness, soil erosion, wet areas	Surface trails, drain wet areas, water bar, puncheons	Poor	Restricted filter field drainage, fine-textured soils, unstable soils
90		Unstable soils, wet areas, un- suited filter field character- istics, muddi- ness	N/A	n/A	N/A	N/A	Poor	Unstable soils, muddiness, soil erosion, wet areas	Frequent water bars, surface trails, drain wet areas, puncheons	N/A	N/A
	noderate	Possible local flooding		Moderate	Moderate	Moderate	Moderate	Local flooding and muddiness	N/A	Moderate to poor	Close proximity to streams, local excessive drain- age/flooding, Tocal fine- textured soils
	unsuited :	Steep slopes	N/A 1	Moderate	Moderate	LOW	Well to moderate	Steep slope, trail erosion	Water bars	Poor to moderate	Steep slopes
			Drain J wet i areas	loderate to low	Low	Low ,	Well	N/A .	Mater bars	Moderate to poor	Coarse-textured soils, excessive drainage, local wet areas, com- pacted till layer at 36 inches ±
	Insuited s to low	Steep slopes	N/A N	foderate	Low	Low	Well	Steep slopes, trail erosion	Water bars		Steep slopes, compacted till layer at 60 inches ±, coarse- textured soils, excessive drainage
15 ;	1	Possible local Nooding or high mater table	N/A M	oderate 1	Low I	Law	We11	N/A	N/A	Moderate	Close proximity to streams, local excessive drainage/flooding

[4] Martine David Strandson and State State and State State and State State and State State and State State and S

그 것은 정말 것 같아요. 가지 않는 것은 것을 하는 것 같아?

a final and the second second

RECREA			

TABLE

RECREATION

Landtype No.	Landtype Suit- ability for Recreation Area Develop- ment	Landtype Limitations for Recreation	Suggested Treatment to Increase Sult- ability	Site 1 Danage	Suscep- tibility to Dusti- ness	Suscep- tibility to Muddi- ness	Trail Suit- ability	Limitations for Trails	Considerations for Trail	Suit- ability for Sewage Filter Field	Soil Limitations for Sewage Filter Field Use	Landtype No.	nent	n La Limita Rec Deve
16	Unsuited to low	Steep slopes	N/A	Moderate	Low	Moderate	Well	Steep slopes, local muddiness, trail erosion	Water bars	Poor to moderate	Steep slopes, locally coarse- textured soils	43	Unsuited Moderate	shallow
17	Unsuited	Unstable soils, wet areas, un- suited filter	n/A	n/A	N/A	N/A	Poor	Unstable soils, muddiness, soil erosion, wet areas	Frequent water bars, surface trails, drain wet areas, puncheons	N/A	N/A	46	to high Unsuited	Steep s shallow
18	Uncultad	field character- istics, muddiness Steep slopes	N/A	Moderate	Low	Moderate	Well	Steep slopes.	Water bars	Poor to moderate	Steep slopes, locally coarse-	48	Unsuited	shallo
18	to low	Steep stopes	121046					local muddiness, trail erosion	the second states of the secon		textured solls Local wet areas,	50		shallow
19	Unsuited to low	Steep slopes, local wet spots	Drain wet areas	Moderate	Low	Moderate to high	Well to moderate	Steep slopes, local wet areas	Water bars, drain wet spots, use puncheons	2001	local coarse- textured soils, steep slopes	51	Unsuited Moderate	Steep s shallow Muddine
21	Unsuited	Steep slopes	N/A	N/A	N/A	N/A	Poor	Steep slope shallow soils	Water bars	N/A	N/A			compact
22	Moderate	Some unfavorable topographic positions	Design to fit to- pography	o Moderate	Moderate to high	Moderate	Moderate	Dustiness, soil erosion, and compaction	Water bars	Moderate	Restricted drain- age and fine- textured soils	53	Unsuited	Steep s shallow
25	Unsuited	Steep slopes, shallow solls	N/A	N/A	N/A	n/A	Moderate	Steep slopes, shallow solls	Water bars	N/A	N/A	54	Moderate	Dustine compact locally
27	Moderate		N/A	Moderate	High	Moderate to low	Moderate	Erosion hazard, dustiness	Water bars	Moderate	Generally relatively coarse-textured soils	55	Unsuited to low	
28	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Moderate	Steep slopes, shallow soils	Water bars	N/A	N/A .			ness, p charact
29	Low to moderate	Poor filter field characteristics	N/A	High	High	Low to moderate	Moderate	Erosion hazard, dustiness	Water bars	Moderate to poor	Generally coarse-textured soils	61	Unsuited	
31	Unsuited	Steep slopes, shallow soils	n/A	N/A	N/A	N/A	Moderate to well	Steep slopes, shallow soils	Water bars	N/A	N/A	62	Low	Muddine filter acteris compact
32	Low	Poor filter field characteristics	N/A	High	Moderate	High	Moderate	Muddiness and local wet areas	Surface trails, drain local wet wet areas	Poor	Restricted filter field drainage, and fine-textsred soils	65	Unsuited	erosiver Steep sl shallow
34	Unsuited	slopes, shallow	N/A	N/A	N/A	n/A	Moderate	Steep slopes, shallow soils	Water bars	N/A	N/A	67	Unsuited	
35	Unsuite	soils Shallow soils, unacceptable filter field characteristics	N/A	N/A	N/A	N/A	Well to moderate		9 Water bars	N/A	N/A	68	Moderate	Soil con dustines
36	Unsuite	d Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Moderati	e Steep slopes shallow soils	Water bars	N/A	N/A	n	Unsuited	Steep sl shallow
37	Low	Poor filter fiel characteristics	d N/A	High	Moderate	e High	Moderat	e Muddiness and local wet areas	Surface trails and drain local wet areas	Poor	Restricted drain- age on fine- textured soils	n	Moderate	Dustines
38	B Low	Steep slopes, extremely stony soils	N/A	N/A	N/A	N/A	Poor	Steep slopes	Water bars	Poor	Excessive slope	76	Unsuited	Steep sl
3	9 Unsuite	d Shallow soils, unacceptable filter field	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	N/A	N/A	17	Low to moderate	shallow Soil com dustines
4	1 Unsuite	conditions of Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	N/A	N/A	81	Unsuited	Steep sl shallow
4	2 Modera			-	e Moderat	e Low	Moderat	te Trail erosion, local wet area:	Water bars, dri s wet areas	ain Moderat	te Local steep slopes	62	Unsuited	
			100000000	St							CONCERNMENT OF THE OWNER.			

andtype No.	Landtype Suit- ability for Recreation Area Develop- ment	Landtype Limitations for Recreation Development	Suggested Treatment to Increase Suft- ability	Soil and Site Damage Suscep- tibility	Suscep- tibility to Dusti- ness	Suscep- tibility to Muddi- ness	Trail Suit- ability	Limitations for Trails	Considerations for Trail Improvements	Suit- ability for Sewage Filter Field	Soil Limitations for Sewage Filter Field Use	
43	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	N/A	N/A	
45	Moderate to high	-	Drain wet areas	Low	Low	Moderate	Moderate to well	<. ·	Drain wet areas	Moderate to high	Local restrict- ed drainage	
46	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	N/A	N/A	
48	Unsuited	Steep slopes, shallow sofls	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow solls	Water bars	N/A	N/A	
50	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Moderate to poor	Steep slopes, shallow sofls	Water bars	N/A	N/A	
51	Unsuited	Steep slopes, shallow solls	N/A	N/A	N/A	N/A	Moderate	Steep slopes, shallow soils	Water bars	N/A	N/A	
52	Moderate	Muddiness, soil compaction	Design to fit to- pography, surface drains	Moderate to high	Moderate	Moderate to high	Moderate	Muddiness, soil erosion, soil compaction	Water bars	Moderate	Restricted drain- age and fine- textured soils, locally	
53	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Moderate	Steep slopes, shallow soils	Water bars	N/A	N/A	
54	Moderate	Dustiness, soil compaction locally	Design to fit to- pography	Moderate to high	Moderate to high	Moderate	Moderate	Dustiness, soil erosion	Water bars	Moderate	Coarse-textured gravelly soils locally, exces- sive drainage	
55	Unsuited to low	Steep slopes, soil compaction, muddi- ness, poor filter characteristics	N/A	High	Moderate	High	Moderate	Muddiness, soil compaction, soil erosion	Surface wet areas, water bars	Poor	Restricted filter field drainage, fine-textured soils, steep slopes	
61	Unsuited	Steep slopes	N/A	N/A	N/A	N/A	Poor	Steep slopes, erosive soils	Water bars	N/A	N/A	
62		Muddiness, poor filter field char- acteristics, soil compaction and erosiveness	Design to fit to- pography, surface drains	High	Moderate	Nigh	Moderate to poor	Muddiness, soil compaction and erosion	Surface wet areas, water bars	Poor	Restricted drain- age and fine- textured solls	
66	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils, trail erosion	Water bars	N/A	N/A	
67	Unsuited	Steep slopes	N/A	n/A	N/A	N/A	Poor	Steep slopes, trail erosion	Water bars	N/A	N/A	
68	Moderate	Soil compaction, dustiness	Design to fit to- pography	Moderate	Moderate to high	Moderate	Moderate	Muddiness, soil compaction	Surface trails, Water bars	Moderate to well	Some fine- textured soils	
n	Unsuited	Steep slopes, shallow soils	N/A	n/A	N/A	N/A	Poor	Steep, dissected slopes, soil erosion	Water bars	N/A	R/A	
72		compaction	Design to fit to- pography	Moderate	Moderate to high	Moderate	Moderate	Dustiness, soil erosion and compaction	Water bars	Moderate	Restricted drain- age and fine- textured soils	
76	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow solls	Water bars	N/A	N/A	
17	Low to moderate	dustiness	Design to fit to- pography	Moderate	Moderate to high	Moderate	Moderate	Moderately steep slopes, trail erosion	Water bars, surface trafls	Poor to moderate	Rocky material, moderately steep slopes	2
81		Steep slopes, shallow soils		n/A	N/A	N/A	Poor	Steep slopes, shallow soils, soil erosion	Water bars	N/A	N/A	
82	Unsuited	Steep slopes	N/A	N/A	N/A	N/A	Moderate to poor	Steep slopes, soil erosion	Water bars	N/A	N/A	

RECREATION

TABLE	0F	INTERPRETATIONS	

RECREATION

andtype No.	Landtype Suit- abflity for Recreation Area Develop- ment	Landtype Limitations for Recreation Development	Suggested Treatment to Increase Suit- ability	Soil and Site Damage Suscep- tibility	Suscep- tibility to Dusti- ness	Suscep- tibility to Muddi- ness	Trail Suit- ability	Limitations for Trails	Considerations for Trail	Suit- ability for Sewage Filter Field	Soil Limitations for Sewage Filter Field Use
83	Moderate	Soil compaction, muddiness, dustiness	Design to fit to- pography	Moderate	Moderate to high	Nigh to moderate	Moderate	Soil compaction, muddiness and and dustiness	Surface wet areas, water bars	Moderate to well	Fine-textured soils
86	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	n/A	N/A
87	Low to moderate	Soil compaction, dustiness	Design to fit to- graphy	Moderate	Moderate to high	Moderate	Moderate	Some steep slopes, trail erosion		Poor to moderate	Rocky material, some steep slope
91	Unsuited	Steep slopes, shallow, highly erosive soils	N/A	N/A	N/A	n∕A	Poor	Steep slopes, shallow soils, very severe erosion hazard	Frequent water bars	N/A	N/A
92	Unsuited	Steep slopes	N/A	N/A	N/A	n/A	Poor	Steep slopes, high erosion hazard	Frequent water bars	N/A	N/A
93	Moderate to low	Dustiness, soil compaction	Design to fit to- pography	Moderate	Moderate to high	Low to moderate	Moderate	Erosion hazard, dustiness	Water bars	Poor to moderate	Generally coarse textured soils, excessive drain- age
95	Unsuited	Steep slopes, highly erosive soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, very severe erosion hazard	Frequent water bars	N/A	N/A
96	Unsuited	Steep slopes, shallow soils	n/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils, severe erosion hazard	Frequent water bars	N/A	N/A
97	Unsu i ted	Steep slopes	N/A	N/A	N/A	N/A	Poor to moderate	Steep slopes, high erosion hazard	Frequent water bars	N/A	N/A
98	Moderate	Poor filter field characteristics, soil compaction, dustiness	Design to fit to- pography	Moderate	Moderate to high	Moderate	Moderate	Erosion hazard dustiness, compaction	Water bars	Moderate	Some fine tex- tured soils
99	Unsuited	Steep slopes	N/A	N/A	N/A	N/A	Poor	Steep slopes, high erosion hazard	Frequent water bars	N/A	N/A
100	Moderate	Soil compaction, muddiness, dusti- ness	Drain wet areas, design to fit to- pography	Moderate	Moderate to high	Moderate to high	Moderate	Muddiness, dusti- ness, soil com- paction	Surface wet areas, water bars	Moderate to well	Some fine- textured solls
120	Unsuited	Very steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Very steep slopes, shallow soils	Water bars	N/A	N/A
121	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils	Water bars	N/A	N/A
122	Moderate	Moderate steep slopes	Design to fit to- pography	Low to moderate	Moderate	Moderate	Moderate	Muddiness, soll compaction	Surface wet areas, water bars	Moderate to well	Moderately steep slopes
125	Moderate to high	Local wet areas	Drain wet areas, design to fit to- pography	Low to moderate	Low to moderate	Moderate	We11	Muddiness, soil compaction	Surface and drain wet areas	Well	
176	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, soil erosion, shallow soils	Water bars	N/A	N/A
177	Low to moderate	Soil compaction, dustiness	Design to fit to- pography	Moderate	Moderate to high	Moderate	Moderate	Moderately steep slopes, trail erosion	Water bars, surface trails	Poor	Rocky material, moderately steep slopes

151

Landtype No.	Landtype Suit- ability for Recreation Area Develop- ment	Landtype Limitations for Recreation Development	Suggested Treatment to Increase Suit- ability	Soil and Site Damage Suscep- tibility	Suscep- tibility to Dusti- ness	Suscep- tibility to Muddi- ness	Trail Suit- ability	Limitations for Trails	Considerations for Trail Improvements	Suit- ability for Sewage Filter Field	Soil Limitations for Sewage Filter Field Use
178	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, soil erosion, trail erosion	Water bars	N/A	N/A
186	Unsuited	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, soil erosion, shallow soils	Water bars	N/A	N/A
191		Steep slopes, shallow soil	N/A	N/A	N/A	N/A	Poor	Steep slopes, soil erosion,	Surfacing trails, water bars	N/A	N/A
192		Moderately steep slopes	Design to fit to- pography	Moderate	Low to moderate	Low to moderate	Poor to moderate	Moderately steep slopes, soil erosion	Surfacing trails, water bars	Poor to moderate	Moderately steep slopes, coarse-textured material
193	Moderate	Soil compaction	Design to fit to- pography	Moderate	Low to moderate	Moderate	Moderate to well	Sofl compaction	Surfacing trails, water bars	Moderate to well	Some fine-textur- ed soils that would restrict drainage
194	Unsufted	Steep slopes, shallow soils	N/A	N/A	N/A	N/A	Poor	Steep slopes, soil erosion, shallow soils	Surfacing trails, water bars	N/A	N/A
196	Unsuited	Steep slopes, shallow solls	N/A	N/A	N/A	N/A	Poor	Steep slopes, shallow soils, severe erosion hazard	Frequent water bars	N/A	N/A
197	Unswited	Steep slopes	N/A	N/A	N/A	N/A	Poor to moderate	Steep slopes, wuddiness	Water bars	N/A	N/A

Timber (Reforestation)

Interpretations for Timber Management are of two types. One type includes some interpretations that directly affect timber management such as "Potential for Regeneration". The other type indicates the effect on soils and other resources from timber harvest activities.

Susceptibility to Brush Revegetation

This indicates the susceptibility of landtype units to revegetate naturally by brush following timber harvest. These ratings are based on soil characteristics, field observation, slope, aspect, climate, and elevation.

Low - Indicates brush vegetation is insignificant.

Moderate - Indicates that some brush revegetation will occur.

High - Indicates brush revegetation is very dense.

Potential for Regeneration

This interpregation indicates the potential for each landtype unit to regenerate at a minimum level of stocking as set by the Forest Service. Factors included in this interpretation are soil characteristics, climate, aspect, elevation, frost potential, brush competition, and tree species. Includes planted stock and natural regeneration.

 \underline{Low} - This rating indicates the potential for regeneration is low. Probability of success is very limited. Major regeneration problems can be expected, and reseeding or replanting may be required throughout the area. Several years may elapse before an adequate stocking level is achieved.

<u>Moderate</u> - This rating indicates that some problems will be encountered in attaining a satisfactory stocking level. Usually regeneration is spotty and some replanting will be necessary.

High - This rating indicates that regeneration has a high probability of success. Few problems should be encountered in attaining good stocking levels.

Limitations to Regeneration

This indicates the major soil limitations to regeneration of planted stock and naturals.

Susceptibility to Tanoak Revegetation

This interpretation indicates the susceptibility of landtype units to revegetate to tanoak following clearcut timber harvest. These ratings are based on soil characteristics, drainage, elevation, climate, topographic position, and field observations.

Low - Factors do not encourage tanoak establishment and growth.

Moderate - Factors are moderately favorable for tanoak establishment and growth.

High - Factors are highly favorable for tanoak establishment and growth.

Susceptibility to Madrone Revegetation

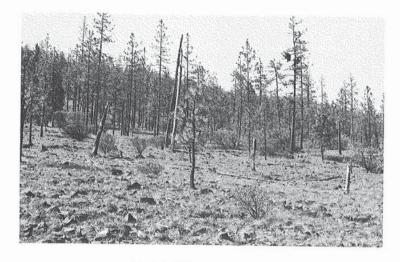
This interpretation indicates the susceptibility of landtype units to revegetate to madrone following clearcutting. These ratings are based on soil characteristics, drainage, elevation, climate, topographic position, and field observations.

Low - Factors do not encourage madrone establishment and growth.

Moderate - Factors are moderately favorable for madrone establishment and growth.

High - Factors are highly favorable for madrone establishment and growth.

Susceptibility to Alder Revegetation


This interpretation indicates the susceptibility of landtype units to revegetate to alder following clearcutting. These ratings are based on soil characteristics, drainage, elevation, climate, topographic position, and field observations.

Low - Factors do not encourage alder establishment and growth.

Moderate - Factors are moderately favorable for alder establishment and growth.

1

High - Factors are highly favorable for alder establishment and growth.

Low Potential for Regeneration

High Potential for Regeneration

TIMBER

andtype No.	Susceptibility to Brush Vegetation	Potentfal for Regeneration	Limits to Regeneration	Suggested Tree Planting Species	Suscep- tibility to Tanoak Revege- tation	Suscep- tibility to Madrone Revege- tation	Suscep- tibilit to Red Alder Revege- tation
0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	Moderate to high	High to moderate	Local wetness; brush competition and unstable areas	Douglas-fir	High	Moderate	N/A
5	Moderate to high	Moderate	Serpentinitic influence; local wetness, brush competition and unstable areas	Jeffrey pine	Moderate	Moderate	N/A
6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	N/A	N/A	N/A	N/A	Low	Low	N/A
8	Moderate to high	High	Local wetness, brush competition and unstable areas		High	Moderate	High
8c	Hígh	High	Brush competition; local wetness, and highly unstable areas	Douglas-fir	High	Moderate	High
9	Moderate to high	High	Local wetness, brush competition and unstable areas	Douglas-fir	High	Moderate	High
9c	High	High	Brush competition; local wetness, and highly un- stable areas	Douglas-fir	High	Moderate	High
10	Moderate	Low	Serpentinitic influence; low fertility; coarse- textured, gravelly soils; droughtiness, and brush competition	Jeffrey pine	Low	Low	N/A
11	Moderate	Low to moderate	Low fortility; coarse-textured, gravelly soils; droughtiness, and brush competition	Douglas-fir	Moderate	Moderate	N/A
12	Moderate to low	Low	Serpentinitic influence; low fertility; coarse- textured, gravelly soils; droughtiness, and local brush competition	Jeffrey pine	Low	Low	N/A
13	Moderate to high	Low to moderate	Coarse-textured, gravelly soils; low fertility; frost heaving, and brush competition	Shasta red fir, white fir	Low	Low	N/A
14	Moderate	Moderate	Coarse-textured, gravelly soils; low fertility; brush competition, and frost heaving	Shasta red fir, white fir	Low	Low	N/A
15	Moderate to high	Moderate to high	Coarse-textured, gravelly soils; brush competition, local frost heaving, and wet spots	Douglas-fir	High	Moderate	Moderati
16	Moderate to high	Moderate to high	Coarse-textured, gravelly soils; brush competition, and local droughtiness	Douglas-fir	High	Moderate	N/A
17	High	High	Brush competition; local wetness, and highly unstable areas	Douglas-fir	High	Moderate	High
18	Moderate to high	Moderate	Coarse-textured, gravelly soils; droughtiness, and brush competition	Douglas-fir	High	Moderate	N/A
19	High	Moderate to high	Brush competition; local wetness, and unstable areas	Douglas-fir	High	Moderate	High
21	High to moderate	Low to moderate	Brush competition, shallow soils, and droughtiness	Douglas-fir	High	High	N/A
22	High to moderate	Moderate	Brush competition	Douglas-fir, ponderosa pine	High	High	N/A
26	High to moderate	Low to moderate	Shallow, coarse-textured soils, low in fertility and moisture-holding capacity; droughtiness on south slopes; local debris slides, and channel scouring	Douglas-fir	Moderate	High	N/A
27	High to moderate	Moderate	Coarse-textured soils, low in fertility and . moisture-holding capacity	Douglas-fir	Moderate	High	Low
28	High .	Low	Shallow, coarse-textured soils, low in fertility and moisture-holding capacity; very droughty; local debris slides and channel scouring	Douglas-fir (knobcone pine does best on these shallow droughty soils)	Moderate	High	N/A
29	High	Low	Coarse-textured soils, low in fertility and and moisture-holding capacity. Soils are very droughty	Douglas-fir	Moderate	High	N/A
31	Low to moderate	Low		Jeffrey pine	Low	Low	N/A

TIMBER

TABLE OF INTERPRETATIONS

TIMBER

Suscep-tibility tibility to to Tanoak Madrone Revege-Revege-tation tation

High

High

High

High

High

High

Moderate Moderate N/A

High

High

High

High

Low

LOW

Low

High

Moderate Low

Moderate Low

to high

High

High

High

to high

High

High

High

Moderate Low

Moderate N/A to high

Moderate N/A

Moderate N/A

Moderate High

Low to Low Suscep-tibility to Red Alder Revege-tation

N/A

Low

Low

Low

Low

Low

Low Moderate Low

Low

Low

Low

Moderate

Moderate

N/A

							199							
Landtype	Susceptibility to Brush Yegetation	Potential for Regeneration	Limits to Regeneration	Suggested Tree Planting R	ibility to Tanoak	Suscep- tibility to Madrone Revege- tation	Suscep- tibility to Red Alder Revege- tation	Landtype No.	Susceptibility to Brush Vegetation	Potential for Regeneration	Limits to Regeneration	Suggested Tree Planting Species	Suscep- tibilit to Tanoak Revege- tation	
32	Moderate	Low		Jeffrey pine L	.ow	Low	N/A	76	High	Low	Brush competition, gravelly, coarse-textured, shellow and very droughty soils	Douglas-fir	. High	-
34	Low to moderate	Low	Serpentinitic influence, shallow, coarse-textured,	Jeffrey pine l	LOW	Low 2	N/A	17	High	Moderate	Brush competition, gravelly and coarse-textured soils	Douglas-fir, ponderosa pine	High	
24			and moisture-notating capacity, tery crossing	Jeffrey pine	N/A	N/A	N/A	81	High	Low	Brush competition, gravelly, shallow and droughty soils	Douglas-fir	High	
35	Low	Low	Serpentinitic influence, shallow, coarse-textured, gravelly, cobbly, stony soils, low in fertility and moisture-holding capacity; very droughty soils	dering prine		Moderate	N/A	82	High	Moderate	Brush competition, and gravelly soils	Douglas-fir, ponderosa pine	High	
36	Moderate to high	Low	Serpertinitic soils, coarse-textured, gravelly, cobbly soils, low in fertility and moisture-holding capacity, and droughty in the summer	Jeffrey pine, Douglas-fir	Low	Moderate		83	High	Moderate to high	 A SPECIAL STREET, AND AND AND AND AND AND AND AND AND AND	Bouglas-fir, ponderosa pine	High	
37	High	Low to moderate	Serpentinitic influence, gravelly, cobbly soils, low in fertility with summer droughtiness	Douglas-fir, Port-Orford-cedar	Moderate	High	Low	86	High	Low	Brush competition; gravelly, cobbly, coarse- textured, shallow, and very droughty soils	Douglas-fir	Hfgh	
38	Low to moderate	Low to moderate	Serpentinitic influence, gravelly, cobbly soils, low in fertility with summer droughtiness	Port-Orford-cedar, Douglas-fir	Low	Low	Low	91	H1gh H1gh	Moderate	Brush competition, gravelly and cobbly soils	Douglas-fir, ponderosa pine	High	
39	Moderate	Low	Serpentinitic influence, shallow, coarse-textured, gravelly, cobbly, soils low in fertility and	Jeffrey pine	Low	Low to moderaje	N/A			Low	Brush competition; coarse-textured, gravelly, droughty and shallow soils	Douglas-fir,	Moderate	£.
			summer		Moderate	Moderate	Moderate	92	Moderate to high		Brush competition; coarse-textured and droughty soils	Douglas-fir, ponderosa pine	High	
41	Moderate to high	Moderate	Shallow, gravelly soils, droughty conditions, and brush competition	Douglas-fir Douglas-fir	Moderate	Moderate		93	Moderate	Moderate to high	Brush competition and summer droughtiness	Douglas-fir, ponderosa pine	Moderate	Ŕ
42	Moderate	Moderate to high	Brush competition	Douglas-fir	High	High	Low	95	High	Low	Brush competition, coarse-textured, gravelly and droughty soils	Douglas-fir	Moderate to high	61
43	High	Low	Unfavorable aspect, shallow soils, gravelly, droughty conditions, and brush competition	Douglas-fir	Moderate	Moderate	Moderate	96	High	Low	Brush competition; infertile, gravelly, shallow and droughty soils	Douglas-fir	High	1
45	Moderate to high	High	Brush competition	Douglas-fir	Moderate	Moderate		97	High	Low	Brush competition; infertile, gravelly and	Douglas-fir,	High	
46	Moderate to high	Moderate	Brush competition, shallow, coarse-textured soils, high gravel content, and very droughty	tougsas-i ii	to high	to high	to high	98	Modewoods to black	Mada	droughty soils	ponderosa pine	nign	
48	High	Low	Brush competition, unfavorable aspect, coarse- textured soils, shallow soils, high gravel content, and very droughty conditions	Douglas-fir	High	High	LOW	30 99	Moderate to high High	Moderate Low	Brush competition	Douglas-fir, ponderosa pine	High	
		Low	shallow coarse-textured, gravelly soils, low in	Douglas-fir	Moderate	LOW	Low	100			Brush competition; infertile, gravelly and droughty soils	ponderosa pine	High	1
50	Low to moderate	LOW	fertility and moisture-holding capacity; very droughty soils, local debris slides, and channel scouring		145507		e Moderate	120	Moderate Moderate to high	Moderate	Frost heaving; gravelly soils and brush competition	and Shasta red fi	e Low to ir moderate	
51	Moderate to high	Moderate to high	Coarse-textured gravelly soils, low in moisture- holding capacity; local debris slides, channel	Douglas-fir	High	Moderat	to low	121	Low to moderate	- Some see an area	Shallow, rocky, coarse-textured, and droughty soils	Douglas-fir	Moderate	ा
24			scouring, and brush competition		High	Moderat	e High			Moderate to high	Shallow and coarse-textured sofls	Douglas-fir	Low to moderate	L
52	High	Moderate to hig		Douglas-fir	Moderate		R/A	122	Low	High	5 1	Douglas-fir	Low	1
53	High	Low	Shallow, coarse-textured, gravelly soils, low in fertility and moisture-holding capacity; very	Douglas-fir (locally knobcone pine does best or	1.1.1.1.1.1.1.1.1	1.22		125	Low	High		Douglas-fir	Low) L
			droughty; local debris slides, channel scouring, and brush competition	these shallow droughty soils)					High	Low to moderate	Brush competition; shallow, gravelly, coarse- textured and droughty soils	Douglas-fir	High	н
54	High	Low to moderate	Coarse-textured gravelly soils low in fertility and moisture-holding capacity; very droughty.	Douglas-fir (locally knobcom pine does best o	Moderate	e High	N/A	177	Moderate to high	Moderate	Brush competition; gravelly and coarse-textured soils	Douglas-fir	Moderate to high	н t
			and brush competition	these droughty soils)					High	Low	Unfavorable aspect; brush competition; shallow, gravelly, coarse-textured and droughty soils	Douglas-fir	High	В
		114 mb	Brush competition	Douglas-fir	High	Modera	1 mile	186	High to moderate	Low to moderate	Brush competition; shallow, gravelly, cobbly, coarse-textured and droughty soils	Douglas-fir	High	N
55		High h High to modera	an Shirish ma Canan and a same and a same and a	Douglas-fir	High	Modera	Illeh	191	High	Low to moderate	Coarse-textured, gravelly and droughty softs; brush	Douglas fin	114 mb	
6			Brush competition	Douglas-fir	High	Modera	te myn N/A	192	Hat to a		competition	www.jd3*111	High	H.
6		High Low to moderat	through her sector as	y Douglas-fir	High	High	N/A		High to moderate	Moderate	Brush competition; coarse-textured and droughty solls	Douglas-fir	High	H
6	80.0	Moderate	Brush competition; gravelly and droughty soils	Douglas-fir, ponderosa pine	High	High		193	Moderate	Moderate to high	Brush competition	Douglas-fir	Moderate to high	Mo
	a Moderate to hi	gh Moderate to hi	gh Brush competition	Douglas-fir ponderosa pine	Moderat to high	te Modera h to hig	h	194	High	Low	Unfavorable aspect; brush competition; and coarse-	Douglas-fir	High	B,
	a Poderada to II. 11 High	Moderate to 10	the shallow and drough		High	High	N/A	196	High	Low	textured soils Coarse-textured, infertile, gravelly, droughty, shallow soils; and brush competition	Douglas-fir	High	н
	12 High	Moderate	soils Brush competition and gravelly soils	Douglas-fir	High	Modera to his	to the	197	High	Low to moderate	Infertile, often droughty soils and brush competition	Douglas-fir	High	H
								The second s			Georgenite with CD			

Timber (Harvest)

Potential Soil and Water Impacts from Various Timber Harvest Methods

This interpretation indicates the susceptibility of soil and water resources to incur damage from various timber harvest methods. Each landtype is evaluated as to the potential impact from each of the following harvest methods: Tractor logging, L/ The evaluation of (partial suspension), cable (full suspension), and aerial logging, L/ The evaluation of potential impact includes soil and water resource damages from timber removal, spur roads, landings, and other activities that may be associated with the harvest method being evaluated. The evaluations are based on a full operating season. Damage is caused to soils by creating soil disturbance which may destroy soil structure, cause compaction, and increase erosion. This may affect other resources through loss of production, lower water quality and yield, and loss of fisheries. Field observations indicate the most important factors to consider in making these ratings are wetness of soil, soil texture and structure, percentage of coarse fragments, slope, drainage, climate, and field observations.

Low - This rating indicates that the impacts to the soil and water resources are minor. Little or no soil damage is expected.

Moderate - This rating indicates that the impacts to the soil and water resources are moderate. Soil and water resources are expected to incur moderate damage.

High - This rating indicates that the impacts to the soil and water resources are major. Excessive damage to soil and water resources is likely to occur.

Type of Damage Expected During and Subsequent to Timber Harvest Operations

This indicates the type of soil and water resource damage expected on each soil from various harvest methods.

Recommended Slash Disposal Method

This rating indicates the slash disposal method that is best adapted to conserving and protecting the soil and water values of each soil. When more than one method is listed, the first method is the more preferable. Factors considered in these recommendations include soil properties, elevation, aspect, slope, litter thickness, drainage, and the ability of the site to revegetate. The methods considered in this rating are numbered and defined as follows:

- 1. No treatment The slash is left on the ground with no burning.
- 2. Broadcast burn Standard methods of broadcast burning.
 - a. Spring b. Fall
- 3. <u>Clean logging</u> Culls and tops are pulled or swung to landing, piled and burned.
- 4. Accumulation burning
 - a. Hand piling.b. Spot burning.

1/ See Glossary for definition of methods.

Skyline Logging

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging <u>5</u> /	Type of Damage	Poten- tial Impact from High Lead]/	Type of Damage	Poten- tial Impact from Skylin (Partie Sus- pension) <u>1</u> /	ł	Poten- tial Impact from Skyline (Ful) Sus- pension)	Type of	Poten- tial Impact from Helicop- ter and Balloon	Typ of Dan age
0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A
3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A
	High	Sofl compaction will occur when the soil is, wet which is most of the year. Tractor turning along with log gouging destroys pro- tective duff layer, loosnes and displaces sofl, destroys soil structure, increasing erosion, and stream sedimentation. Insta- bility may be in- creaded. <u>A</u> / <u>S</u> /	High to moderate	Log skidding and goug- ing damages the duff layer, loosens and dis- places the soil and de- stroys soil structure, increasing envision and increased, and and and and increased, a/ Com- paction will occur in skid trails when the soil is wet, which is most of the year.	Moderate	The primary impact is from access roads. Soil damage may occur frome logs skidding along the ground, be- coming temporarily afr- borne and slamming into the soil. This results and lossening and dis- placement of soil, res- sulting in increased erosion and stream sed- imentation. d_J		The primary impact is from access roads. <u>4</u> /	Low to	3/
5		Soil compaction will occur when the soil is wet which is most of the year. Tractor turning along with log gooing descroys pro- gooing descroys pro- loosens and displaces soil, destroys soil structure, increasing erosion, and stream sedimentation. Insta- bility may be in- creased. <u>4</u> / <u>5</u> /	High to moderate	Log skidding and goug- ing damages the duff layer, loosens and dis- places the soll and de- struys soll structure, Increasing erosion and stream sedimentation. Instability may be nactioned if or or in skid trails when the soll is wet, which is most of the year.	Moderate	The primary impact is from access roads. From losses may occur along the ground, be- confing temporarily air- borne and slamming into the soil. This results in duff displacement, loss of soil structure and lossening and dis- soilteg in incri, re- soilteg in incri, se- rosion and stream sed- imentation. 4/	Moderate to low	The primary impact is from access roads. <u>4</u> /	Low to moderate	3/ 4/
6	N/A	N/A -	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A N/A
8 1	s s s s s s s t	Soll compaction will corr when the soll is etc, which is most of the year. Tractor uurning along with log uoging destroys pro- nctive duff layer, osens and displaces ofl, destroys soll tructure. Increasing rosion, and stream fair. Instability may e increased. 4/5/		Log skidding and goug- ing damages the duff layer, loosens and dis- places the soil and de- places the soil and de- increasing enciences, increasing enciences, stream sed imentation potential. Intability may be increased. 4/ Coepaction will occur in skid trails when the soil is wet, which is most of the year.		The primary impact is from access roads. Soil damage may occur from loops skidding and the soil and the soil and how the soil and the soil and loss of soil structure and loosening and dis- placement of soil, re- walling in increased encoins and stream sod- merstand and stream sod- increased.	Moderate		Low to	8/A 3/ 4/

1/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on read density, design, and steepness of slope. Roads create exposed soil on cutslopes and waste slopes that have high call for avel, slough, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very registring and Tab gouging may lossen soil locally, resulting in some erosion. The removal may increase with content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. Less damage to the soil resource when PRC tractors are used by a prudent operator.

Poten-

tial

Inpact

from

Lead

High

High

High

Type of Damage

Log skidding and goug-ing damages the duff

layer, loosens and dis-places the soil and de-

stroys soil structure, increasing erosion and

stream sedimentation potential, instability

in skid trails when the

Log skidding and goug-ing damages the duff

layer, loosens and dis-places the soil and de-

stroys soil structure, increasing erosion and

may be increased. 4/

stream sedimentation potential. Instability

in skid trails when the soil is wet, which is most of the year.

Log skidding and goug-ing damages the duff layer, loosens and dis-places the soil and de-

stroys soil structure, increasing erosion and stream sedimentation.

Instability may be increased. 4/ Com-paction will occur in

skid trails when the soil is wet, which is most of the year.

stroys soil structure. Erosion potential and

stream sedimentation are increased on dis-

turbed areas.

may be increased. 4/ Compaction will occur

soil is wet, which is most of the year.

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBED WADVEST METH

R	M VARIOUS	TIMBER HARVEST METHODS								PUTENTIA	L SOIL AND WATER IMPACTS	FRUM VARIO	US TIMBER HARVEST METHOD:	5			
	Poten- tial Impact from Skyline (Partial Sus- pension) 1/	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tial Inpact from Helicop- ter and Balloon	Type of Dam- age	Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging 5/	Type of Damage	Poten- tial Impact from High Lead]/	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of	Poten- tial Impact from Helicop- ter and Balloon	Type of Dan- age
	High to moderate	The primary impact is from access roads. Soil damage may occur from logs skidding along the ground, be- coming temporarily air- borne and slamming into the soil. This results in duff displacement.	Moderate	The primary impact is from access roads. <u>4</u> /	to low	<u>34</u>	n	High	<u>6</u> / .	Moderate	Log skidding and goug- ing damages the duff layer, losens and dis- places the soil and de- stroys soil structure. Erosion and stream sed- mentation potential are increased on dis- turbed areas.	Low to moderate	Occasional gouging will damage protective duff cover and loosens and displaces soil and de- stroys soil structure. Frosion and stream sed- imentation potential are increased on dis- turbed areas.		3/	Low	3/
	Moderate	loss of soil structure and lossening and dis- placement of soil, re- sulting in increased erosion and stream sed- imentation potential. Instability may be increased. The primary impact is from access roads.	Moderate	The primary	Low to	34	12	Moderate	Soil compaction will is pocur when the soil is wet. Tractor turning along with log gouging destroys duff and soil structure as well as loosening and displac- ing soil, increasing erosion and stream sedimentation.	Low to moderate	Log skidding and goug- ing damages the duff laver, loosens and dis- places the soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	Low	Occasional gouging will damage protective duff cover and loosens and displaces soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	Low	<u>3</u> /	Low	3/
y y	to high	Soil damage may occur from logs skidding along the ground, be- coming temporarily air- borne and slamming into the soil. This results in duff displacement, loss of soil structure and loosening and dis- placement of soil, re-		from access roads. <u>4</u> /			13	High	5/	Low to moderate	Log skidding and goug- ing damages the duff layer and loosens and displaces soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	Low	Occasional gouging will damage protective duff cover and loosens and displaces soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	Low .	3/	Low	3/
	High to moderate	Soil damage may occur from loss skidding	Moderate	The primar; impact is from acces: roads. <u>4</u> /		e 3/ 3/	14	High	<u>6</u> /		Log skidding and goug- ing damages the duff layer and loosens and displaces soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	moderate	Occasional gouging will damage protective duff cover and loosens and displaces soil and de- stroys soil structure. Erosion and stream sed- imentation potential are increased on dis- turbed areas.	Low	2/ 3/	Low	3/
-d		along the ground, be- coning temporarily afr- borne and slamming int the soil. This results in duff displacement. Noss of soil structure and loosening and dis- placement of soil, re- sulting in increased erosion and stream sed imenation potential. Instability may be increased.	5						Tractor turning and gouging may destroy protective duff cover, lossen and displace soil, and destroy soil structure. Soil dis- turbance may be sovere an local wet areas. Erosion will be in- creased on disturbed areas.	moderate	Log skidding and goug- ing damages the duff layers, loosens and displaces soil and de- stroys soil structure, resulting in increased erosion and stream sed- iwentation potential.	Low	Occasional gouging may damage duff cover, loosen and displace surface soil and de- stray soil structure, resulting in increased erosion and stream sed- imentation potential.	Low	3/	Low	3/
1- 1e- 1	Low	Occasional gouging will damage protective duff cover and loosens and displaces soil and de- stroys soil structure. Erosion potential and stream sedimentation are increased on dis- turbed areas.		3/	Low	<u>y</u>	16	High	<u>6/</u>		Log skidding and goug- ing destroys duff, soil structure, and exposes the soil to increased erosion and stream sed- imentation potential.	to low	Soil damage may occur from logs skidding on the ground and becoming temporarily airborne, then slamsing into the soil, resulting in an increased erosion and stream sedimentation potential.		The signif- icant impact is from access roads, <u>2</u> /	Low	3/
													¥ 2				

1/ Ratings are based on impacts from uphill yarding. The impacts from downHill yarding are 2/ Relative impact dipends on road density, design, and steeness of since Rawfe receive and steeness of since Rawfe Ratings are based on impacts from upnill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on read density, design, and steepness of slope. Reads create exposed soil on cutslopes and waste slopes that it potential to ravel, slowed, and erode, cusing damage to soils and other resources. The potential increases with slope and is generally high on slopes greater than 60 percent.

high on slopes greater than bu percent. Tree felling and limb gouging may looses soil locally, resulting in some erosion. Total tree revoim may increase mater constant and romace soil binding properties of the roots, resulting in an increased mass movement paterial. Less damage to the soil resource attribut fractors are used by a prudent operator. Tractors, MP, and rubber-lied skidders not allowed.

Soil compaction will low to Log skidding and goug-occur when the soil is moderate ing damages the duff wet. Tractor turning layer, lowers

Potential Inpact from

Tractor.

FMC,

and

Land-Tired

type No.

Rubber

Skidder

Logging 5/

8c High

9 High

9c Hinh

Type of Damage

Soil compaction will

occur when the soil is

occur when the soll is wet which is most of the year. Tractor turning along with log gouging destroys pro-

tective duff layer, loosens and displaces

soil, destroys soil structure, increasing

erosion, and stream sedimentation poten-

tial. Instability may be increased. 4/5/

Soil compaction will

occur when the soil is wet which is most of

wet which is most of the year. Tractor turning along with log gouging destroys pro-tective duff layer,

loosens and displaces

soil, destroys soil structure, increasing

erosion, and stream

erosion, and stream sedimentation poten-tial. Instability may be increased. <u>4</u>/ <u>5</u>/

Soil compaction will

occur when the soil is wet which is most of

the year. Tractor turning along with log gouging destroys pro-tective duff layer.

loosens and displaces

soil, destroys soil structure, increasing

erosion, and stream

10 Moderate Soil compaction will

sedimentation poten-tial. Instability may be increased. <u>4/ 5</u>/

along with log gouging destroys duff and soil structure as well as loosening and displac-ing soil, increasing erosion and stream

sedimentation poten-tial.

162

163

by an slopes grater than 60 percent.
 The and slope strater than 60 percent.
 The slope strater than 60 percent slope strater than 60 percents of the roots, resulting in an increased mass movement potential.
 Tractors, FRC, and rubber-tired skiders not allowed.

TABLE OF INTERPRETATIONS POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

					SOLL MU WHICK INFAGIS (
and- ype No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging 5/	Туре	of Damage	Poten- tial Impoct from High Lead J/	Type of Danage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Danage	Poten- tial Impact from Skyline (full Sus- pension)	Type of Damsge	Poten- tial Impact from Helicop- ter and Balloon	Dam-	Land type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging 5/		vpe of Damage	Poten- tial Impact from High Lead L/	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tial Impact from Helicop ter and Balloon	Dam
17	High	<u>6</u> /		High	Log skidding and goug- ing damages the duff layer, destroys soil structure and loosens resulting in an in- creased soil erosion and stream sedimen- tation potential, In- stability may be in- creased. Compactions trails when the soil is wet which is most of the year.	noderate	The primary damage is from logging access prads. Damage occurs reads. Damage occurs its and the primary of the gouging results in duff destruction, loss of soil structure, and locening and displace locening and displace ring erosion and stream sedimentation potential. Instability may be in- creased.		The impact is primar- ily from access roads.	Moderate to low	9 <u>34</u>	26	High	<u>6</u> /		High	Log skidding results in duff destruction, loss of soil structure, placement of soil, re- sulting in severe erosion. Regeneration is slow, resulting in long periods of ex- posure to erosion.	Moderate to high	Soll damage will occur from logs becoming temporarily airborne and them ai maming labo in duff destruction, loss of soil structure, and loosening and dis- placement of soil. Subsequent damage re- solential. Regenor- ation is low, result- fing in prolonged ex- posure to erosion.	Low to moderate	The signif- icant impact is from access roads on these steep slopes. 2/	Low	3/
18	High	<u>6</u> /	3 0 2	Moderate to high	Log skidding and goug- ing damages the duff layer, destroys soil structure and loosens and displaces soil, re- sulting in an increased erosion and stream sedimentation poten- tial.	to low	The primary damage is from logging access roads. Damage occurs when logs are temporar- ily airborne and slam into the soil. Log gouging results in duff destruction, loss of soil structure, and loosening and displace- ment of soil, increas-	Low	The signif- icant impact is from abcess roads. 2/		3	27	Moderate to high	<u>5</u> /		Moderate	Log skidding results in duff destruction, loss of soil structure, and loosening and displace- ment of the soil, re- sulting in increased erosion. Regeneration is slow, resulting in long periods of expo- sure to erosion.		Occasional gouging will damage duff cover. loosen and displace surface soil, and de- stroy soil structure, resulting in an in- creased erosion potential.	Low	3/	Low	<u>3</u> /
19	High	<u>5</u> /		High to moderate	Log skidding and goug- ing damages the duff layer, destroys soil structure and loosens and displaces soil, re- sulting in a increased sedimentation poten- tial. Instability may be increased and com- paction will occur in		ing crosion and stream sedimentation poten- tial. The primary damage is from logging access roads. Damage occurs when logs are temporar- ly althorne and lam interprint and lam interprint is and pooping results in duff destruction, loss of soil structure, and loosening and displace- ment of soil, increas-		The significant impact is from access reads. 2/	moderat	e 3/	28	High	<u>6/</u>		Hìgh	Log skidding results in duff destruction, loss of soil structure, and lossening and dis- placement of soil, re- sulting in severe erosion. Regeneration is very slow, resulting is very slow, resulting is very slow, resulting is very slow, resulting posure to erosion.		Soil damage will accur from logs becoming temporarily airborne and then slawing into the ground, resulting in durf destruction, loss of soil structure, and loosening and dis- subsequent damage re- sults in severe erosion potential. Regener- ation is very slow, resulting in prolonged exposure to erosion.	Moderate to low	The signif- icant impact is from access roads on these steep slopes. 2/	Low	<u>3</u> /
21	High	<u>6</u> /		High to moderate	the skid trails when the soil is wet which is most of the year. Log skidding results in duff destruction, loss of soil structure, and loss of porosity, in- creasing runoff and erosion.	Moderate	from logging access roads. Logs skidding along the ground, be- coming airborne, then slamming into the ground churns the sur-	Low to moderate	The signif- icant inpact is from log- ging access roads. 2/ 4/		¥	29	High to moderate			Moderate to high	Log skidding results in duff destruction, loss of soil structure, and loosening and displace- ment of the soil, re- sulting in increased erosion. Regeneration is very slow, resulting in prolonged exposure to erosion.	Moderate to low	Occasional gouging will damage duff cover, loosen and displace surface soil, and de- stroy soil structure, resulting in an in- creased erosion potential. Regenera- tion is very slow, re- sulting in prolonged exposure to erosion.	Low	<u>3</u> /	Low	<u>3</u> /
22	High	<u>6</u> /		Moderate	Soil compaction occurs in skid trails. Loss of duff, reduced sur- face porosity and im- paired infiltration, affect regeneration by reducing the amount of sater and air moving into the soil.	Moderate to Tow	face soil making it susceptible to detach- ment and transport. The primary damage is from logging access roads. Logs skidding along the ground, be- coming airborne, then slamming into the ground churns the str- face spille to getach- ment and transport.	Low	¥	Low	y	31	High	<u>6</u> /	1	H1gh .	Log skidding results in duff destruction, loss of soil structure, and loosening and dis- placement of soil, re- sulting in severe erosion. Regeneration is very slow, resulting in long periods of ex- posure to erosion.	High to moderate	Soil damage may occur from logs becoming temporarily airborne and then slamming into the ground, resulting in duff destruction, loss of soil structure, and looxening and dis- placement of soil. Subsequent damage re- subsequent damage the potential. Regener- ation is very slow, resulting in prolonged exposure to erosion.	Moderate	The signif- fcant impact is from access roads on these frag- ile soils. <u>2/ 3/</u>	Low to moderate	

1/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. 2/ Relative impact depends on road density, design, and steepness of slope. Roads create exposed soll on cutslopes and waste slopes that have potential to ravel, sloped, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very high on slopes greater than 60 percent. 3/ Tree felling and Itab gouging may locens soil locally, resulting in some erosion. 4/ Jotal tree removal may increase water content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. 5/ Less damage to the soil resource when FNC tractors are used by a prudent operator. 5/ Treetors, FNC, and rubber-tired skidders not allowed.

1/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. 2/ Relative impact depends on road density, design, and steepness of slope. Roads create exposed soil on cutSlopes and waste slopes that have potential to rurel, slough, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very high on slopes greater than 60 percents. soil locally, resulting in some erosion. 3/ Tree foiling and it may increase water contout and reduce soil binding properties of the roots, resulting in an increased mass movement potential. 5/ Less damage to the soil resource when PMC tractors are used by a prudent operator.

POTENTIAL SOIL AND WATER IMPACTS

Poten-

Inpact from High Lead

High

High

High .

High

Type of Damage

Soil compaction will

occur when the soil is wet. Tractor turning along with log gouging, destroys protective

destroys protective duff layer, lossens and displaces soil, de-stroying soil structure, and increases soil

erosion. Regeneration is very slow, resulting in long periods of ex-

Tractor turning along

with log gouging de-stroys protective duff layer, loosens and dis-

places soil, destroying soil structure, and in-

soil structure, and in-creases soil erosion. Regeneration is ex-tremely slow, resulting in long periods of ex-posure to erosion. Equipment operation may

cause irreparable damage to these fragile amas.

posure to erosion.

6/

TABLE OF INTERPRETATIONS

AL	SOIL AND WATER IMPACTS F	OM VARIOUS	S TIMBER HARVEST METHODS								POTENTLA	& SOIL AND WATER IMPACTS	FROM VARIO	US TIMBER HARVEST METHODS	5			
	Type of Damege	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tial Impact from Helicop- ter and Balloon	Type of Dan- age	Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging <u>5</u> /	Type of Damage	Poten- tial Impact from High Lead J/	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tfal Impact from Helicop- ter and Balloon	Dam-
	Log skidding results in duff destruction, loss of soil structure, and displacement of the soil, resulting in in- creased erosion. Re- generation is very slow, resulting in long periods of ex- posure to erosion. Compaction will occur in the skid trails when	Moderate	Occasional gouging will damage duff cover, lossen and displace surface soil, and des- troy soil structure, resalting in an in- creased erosion poten- tial. Regeneration is very slow, resulting in prolonged exposure to erosion.	Low to moderate	The signif- icant impact is from access roads on these frag- ile soils. 2/ 3/	Low	У	37	High	Soll is easily compact- ed, reducing porosity and infiltration. Soli is loosened and dis- placed and more easily eroded. Revegetation is slow, leaving long periods of exposure to erosion. Equipment operation may cause irreparable damage to these fragile areas.	moderate	Log skidding results in compaction on wet solls resulting in re- duced porosity. De- struction of duff layer, and surface structure also occurs. Froston is increased in disturbed areas due to long periods of soll exposure.	Moderate to low	Occasional gouging will damage duff cover, loosen and displace surface soil, and de- stroy soil structure, recasted erosion poten- tial. Regeneration is vory slow resulting in prolonged exposure to erosion,	Low	The signif- icant is from access roads on these frag- ile soils. 2/ 4/	Low	3/
	the soil is wet. Log skidding results in duff destruction, loss of soil structure, and loosening and dis- placement of soil, re- sulting in severe erosion. Regeneration is very slow, resulting in long periods of ex-	High	Soil damage will occur from logs becoming temporarily airborne and then slamming into the ground, resulting in duff destruction, loss of soil structure, end loosening and dis- placement of soil.	Moderate	The signif- icant impact is from access roads on these steep rocky slopes. 2/ 3/	moderate	3/	38	Hfgh	<u>5</u> /	High	Log skidding results in compaction on wet soils and destruction of duff layer and surface structure, increasing soil displacement and erosion occurs due to exposure.	Moderate	Occasional gouging will damage duff cover, loosen and displace surface soil, and de- stroy soil structure, resulting in an in- creased erosion poten- tial resulting in prolonged exposure to erosion.	Low to moderate	The signif- icant impact is from access roads on these frag- ile soils. 2/ 4/	Low	3/
\	Log skidding results in duff destruction, loss of soil structure, and displacement of the soil, resulting in erosion. Regeneration	Moderate	damage duff cover, loosen and displace surface soil, and de- stroy soil structure, resulting in an in-		impact is from access roads on these		¥	39		Soil is easily compact- ad, reducing porosity and infiltration. Soil placed and more easily eroded. Revegetation is slow, leaving long periods of exposure to erosion. Explyment operation may cause irreparable damage to these fragile areas.	High	Log skilding results in compaction on wet soils resulting in re- duced porosity. De- struction of duff layer, and surface structure, also occurs. Erosion is increased in disturbed areas, due to long periods of soil exposure.	Moderate	Occasional gouging will damage duff cover, loosen and displace surface soil, and de- stroy soil structure, resulting in an in- creased erosion poten- tial. Regenration is very slow, resulting in prolonged exposure to erosion.	Low to moderate	The signif- icant impact is from access froads on these frag- ile soils. 2/ <u>4</u> /	Low	3/
	is very slow, resulting in long periods of ex- posure to erosion. Compaction will occur in the skid trails when the soil is wet.	Moderate	creased erostom poten- tial. Repentation is ver slow, resulting in prolonged exposure to eroston. Soll damage will occur from logs becoming temporerly airborne	Low to moderate	impact is		¥	41	High	<u>8</u> /	High	Log skidding results in soll disturbance, in- cluding duff removal. loss of soll structure, and loacening and dis- placement of the soll. This results in In- creased runoff, severe erosion, and high sodi- ment production.	Moderate	Soil damage will occur from logs becoming tem- porarily a riborne and then slamming into the ground, resulting in duff destructure, and loosening and displace- ment of soil. Subse- quent damage results in severe erosion poten- tial.	Low to moderate	The signif- icant impact is from access roads on these steep slopes. 2/	Low	<u>3/</u>
	of duff layer and sur- face structure, in- creases soil displace- ment and erosion occurs due to long periods of soil exposure.		and then slamming into the ground, resulting in duff destruction, loss of soil structure, and loosening and dis- placement of soil. Subsequent damage re- sults in severe erosion potential. Regemen- ationical prolonged exposure to erosion.		from access roads on these frag- ile soils. 2/ 4/			42	High	5/		Log skidding results in duff destruction, loss of soil structure, and lossening and displace- ment of soil, resulting in increased erosion. Socurr on ptein di trails when the soil is wet, which is most of the year.	Low to moderate	Occasional gouging will damage protective duff cover, loosen and dis- place surface soil, and destroy soil structure, resulting in an in- creased erosion poten- tial.	Low	3/	Low	<u>3</u> /
								-				1		2				

2/

/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on road density, design, and steepness of slope. Roads create exposed soll on cutslopes and waste slopes that have potential to ravel, sloppin, and erode, causing damage to solls and other resources. The potential increases with slope and is generally very high on slopes greater than 60 percents. There folling and link gouging Bayater content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. Less damage to: resource wing FNC tractors are used by a prudent operator.

50

Poten tial Impact Tractor,

FMC, and

Rubber I and-Tired Skidder

Logging 5/

type No.

32 High

34 High

35 High

36 High

5/

Patings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on road density, design, and steepness of slope. Roads create exposed soll on cutslopes and waste slopes that have potential to ravel, slowyh, and erode, causing damage to solls and other resources. The potential increases with slope and is generally very high on slopes greater than 60 percent. There folling and him gouging may lossen soll locally, resulting in some erosion. Total tree removal may increase water content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. Testors, FNC, and rubber-tired skidders not allowed.

TABLE OF INTERPRETATIONS POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

Poten-tial Impact

from

High Lead

High

High

High

High

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

| Type of Damage | Poten-
tial
Impact
from
Skyline
(Partial
Sus-
pension)
<u>1</u> / | ل
Type of Damage | Poten-
tial
Impact
from
Skyline
(Full
Sus-
pension) | Type of
Damage | Poten-
tial
Impact
from
Helicop-
ter and
Balloon
 | Type
of
Dan-
age | Land-
type
No. | from
Tracto
FNC,
and
Rubbe
Tired
Skidde | r,
r | Type of Damage
 | Poten-
tial
Impact
from
High
Lead
J/ | Type of Damage | (Partia
Sus-
pension)
 |
 | Poten-
tial
Impact
from
Skyline
(Full
Sus-
pension) | Type of | Poten-
tial
Impact
from
Helicop-
ter and
Balloon
 | Type
of
Dam-
age |
|--|--|---|--|--
--	--	--	--
--

---|---|--|--|
| Log skidding results in
duff destruction, loss
of soil structure, and
loosening and displace-
ment of the soil, re-
sulting in severe
suiting in severe
suit | Moderate
to high | 'from logs becoming tem-
porarily airborne and
then slamming into the
ground, resulting in '
duff destruction, loss
of soil structure, and
loosening and displace-
ment of soil. Subse-
quent damage results in
severe erosion poten-
tial. Regeneration is
slow, resulting in pro- | Moderate | The signif-
icant
impact is
from access
roads on
these steep
slopes. <u>2</u> / | Low | y
 | 51 | High . | <u>6</u> / | | High
 | of soll structure, and
loosening and displace-
ment of the soll, re-
sulting in severe
erosion. | Moderate
 | promiting becoming teem
porarily airborne and
then slamming into the
ground, resulting in
duff destruction, loss
of soil structure, and
loosening and displace-
ment of soil. Subse-
quent damage results in
severe erosion poten-
tial.
 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | The signif-
icant
impact is
from access
roads on
these steep
slopes. 2/ | Low | <u>y</u>
 |
| soil disturbance; in-
cluding duff removal;
loss of soil structure,
and loosening and dis-
placement of the soil.
This results in in-
creased runoff, severe
erosion, and sediment | Moderate | erosion.
Soil damage will occur
from logs becoming tem-
porarily airborne and
then slamming into the
ground, resulting in
duff destruction, loss
of soil structure, and
loosening and displace-
ment of soil. Subse- | Low to
moderate | The signif-
icant
impact is
from access
roads on
these steep
slopes. <u>2</u> / | Low
 | У | • | | |
 | | duff destruction, loss
of soil structure, and
loosening and displace-
ment of soil, resulting
in increased erosion.
Soil compaction will
occur in the skid
trails when the soil is
wet, which is most of
the year. | moderate
 | comage protective duff-
cover, lossen and dis-
place surface soil, and
destroy soil structure,
resulting in an in-
creased erosion poten-
tial.
 | | 3/ | Low
 | 3/ |
| Log skidding results in | Moderate
to high | severe erosion poten-
tial. Soil damage will occur
from logs becoming tem-
porarily athorne and
then slamming into the
ground, resulting in
duff destruction, loss
of chosennis and displace-
ment of soil, Subse-
quent damage results in
severe erosion poten-
tial. Begeneration is | Low to
moderate | The signif-
impact is
from access
roads on
these steep
slopes. 2/ | Low
 | y | | | |
 | High | of soil structure, and
loosening and displace-
ment of the soil, re-
sulting in severe ero-
sion. Regeneration is
very slow, resulting in
prolonged exposure to | Moderate
to high
 | from logs becoming
temporarily airborne
and them slamming into
the ground, resulting
in duff destruction,
loss of soil structure,
and lossening and dis-
placement of soil.
Subsequent damage re-
sults in severe erosion
potential. Regenera-
tion is very slow, re-
sulting in prolonged
 | moderate | impact is
from access
roads on
these steep
rocky | Low
 | <u>3</u> / |
| duff destruction, loss
of soil structure, and
loosening and displace-
ment of the soil, re-
sulting in severe
crosion. Regeneration
is slow, resulting in
prolonged exposure to | Moderate
to high | longed exposure to
erosion.
Soil damage will occur
from logs becoming tem-
porarily airborne and
then slamming into the
ground, resulting in
duff destruction, loss
of soil structure, and
loosening and displace-
ment of soil. Subse- | Low to
moderate | | Low
 | У | | | <u>6</u> / |
 | | of soil structure, and
loosening and displace-
ment of soil, resulting
in increased erossion.
Soil compaction will
occur in the skid
trail when the soil is
met. Regeneration is
slow, resulting in
prolonged exposure to | CO TOW
 | damage protective duff
cover, loosen and dis-
place surface soil, and
destroy soil structure,
resulting in an in-
creased erosion poten-
tial. Regeneration is
slow, resulting in pro-
longed exposure to
 | Low | 2/ | Low .
 | 3/ |
| | | severe erosion poten-
tial. Regeneration is
slow, resulting in pro-
longed exposure to
erosion. | | |
 | | 55 | itgh | <u>6</u> / |
 | | Juff destruction, loss and
f soll structure, and
loosening and displace-
ment of soll, resulting
in increased erosion.
Soll compaction will
occur when the soll is
et, which is most of | oderate
 | famage protective duff
cover, loosen and dis-
place surface soil, and
lestroy soil structure,
resulting in an in-
reased erosion poten-
 | Low <u>3</u> | V∕ ι | .ow <u>3</u>
 | V |
| | Log skidding results in
duff destruction, loss
of soil structure, and
loosening and displace-
ment of the soil, re-
sulting in severe
sulting in severe
to solve the soil of the
soil disturbance; in-
cluding duff removal;
loss of soil structure,
and loosening and dis-
tris results in in-
creased runoff, severe
erosion, and sediment
production.
Log skidding results in
duff destructure, and
loosening and displace-
ment of the soil, re-
sulting in severe
to f soil structure,
and loosening and displace-
ment of the soil, re-
sulting in severe
for soil structure, and
loosening and displace-
ment of the soil, re-
sulting in severe
to f soil structure, and
loosening and displace-
ment of the soil, re-
sulting of soil structure,
and loosening and displace-
ment of the soil, re-
sulting soil severe
to f soil structure, and
loosening and displace-
ment of the soil, re-
sulting soil, results in
duff destructure, and
loosening and displace-
ment of the soil, re-
sulting soil, resulting in
solve, resulting in | Log skidding results in
prolonged exposure to
erosion.
Log skidding results in
diff destruction, loss
of soil structure, and
loosening and displace-
ment of the soil, re-
ment of the soil, re-
resoion. Respensation
is slow, resulting in
prolonged exposure to
erosion.
Moderate
soil disturbance: in-
loss of soil structure,
and loosening and dis-
placement of the soil.
This results in in-
creased runoff, severe
erosion, alsediamt
production.
Log skidding results in
duff distruction, loss
soil distructure, and
loosening and displace-
ment of the soil, re-
sulting in severe
erosion, Respensation
is slow, resulting in
prolonged exposure to
erosion.
Log skidding results in
duff distructure, and
loosening and displace-
ment of the soil, re-
sulting in severe
erosion, Respensation
is slow, resulting in
prolonged displace-
ment of the soil, re-
sulting in severe
erosion, and displace-
ment of the soil, re-
sulting in severe
erosion. | tial
lineset
from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
(from
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyline
Skyli | tial limpact from From Spatial Impact Impac | tial lineact impact from solution of the solut | tial
Impact
from
Sist-
Systemtial
Impact
from
Sist-
System
Sistem
pensionPoten-
Impact
from
System
Sistem
System
pensionPoten-
Impact
from
Sistem
System
pensionPoten-
Impact
from
System
pensionPoten-
Impact
from
System
pensionPoten-
Impact
from
form
form
form
set-
set-
set-
set-
set-
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
form
f | tial lapact from Poten-
received for the start from the steep person of soil structure, and losening and displace-
ment of the soil, results in the steep for the steep for the steep person between the steep person between the steep source to erosion. Type of Damage person between the steep person between the steep source to erosion. The steep for the steep to be steep source to erosion. The steep for the steep to be stee | tial lineart from the set of set o | Poten-
tial
Impact
from
Syline
Use J Poten-
tial
Impact
from
Syline
Use Poten-
tial
Impact
from
Syline
from
Syline
from
Syline
Impact
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline
from
Syline | Poten-
tial
Impact
Trom
(protoc) // Poten-
tial
Impact
Trom
(protoc) // Type of Damage Type of Damage Poten-
tial Impact
Trom
(protoc) Poten-
tial Impact
Trom
(protoc) Poten-
tial Impact
Trom
(protoc) Poten-
tial Type of Damage Type of Damage Type of Damage Poten-
tial Impact
Trom
(protoc) Poten-
tial Impact
Trom
(protoc) Poten-
tial Log stidding results in
store, resulting in
source protoce Source
portion Type of Damage Poten-
tial Impact
Trom
(protoc) Poten-
tial Impact
Trom
(protoc) Log stidding results in
store, results in
server erosing. Source
portion Noderate
for source protoce Noderate
transcess The signif-
transcess Impact
Trom
(protoce Log stidding results in
server erosing. Source
portion Source
portion Impact
transcess Impact
Trom
(protoce Impact
Trom
(protoce Log stidding results in
server erosing. Source
portion Source
portion Impact
transcess Impact
transcess Impact
transcess Log stidding results in
formation. Noderate
transcess Source
transcess Impact
transcess Impact
transcess Impact
transcess Log stidding results in
formation. Noderate
transcess Source
transcess Impact
transcess Impact
transcess Log stidding results i | Preservice 1 Preservice 1 Type of Damage 1 Type of Damage 1 Type of Damage 1 Type of Damage 1 Type of Damage 1 Type of Damage 1 Log skidding results in Networks 1 Solar-solar type of Damage 1 Log skidding results in Networks 5 High g/ Log skidding results in Networks 501 damage wills the ground, resulting in pro-travel to provide the start of solar solar to have on the solar results in the start of solar solar solar to have on the solar results in the start of solar solar solar to have on the solar results in the start of solar | 2 Pate-
tist
partice
styline
system 2 Pate-
tist
protection
(1) Pate-
protection
(1) Pate-
tist
protection
(1) Pate-
protection
(1) Pate-
protection
(1) | Poten-
tig // // Poten-
tig // // Poten-
tig // <td>Answer Answer Answer Answer Answer Answer Answer Type of Damage Dype of Damage <t< td=""><td>Image: Second Second</td><td>And the set of t</td><td> A rest of basis of the state of</td><td> A large a large a</td></t<></td> | Answer Answer Answer Answer Answer Answer Answer Type of Damage Dype of Damage <t< td=""><td>Image: Second Second</td><td>And the set of t</td><td> A rest of basis of the state of</td><td> A large a large a</td></t<> | Image: Second | And the set of t | A rest of basis of the state of | A large a large a |

1/ Ratings are based on impacts from uphill yarding. The impacts from dowhill yarding are generally more severe.
2/ Relative impact depends on read density, design, and steepness of slope. Roads create exposed soil on cutslopes and waste slopes that have potential to ravel, slopping, and endoc, causing dwange to soils and other resources. The potential increases with slope and is generally very 3/ Tree felling and like gouing may locate soil to slope. In some ension.
3/ Tree felling and like gouing may locate soil to coils binding properties of the roots, resulting in an increased mass novement potential.
5/ Less damage to the soil resource when FRC tractors are used by a prudent operator.
5/ Tractors, FRC, and rubber-tired skidders not allowed.

Poten tial Impact from Tractor, FMC,

and Rubber Land-Tired

Skidder

Logging

6/

6/

6/

6/

5

43 High

46 High

48 High

50 High

Type of Damage

type No.

168

¥

Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on road density, design, and skepness of slope. Roads create exposed soil on cutslopes and waste slopes that have potential to ravel, slough, and erede, causing damage to soils and other resources. The potential increases with slope and is generally very travel and lind poughing may loosen soil locally, resulting in some erosion. Total tree model in courses water content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. Less damage to the soil researce with rations are used by a prudent operator. 61

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

											15			0.50100	and the second starting to	S TRUM WAR	OUS TIMBER HARVEST METHOD	DS			
Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging <u>5</u> /	Type of Damage	Poten- tial Impact from High Lead <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>l</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of	Poten- tial Impact from Helicop ter and Balloon	Dam-	Land- type No.	Poten- tial Impact from Tracto FMC, and Rubber Tired Skidde Loggir 5/	r.	Poten tial Impac from High Lead]/		Poten- tial Impact from Skylin (Partia Sus- pension 1/	ł	Poten- tial Impact from Skylin (Full Sus- pension	ie Type of	Poten- tial Impact from Helicon Balloon	Type p- of d Dam-
61	High	<u>5</u> /	Hìgh	duff destruction, loss of soil structure, and loosening and displace- ment of the soil. Sub- sequent damage results in severe erosion and increased stream sedi- mentation potential.		Soft damage will occur from logs becoming tem- porarily a thrborne and then slaming into the ground, resulting in duff destruction, loss of soil structure, and loosening and displace- ment of soil. Subse- quent damage results in severe erosion and in- creased stream sedimen- tation potential.	Low to moderate	The signif- icant impact is from access roads on these steep slopes. 2/		3/	72	Ħīgh	Soll compaction will occur because of moderate to heavy sur- face textures. High soll moisture will in- tensify compaction. Destruction of duff layer and lossening and displacing of soll occurs with tractor turning and log sous- ing, resulting in sedi mentation and erosion		e Sofi compaction will occur in skid traits. Displacement of the duff and loss of sur- face porosity and In- filtration will In- filtration will In- crease erosion and stream sedimentation potential.	Moderate to low	The primary damage is from logs skidding along the ground, be- coming temporarily air- borne and then slamming into the ground, churr- ing the surface soil and making it suscep- tible to detachment and transport.	1	3/	Low	3/
62	High	Suil compaction will occur when soil is wet, which is most of the year. Tractor turning, along with log gouging destroys duff and soil structure, as well as loosening and displac- ing soil increasing erosion and stream sed- imentation potential.		Log skidding results for duff destruction, loss of soil structure, and loosening and displace- ment of soil, resulting in increased erosion. Soil compaction will occur in the skid trail when the soil is wet, which is most of the year.	moderate	Occasional gouging will damage protective duff cover, lossen and dis- place surface soil, and destroy soil structure, increasing soil erosion and stream sedimen- tation potential.	LOW	3/	Low	¥	•	H1gh H1gh	potential. <u>6</u> /	High	of soil structure and porosity, increasing rumoff and erosion potential,	io nigi	Soils highly suscepti- ble to erosion where duff is removed, and where aggregation is reduced in skid trails.	noderate	The primary impact is from road access on these steep slopes and erosive soils.		3/
66	High	<u>6</u> /	High	Log skidding results in duff destruction, loss of soil structure, and loss of porosity; in- creasing runoff and erosion potential.	Moderate	damage protective duff cover, loosen and dis- place surface soil, and destroy soil structure; resulting in an in- creased erosion poten- tial. Receneration is	Moderate to low	The signif- icant impact is from access roads on these steep slopes. <u>2</u> /	Low	¥		High	5/	High	of soil porosity and infiltration, which de- creases infiltration; increasing runoff and erosion potential.	moderate	Occasional gouging will damage protective duff cover, loosen and dis- place surface soil, and destroy soil structure, resulting in an in- creased erosion poten- tial.		3/	Low	Ð
67	High	<u>5</u> /	High	Log skidding results in duff destruction, loss of soll structure, and loss of porosity; in- creasing runoff and erusion potential.	Moderate to low	damage protective duff cover, lossen and dis- place surface soil, and destroy soil structure, resulting in an in- creased erosion poten-	Low to moderate	<u>2/</u>	Low	<u>3</u> /			-	mga	Log skidding results in duff destruction, loss of soil structure and porosity, increas- ing runoff and erosion potential. Soil com- paction will occur in the skid trails.		The primary damage is from logging access roads. Logs skidding along the ground, be- coming imporarily air- borne and then silaming into the ground, churn- ing the surface soil, making it susceptible to detachment and transport.	Low to moderate	The signif- icant impact is from access roads on these steep slopes, 2/	Low	3/
68	Moderate to high	Compactible material, especially when wet. Log skidding and trac- tor turning destroys surface structure, and disturbs soil, in- creasing erosion and stream sedimentation potential.	Moderate	Soil compaction will occur in skid-trails, including removal of duff layers, loss of soil porosity and in- filtration.	Low	tial. Some soil gouging, and compacting will occur under wet conditions in skid trails.	Low	3/	Low	<u>y</u>	•	figh	<u>6</u> /		Soil compaction will occur in skid trails. Displacement of the duff and loss of sur- face porosity and in- filtration will in- crease erosion and stream sedimentation potential.	Moderate to low	The primary damage is from logs skidding long the ground, be- coming temporarily air- norme and then slamming into the ground, churm- into the ground, churm- ing the surface soil, aking it susceptible to detachment and ransport.	Low	3/	Low	3/
71	High	6/	High to moderate	Log skilding results in duff destruction, loss of soil structure and porosity, increasing runoff and erosion potential.	Moderate	The primary damage is from logging access reads. Logs skilding along the ground, be- coming temporarily air- borne and then slamming into the ground, churn- ing the surface soil, making it succeptible to detachment and transport.	Low to moderate	The signif- icant impact is from access roads on these steep slopes. <u>2</u> /	Low	¥	83 H		Soll compaction will occur because of mod- orate to heavy surface soll textures. High soll moistures will in- tensify compaction. Destruction of duff layers and locening und displacing of soll accurs with tractor turning and log goug- ing increasing sedtmen- ation and erosion otential.	Aloderate	Soil compaction will occur in skid trails. Displacement of the duff and loss of sur- face porsity and in- filtration will in- crease erosion and stream sedimentation potential.	Low 1 a c b i i m t	he primary damage is 1 rom logs skidding long the ground, be- oming temporarily air- orne and then slawning nto the ground, churrn- ng the surface soil, sking it susceptible o detachment and nansport.	low .	3/	Low	3/

1/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe.
2/ Relative impact depends on read density, design, and steepness of slope. Roads create exposed soil on cutslopes and waste slopes that have potential to ravel, slopping, and erode, cussing damage to soils and other resources. The potential increases with slope and is generally very high on slope greater than 60 percent.
3/ Tree felling and link gouring may locen soil locally, resulting in some erosion.
4/ Total tree resound may increase water content and reduce soil binding properties of the roots, resulting in an increased mass movement patential.
5/ Less damage to the soil resource when PKC tractors are used by a prudent operator.
5/ Tractors, PKC, and rubber-tired skidders not allowed.

170

V Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe.
V Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe.
V Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe.
V Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe.
V Ratings are based on impacts from uphill yarding. The impact of slope. Roads create exposed soil on cutslopes and waste slopes that have high on slopes greater than 60 percent.
V Trate frime and link gouging may lossen soil locally, resulting in some erosion.
V Trate impact dense was may increase with rootent and reduce soil blanding properties of the roots, resulting in an increased mass movement potential.
V Trateors, PRC, and rubber-tired skidders not allowed.

POTENTIAL SOIL AND WATER INPACTS FROM VARIOUS TIMBER HARVEST METHODS

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

Poten- tial Impact from Tractor, FMC, and Rubber - Tired Skidder		Poten- tial Impact from High		Poten- tial Impact from Skyline (Partial Sus-	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tial Impact from Helicop- ter and Balloon	Dan-	Land- type No.	Poten- tial Jmpact from Tractor, FMC, and Rubber Tired Skidder Logging	Туре	of Damage	Poten- tial Impact from High Lead	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension)	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Danage	Poten- tial Impact from Helicop ter and Balloor	P- of d Dam
Skidder Tyr Logging Tyr <u>5</u> /	ype of Damage		Type of Damage Log skidding results in duff destruction, loss of soil structure and porosity; increasing runoff and erosion potential.	Moderate to high		Low to moderate	The primary impact is from access roads on these steep rocky slopes.		<u>y</u>	95	<u>5/</u> High	<u>5</u> /		<u>1/</u> High	Log skidding results in duff destruction, loss of minimal soil struc- ture common to granitic soils, and loosening and displacement of soil, resulting in very severe erosion and	1/ High to moderate	Soil damage will occur		The signif- icant impact is from access roads on these steep, very	Low	<u>3</u> /
7 High <u>6</u> /			Log skidding results in duff destruction, loss of soil porosity and infiltration, which de- creases infiltration;	Low to moderate	Occasional gouging will damage protective duff cover, loosen and dis- place surface soil, and destroy soil structure, resulting in an in-	Low	Ŋ	Low	У.						stream sedimentation potential.		soils. Subsequent damage results in a very severe erosion and stream sedimentation potential.		erosive slopes, <u>2</u> /		
1 High <u>5</u> /			increasing runoff and erosion potential. Log skidding results in durf destruction, loss of minimal structure granitic soils have, and losening and displacement of the soil, resulting in very severe erosion and stream sedimentation motential.	moderate	creased erosion poten- tial. Soli damage will occur when logs become tem- porarily airborne and destruction, loss of minimal soil structure common to gramitic solis and loosening and displacing soil.	Moderate to low	The signif- icant impact is from access roads on these stoep, ver erosive slopes. 2/	E(¥	96	High	6/		High	Log skidding results in duff destruction, loss of soil structure, and lossening and displace- ment of the soil, re- sulting in an increased erosion and stream sod- imentation potential. Regeneration is slow resulting in prolonged exposure to erosion.	High to moderate	Soll damage will occur when logs become tem- porarily althorme and then slam into the soll, resulting in duff destruction, loss of soll structure, and loosening and displac- ing of soll. Subse- quent damage results in an increase derosion and stream socienta- tion potential.	Moderate to low	The primary impact is from access roads on these steep slopes. <u>2</u> /		¥
12 High <u>6</u> /		High	Log skidding results i duff destruction, loss of minimal structure granitic soils have, and loosening and displacement of the	n Moderate	Subsequent damage re- sults in a very severe erosion and stream sedimentation poten- tial. Soil damage will occur when logs become ten- porarily a troborne and then slam into the soil, resulting in duff destruction, loss of minimal soil structure		impact is from acces roads on these erosive	5	3/	97	High	<u>6</u> /		H1gh	Log skidding results in duff destruction, loss of soil structure, and loosening and displace- ment of the soil, re- sulting in an increased erosion and stream sed- imentation potential.	Moderate	when logs become tem- porarily airborne and then slam into the soil resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased erosion and stream sed inentation	Low to moderate	The primary impact is from access roads. 2/	Low	3/
			soil, resulting in severa erosion and stream sedimentation potential.		common to granitic soils and loosening and displacing soil. Subsequent damage re- sults in a severe erosion and stream sedimentation poten- tial. Occasional gouging will	Low	slopes. <u>2</u> / 3/	Low	<u>3/</u> *	98		gouging wi this erodil detachment port. Soi will be a soil is we	rning and log 11 expose ble soil to and trans- 1 compaction problem when t, since sur- have medium		Log skidding results in duff destruction, loss of soil structure, and loosening and displace- ment of the soil, re- sulting in increased erosion potential.	Low to moderate	potential. Occasional gouging will damage duff cover, loosen and displace surface solls, and de- stroys soll structure, resulting in an in- creased erosion poten- tial.	Low	3/	Low	3/
goug this soll tach Soll a pr is w tend the are	ctor turning and log ging will expose s highly erodible 1 to rain drop de- haent and transport. 1 compaction will be problem when the soil wet, since granitics ad to form a crust on s surface when they passed over by sigment when wet.		Log skidding results dyff destruction, loss of soil structure, an lossening and displace ment of the soil, re- sulting in increased erosion potential.	d	 damage duff cover, loosen and displace surface solls, and de- stroy minisal soll structure common to granitic solls result- ing in an increased erosion potential. 					99		<u>5</u> /		High	Log stidding results in durf destruction. loss of soil structure, and locening and displace- ment of the soil, re- sulting in an increased revision and stream sed- imentation potential. Regeneration is very slow resulting in pro- longed periods of ex- posure to erosion.	to nign	Soil damage will occur when logs become tem- phen siam into the and soil resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased erosion and stream sedimentation potential,	Low to moderate	The primary impact is from access roads. <u>2</u> /	Low	<u>3</u> /
			12		11 yarding are generally a Roads create exposed soil esources. The potential						Ratings	are based o	n inpacts from	uph111 w	unding. The impacts from sign, and steepness of si ind damage to soils and c			12			

.

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

TABLE OF INTERPRETATIONS

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging 5/	Type of Damage	Poten- tial Impact from High Lead 1/	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tial Impact from Helicop- ter and Balloon	Dam-	Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging <u>5</u> /	Type of Damage	Poten- tial Impact from High Lead <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension) <u>J</u>		Poten- tial Impact from Skyline (Full Sus- pension)	Type of Damage	Poten- tfal Impact from Helicop ter and Balloon	Dam
100	9/ High	Soil compaction will be high when soils are wet, since surface soils are of medium texture. Soils are wet a high percentage of the time.	to low	of soil structure, and loosening and displace- ment of the soil, re- sulting in an increased erosion potential.		Occasional gouging may damage duff cover, loosen and displace soil, and destroy structure, resulting in an increased erosion potential.		3/	Low	3/	177	High	Soil compaction poten- tial is high under wet soil conditions. Trac- tor turning and log skidding disturbs sur- face structure, de- creased infiltration, increases runoff and	to high	Log skidding results in duff destruction, loss of soil porosity and infiltration, which de- creases infiltration, increasing runoff and erosion potential.	Low to moderate	Occasional gouging will damage protective duff cover, loosen and dis- place surface soll, and destroy soil structure, resulting in an in- creased erosion poten- tial.	Low	3/	Low	3/
120	High	5/	High	duff destruction, loss of soil porosity and infiltration. Soil loosening and displace- ment on these very steep slopes greatly increasing erosion and stream sedimentation potential.	moderate	porarily alroorme and then slam into the soil, resulting in duff destruction, loss of soil structure, and loosening and displac- ing of soil. Subse- quent damage results an increased erosion and stream sedimenta- tion potential.	10001 444	The primary impact is from access roads on these very steep rocky slopes.		3/	178	lligh	erosion potential.	High	Log skidding results in duff destruction, loss of soil porosity and infiltration. Soil loosening and displace- ment on these steep slopes increases ero- sion and stream sodi- mentation potential.	High to moderate	porarily airborne and then slam into the soil, resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased erosion and stream sedimentation	Low	The primary impact is from access roads on these steep slopes. <u>2</u> /	Low	¥
121	High	<u>6</u> /	High	Log skidding results if duff destruction. loss of soil porosity and infiltration. Soil lossening and displace- ment on these steep slopes greatly in- creases erosion and stream sedimentation potential.		The primary damage is from logging access roads, logs skidding along the ground, be- coming temporarily air- borne and then slamming into the ground, churn- ing the surface soil, making it susceptible to detachment and transport.	LOW	The primary impact is from access roads on these steep slopes.		3/	186	High	<u>\$</u> /	High	Log skidding results in duff destruction, loss of soil porosity and infiltration. Soil loosening and displace- ment on these steep slopes increases ero- sion and stream sedi- mentation potential.	Moderate to high	potential. Soil damage will occur when logs become tem- porarily airborne and then slam into the soil, resulting in duff destruction, loss of soil structure, and lossening and dis- placing soil. Subse-	Low	The primary impact is from access roads on these steep slopes. <u>2</u> /	Low	3/
122	High	<u>6</u> /	Moderate to high	Log skidding results in duff destruction, loss of soil porosity and infiltration, which de creases infiltration; increasing runoff and erosion potential.		Occasional gouging may damage duff cover, loosen and displace soil, and destroy structure, resulting in an increased erosion potential.		3/	Low	3/	191	High	<u>b</u> /	High	Log skidding results in duff destruction, loss of soil porosity and	High to moderate	quent damage results in an increased erosion and stream sedimenta- tion potential. Soil damage will occur when logs become tem- porarily airborne and	Low	The primary impact is from access	Low	3/
125	Moderate to high	Soil compaction will be high when soil is wet, because of medium soil textures.	Moderate		Low	Occasional gouging may damage duff cover, loosen and displece soil, and destroy structure, resulting in an increased erosion potential.		Y	Low	¥					infiltration. Soil loosening and displace- ment on these steep slopes results in a very sovere erosion and stream sedimentation potential.		then slam into the soil, resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased erosion and		roads on these steep slopes, <u>2</u> /		
176	High	<u>5</u> /	High	Log skidding results i duff destruction, loss of soil porosity and infiltration. Soil loogening and displace ment on these steep slopes increases ero- sion and stream sedi- mentation potential.	to high	Soil damage will occur when logs become tem- porarily airborne and then slam into the soil resulting in duff destruction, loss of soil structure, and loosening and dis- placing soil. Subse- quent damage results in increase definenta- tion potential.		The primar impact is from acces roads on these step slopes. 2/	is ip	у	192	High	<u>5/</u>		Log skidding results in duff destruction, loss of foll provide in the standard standard ment on these stapper slopes results in a severe erosion and stream sedimentation potential.	Moderate	stream sedimentation potential. Occasional gouging may damage duff cover, lossem and displace soll, and destroy structure, resulting in an increased erosion potential.		The primary impact is from access roads. <u>2</u> /	l.ow	<u>3</u> /

1/ Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on road density, design, and steepness of slope. Roads create exposed soil on cutslopes and waste slopes that have potential to ravel, slowph, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very high on slopes greater than 60 percents. soil locally, resulting in some erosion. J. Tree folling and limb googing may zer content and reduce soil binding properties of the roots, resulting in an increased mass covenent potential. J. Tractors, FNC, and rubber-tired skidders not allowed.

174

1/2/

Ratings are based on impacts from uphill yarding. The impacts from downhill yarding are generally more severe. Relative impact depends on road domsity, design, and steppenss of slope. Boads create exposed soil on cutslopes and waste slopes that have potential to ravel, slough, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very high on slopes greater thas 60 percent. Three felling and linb gought may increase water content and reduce soil binding properties of the roots, resulting in an increased mass movement potential. Viss damage to the soil resource when RMC tractors are used by a prudent operator.

POTENTIAL SOIL AND WATER IMPACTS FROM VARIOUS TIMBER HARVEST METHODS

Land- type No.	Poten- tial Impact from Tractor, FMC, and Rubber Tired Skidder Logging 5/	Type of Damago	Poten- tial Impact from High Lead <u>1</u> /	Type of Damage	Poten- tial Impact from Skyline (Partial Sus- pension)]/	Type of Damage	Poten- tial Impact from Skyline (Full Sus- pension)	Type of Danage	Poten- tial Impact from Helicop- ter and Balloon	Type of Dam- age	
193	High	Soil compaction can result when logged at moisture contents. Tractor turning and log skidding can dislodge and disturb soil, in- creasing its ability to erode.	Moderate to high	Log skidding results in duff destruction, loss of soil porosity and infiltration, which de- creases infiltration, and increases runoff and erosion potential.	Low to moderate	Occasional gouging will damage protective duff cover, loosen and dis- place surface soil and destroy soil structure, resulting in an in- creased erosion poten- tial.	Low	3/	Low	3/	,
194	High	<u>5/</u>	High	Log skidding results in duff destruction, loss of soil porosity and infiltration. Soil loosaning and displace- ment on these steep slopes increases ero- sion and stream sedi- mentation potential.	High to moderate	Soil damage will accur when logs become tes- porarly sirborne and then slam into the soil, resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased evosion and stream sedimentation potential.	Low	The primary impact is from access roads on these steep slopes. 2/	LOW	3/	
196	High	<u>\$</u> /	High	Log skidding results in duff destruction, loss of soil structure, and loosening and displace- ment of the soil, re- sulting in an increased erosion and stream sod- mentation potential. Regeneration is slow, resulting in prolonged exposure to erosion.	High to moderate	Soll damage will occur when logs become tea- porarily a thorme and then slam into the soil, resulting in duff destruction, loss of soil structure, and loosening and displac- ing soil. Subsequent damage results in an increased erosion and stream sedimentation potential.	Moderate to low	The primary impact is from access roads on these steep slopes. 2/	Low	у	
197	Moderate to high	Some slopes greater than 35 percent. Log skidding results in duff destruction and loss of soil portist. Exitin portist. Exitin potentials are increased due to displacement.	Moderate	Log skidding results in duff destruction, loss of soil structure, and log to the structure, and log to the structure, and log to the structure structure soil ting in an increased resulting in an increased resulting in an increased resulting in prolonged exposure to erosion.	Low to moderate	Occasional gouging and duff destruction will forease erosion potential.	Low	3/	Low	У	
				3							

APPENDIX VIII

ENGINEERING TEST DATA

type No. 4

tion: NW4,Sec.31,T.49N.,R.6E. 1: id Limit: 42 id Limit: 42
ticity Index: 6
mum Density - p.c.f.: 105
mum Moisture - %: 18.4
ific Gravity, #10(-) only: 2.58
fornia Bearing Ratio 5%: 18.6 90%: 7.9 85%: 3.1 -

Classification	Mechanical	Hydrometer
AASHO	-	A-1-6(0)
UNIFIED	-	GMU
Mechanical	Analysis	
ieve Size	% Passing	
	<u></u>	
3	-	
2 1/2	-	
2	100	
3 2 1/2 2 1 1/2	97.51	
	96.91	
3/4	91.42	
1/2	91.42	
3/8	79.29	
#4	60.57	
#10	40.49	
#40	-	
#100	-	
#200		
Hydrometer		
ieve Size	% Passing	
#20	32.34	
#40	27.72	
#60	25.13	
#100	23.31	
#200	21.43	
ia. MM 1/		
.0475	18.22	
.0193	17.10	
.0116	14.70	
.0084	12.82	
.0061	11.29	
.0031	7.52	

Landtype No. 8

Location:	SEL, S	Wa, Sec. 19	,T.39S	.,R.12W.
Depth: -				
Liquid Li	nit: 4	2		
Plasticit				
Maximum D			102.	2
Optimum M				-
Specific (2.66
California	a Bearin	ng Ratio		
95%:	7.2	5 - 5 - 6		
90%:	3.1			
85%:	0.2			
pH: -				
Classific	ation	Mechanic	al H	vdrometer

orassificación	nechanicai	nyarometer
AASHO	-	A-5(1)
UNIFIED		SMU

Sieve Size	% Passing
3	-
2 1/2	-
2	-
1 1/2	100
1	97.37
3/4	94.00
1/2	_
3/8	86.11
#4	76.00
#10	63.90
#40	-
#100	-
#200	-

1.000	nyarometer	Andiysis
5	ieve Size	% Passing
	#20	54.34
	#40	46.14
	#60	41.78
	#100	38.46
	#200	35.24
Di	ia. MM 17	
	.0284	31,98
	.0231	28.78
	.0113	24.88
	.0082	22.15
	.0059	19.81
	.0030	14.82
	.0013	9.83

1/ Ratings are based on impacts from uphill yarding. The impacts from dowshill yarding are generally more severe.
2/ Relative impact depends on road density, design, and steepness of slope. Roads create exposed soil on cutslopes and waste slopes that have putnitia to rule, lough, and erode, causing damage to soils and other resources. The potential increases with slope and is generally very high cities in the point of th

176

 $\underline{1}$ Particle size computed from hydrometer readings.

4.17

.0013

Landtype No. 8			Landtype No. 8c	
Location: SEW,SE Depth: - Liquid Limit: 35 Plasticity Index: Maximum Density - Optimum Moisture Specific Gravity, California Bearir 95%: 6.6 90%: 4.6 85%: 2.3 pH: -	9 - 6 - p.c.f.: 95 - %: 25.6 , #10(-) only	.4	Location: Centr Depth: - Liquid Limit: 4 Plasticity Index Maximum Density Optimum Moisture Specific Gravity California Beari 95%: 9.9 90%: 5.9 85%: 1.8 pH: -	: 14 - p.c.f.: 97.5 - %: 22.3 , #10(-) only:
Classification	Mechanical	Hydrometer	Classification	Mechanical Hy
AASH0 UNIFIED	2	A-2-4 SMU	AASHO UNIFIED	- A - S
Mechanical			Mechanical	Analysis
Sieve Size	% Passing		Sieve Size	<u>% Passing</u>
3	100		3	-
2 1/2	-		2 1/2	
2	-		2	100
2 1 1/2	86.36		1 1/2	98.93
1	80.93		1	96.35
3/4	80.10		3/4	94.27
1/2	78.97		1/2	00 20
3/8	77.79		3/8 #4	86.26 73.57
#4	71.05			56.18
#10	50.96		#10	50.10
#40	7		#40	-
#100	-		#100 #200	
#200			#200	
Hydrometer	Analysis	<u>-</u>	Hydrometer	
Sieve Size	% Passing	ī	Sieve Size	% Passing
#20	44.99		#20	43.77
#20 #40	41.26		#40	37.84
#60	37.93		#60	35.29
#100	34.20		#100	33.38
#200	29.63		#200	31.33
Dia. MM 1/			Dia. MM 1/	
.0298	26.59		.029	29.42
.0196	22.73		.019	26.10
.0115	20.57		.011	23.52
.0083	18.25		.0082	21.86
.0059	16.70		.0059	19.37
.0030	12.84		.0043	15.27 10.47
	8.88		.0013	

r of Sec.6.T.36S.,R.12W. Location: SW%,NW%,Sec.28,T.385.,R.13W. Depth: -Liquid Limit: 47 Plasticity Index: 10 1 Maximum Density - p.c.f.: 100.4 Optimum Moisture - %: 19.8 Specific Gravity, #10(-) only: 2.545 y, #10(-) only: 2.66 California Bearing Ratio 95%: 18.0 90%: 7.0 85%: 3.0 pH: -Hydrometer Classification Mechanical A-2-7(1) AASHO -UNIFIED -Mechanical Analysis Sieve Size % Passing 3 100 2 1/2 . -1 1/2 94.77 78.62 3/4 68.41 1/2 60.79 3/8 56.21 #4 42.30 #10 42.69 #40 #100 #200 Hydrometer Analysis Sieve Size % Passing #20 41.96 #40 40.85 #60 38.43 #100 34.11 #200 28.74 Dia. MM 1/ .0289 22.71 .0120 20.72 .0114 18.29 .0082 16.95 .0059 15.60 .0030 12.49 .0013 9.37

Landtype No. 8c

SMU

Landtype No. 11 Location: NE%, NW%, Sec. 30, T. 36S., R.9W. Depth: -Liquid Limit: NP Plasticity Index: NP Maximum Density - p.c.f.: 105.7 Optimum Moisture - %: 18.7 Specific Gravity, #10(-) only: 2.75 California Bearing Ratio 95%: 19.0 90%: 9.3 85%: 2.3 pH: -Classification Mechanical Hydrometer AASHO A-1-b(0) -UNIFIED SMD Mechanical Analysis Sieve Size % Passing 3 2 1/2 -2 -1 1/2 -1 100 3/4 99.49 1/2 -3/8 95.63 #4 83.41 #10 61.87 #40 -#100 -#200 -Hydrometer Analysis Sieve Size % Passing #20 44.25 #40 34.60 #60 29.76 #100 24.86 #200 18.10 Dia. MM 1/ .0318 11.14 .0181 7.91 .0122 5.96 .0088 4.54 .0062 3.89

2.13

.84

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

Hydrometer

A-2-7(6)

GMU

-

÷.

-

178

179

.0037

.0012

Landtype No. 11	<u>I-B</u> <u>1</u> /	Landtype No. 12
Depth: 13 to 6 Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur	25-35 x: NP-10 y - p.c.f.: - re - %: - ty, #10(-) only: -	Location: NW4,S Depth: - Liquid Limit: 2 Plasticity Index Maximum Density Optimum Moisture Specific Gravity California Beari 95%: 20.0 90%: 10.5 85%: 4.0 pH: -
Classification	Mechanical Hydrometer	Classification
AASHO UNIFIED	A-2 - GM -	AASHO UNIFIED
Mechanica Sieve Size	1 Analysis % Passing	Mechanical Sieve Size
STEVE 5126	<u>a rassing</u>	UILUO UILU
3	75-90	3 2 1/2 2 1 1/2
2 1/2	-	2 1/2
3 2 1/2 2 1 1/2	-	1 1/2
1 1/2	2	1 1/2
3/4	-	3/4
1/2	-	1/2
	_	3/8
3/8		
#4	20-50	#4
#4 #10	15-45	#10
#4		

Land type no. 12		
Location: NW4,S	ec.8.T.40S.,R	.8W.
Depth: -		
Liquid Limit: 2	6	
Plasticity Index	: 2	1
Maximum Density	- p.c.f.: 11	6.2
Optimum Moisture	- %: 15.9	
Specific Gravity	#10(-) only	: 2.8902
California Beari	ng Ratio	
95%: 20.0	ng na tro	
90%: 10.5		
85%: 4.0		
pH: -		
pitt		
	Mechanical	Hydrometer
Classification	Hechanical	
AASHO	-	A-4-0
AASHO UNIFIED		
AASHO		A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> Sieve Size	- - Analysis	A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> Sieve Size	- - Analysis	A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> Sieve Size	Analysis % Passing - -	A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> Sieve Size	Analysts <u>% Passing</u> 100	A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2	Analysts <u>% Passing</u> 100 93.82	A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 1/2 1 3/4		A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 1/2 1 3/4 1/2	Analysts	A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 1/2 1 3/4	Analysis <u>% Passing</u> - 100 93.82 93.26 90.63 89.58	A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 1/2 1 3/4 1/2	Analysis % Passing - 100 93.82 93.26 90.63 89.58 85.84	A-4-0 SMU
AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8	Analysis <u>% Passing</u> - 100 93.82 93.26 90.63 89.58	A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> <u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40	Analysis % Passing - 100 93.82 93.26 90.63 89.58 85.84	A-4-0 SMU
AASHO UNIFIED <u>Mechanical</u> <u>Sieve Size</u> 3 2 1/2 2 2 1 1/2 1 1/2 3/4 1/2 3/8 #4	Analysis % Passing - 100 93.82 93.26 90.63 89.58 85.84	A-4-0 SMU

1

Hydrometer	
Sieve Size	% Passing
#20	67.31
#40	58.90
#60	53.06
#100	47.73
#200	39.29

Landtype No. 14	<u>-A 1</u> /	
Location: SE4S Depth: 0 to 26 Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: - 90%: - 85%: - pH: 5.6-6.0	inches - x: NP - p.c.f.: - e - %: - y, #10(-) on1	
Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-1,A-2 GM	2

Mechanical Sieve Size	
STEVE STZE	% Passing
3	75-90
2 1/2	-
2	-
1 1/2	-
1 200	-
3/4	-
1/2	-
3/8	-
#4	35-60
#10	30-55
#40	20-40
#100	
#200	10-20

0

Location: SE4,Sec.11,T.40S.,R.6W. Depth: 26 to 65 inches Liquid Limit: -Plasticity Index: NP Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: -California Bearing Ratio 95%: -on%: -90%: -85%: pH: 5.1-6.0 Classification Mechanical Hydrometer AASHO A-1,A-2 SM,GM UNIFIED -Mechanical Analysis Sieve Size % Passing 3 30-55 2 1/2 -2 1 1/2 3/4 1/2 3/8 ---#4 35-70 #10 30-65 20-45 #40 #100

-

10-25

#200

Landtype No. 14-B 2/

 $\frac{1}{2}$ A refers to topsoil. $\frac{1}{2}$ B refers to subsoil.

ocation: SE%,	₩4,Sec.2,T.41S	.,R.8W.
epth: -		
iquid Limit:	32	
lasticity Index	<: 7 	2
Maximum Density	- p.c.t.: 105	• 6
ptimum Moisture Specific Gravity	e = 3: 19.0	2 73
California Bear	ing Ratio	21/0
95%: 8.8	ing naoro	
90%: 3.8		
85%: 1.5		
рН: -		
Classification	Mechanical	Hydrometer
AASHO	-	A-2-4(0)
UNIFIED	-	SMU
Mechanical	Analysis	
Sieve Size	% Passing	
3	-	
2 1/2 2 1 1/2	-	
2		
	100	
1	99.3	
3/4	98.48	
1/2	95.25	
3/8	86.32	
#4	70.65	
#10 #40	70.00	
#100	-	
#200	-	
#200		
	r Analysis % Passing	
Sieve Size		-
#20	56.97	
#40	44.31	
#60	38.79	
#00	35.56	
#100		
#100 #200	32.65	
#100 #200 Dia. MM <u>1</u> /	32.65	
#100 #200 Dia. MM <u>1</u> / .03060	32.65 32.54	
#100 #200 Dia. MM <u>1</u> / .03060 .0197	32.65 32.54 29.78	
#100 #200 Dia. MM <u>1</u> / .03060 .0197 .0117	32.65 32.54 29.78 26.91	
#100 #200 Dia. MM <u>1</u> / .03060 .0197 .0117 .0084	32.65 32.54 29.78 26.91 24.71	
#100 #200 Dia. MM <u>1</u> / .03060 .0197 .0117 .0084 .0060	32.65 32.54 29.78 26.91 24.71 21.95	
#100 #200 Dia. MM <u>1</u> / .03060 .0197 .0117 .0084	32.65 32.54 29.78 26.91 24.71	

Location: SWW, Depth: - Liquid Limit: 3 Plasticity Indee Maximum Density Optimum Moistury Specific Gravitj California Bear 95%: 12.3 90%: 7.0 85%: 0.0 pH: -	x: 7 - p.c.f.: 105 e - %: 19.5 v. #10(-) only:	
Classification	Mechanical	Hydromete
AASHO UNIFIED	s . <u>-</u>	A-4(1) GMU
Mechanical	Analysis	
Sieve Size	% Passing	
	100	
3 2 1/2	-	
2 1/2	98.24	
1 1/2	93.41	
1	87.85	
3/4	84.75	
1/2	-	
3/8	74.80	
#4	65.14	
#10	54.93	
#40	-	
#100	-	
#200	-	
Hydrometer	r Analysis	
Sieve Size	% Passing	1
#20	50.96	
	48.67	
#40	47.40	
	44.44	
#40 #60		
#40 #60 #100 #200 Dia, MM 1/	44.44 39.02	
#40 #60 #100 #200 Dia. MM <u>1</u> / .0290	44.44 39.02 28.19	
#40 #60 #100 #200 Dia. MM <u>1</u> / .0290 .0192	44.44 39.02 28.19 23.30	
#40 #60 #100 #200 Dia. MM <u>1</u> / .0290 .0192 .0116	44.44 39.02 28.19 23.30 19.06	
#40 #60 #100 Dia. MM <u>1</u> / .0290 .0192 .0116 .0083	44.44 39.02 28.19 23.30 19.06 17.35	
#40 #60 #100 #200 Dia. MM <u>1</u> / .0290 .0192 .0116	44.44 39.02 28.19 23.30 19.06	

Landtype No. 16 Location: NE%, SE%, Sec. 32, T.41S., R.6W. Depth: -Liquid Limit: 37 Plasticity Index: 7 Maximum Density - p.c.f.: 103.7 Optimum Moisture - %: 21.1 Specific Gravity, #10(-) only: 2.83 California Bearing Ratio 95%: 7.8 90%: 3.5 85%: pH: pH: -Hydrometer Classification Mechanical A-4(2) SMU AASHO -UNIFIED -Mechanical Analysis Sieve Size % Passing 3 2 1/2 -100 1 1/2 95.54 3/4 94.86 1/2 3/8 87.68 79.81 #4 #10 70.93 #40 -#100 -#200 -Hydrometer Analysis Sieve Size % Passing #20 65.11 #40 59.13 #60 54.96 #100 51.03 #200 45.73 Dia. MM 1/ .0267 38.04 .0175 33.86 .0106 29.11 .0078 26.32 .0055 23.53 .0028 18.05 .0012 12.93

Landtype No. 17 Location: NW4, SE4, Sec. 19, T. 39S., R. 12W. Depth: -Liquid Limit: 44 Plasticity Index: 9 Maximum Density - p.c.f.: 89.4 Optimum Moisture - %: 28.8 Specific Gravity, #10(-) only: 2.61 California Bearing Ratio 95%: 3.8 90%: 1.4 85%: 0.2 Classification Mechanical Hydrometer A-5(3) AASHO ML UNIFIED _ Mechanical Analysis Sieve Size % Passing -2 1/2 -100 1 1/2 95.42 92.35 3/4 90.06 1/2 3/8 84.75 78.51 #10 69.24 #40 -#100 -#200 -Hydrometer Analysis Sieve Size % Passing 66.19 62.86 #40 #60 59.61 #100 55.14 #200 49.66 Dia. MM 1/ .0272 43.13 .0177 40.26 .0107 35.76 .0078 32.80 30.41 .0056 .0029 25.05

17.88

3

1

#4

#20

.0012

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

182

Landtype No. 18	
Location: SW,Sec.35,T.35S.,R.8	ω.
Depth: -	
Liquid Limit: 47	
Plasticity Index: 13	
Maximum Density - p.c.f.: 84.7	
Optimum Moisture - %: 28.1	
Specific Gravity, #10(-) only:	2.65
California Bearing Ratio	
95%: 4.5	
90%: 0.9	
85%: 0.0	
pH: -	

Classification	<u>Mechanical</u>	Hydrometer	Classificat
AASHO UNIFIED	-	A-7-5(5) ML	AASHO UNIFIED
Mechanical	Analysis		Mechan
Sieve Size	% Passing		Sieve Size
3 2 1/2 2 1 1/2	Ē		3 2 1/2 2 1 1/2
3/4	-		3/4
1/2 3/8 #4 #10	100 98.38 90.81 71.64		1/2 3/8 #4 #10
#40 #100 #200	-		#40 #100 #200
Hydrometer Sieve Size	Analysis <u>%</u> Passing		Hydrom Sieve Size
#20 #40 #60 #100	65.09 59.27 55.74 52.96		#20 #40 #60 #100
#200 Dia. MM <u>1</u> / .0233	50.13 44.10		#200 Dia. MM <u>1</u> / .0305
.0153 .0094 .0070 .0051	41.66 37.40 34.35 30.92		.0197 .0117 .0084 .0061
.0027	23.84 14.70		.0031 .0013

Landtype No. 18 Location: NW,Sec.34,T.35S.,R.8W. Depth: -Liquid Limit: 45 Plasticity Index: 9 Maximum Density - p.c.f.: 94.0 Optimum Moisture - %: 24.5 Specific Gravity, #10(-) only: 2.66 California Bearing Ratio 95%: 5.5 90%: 2.4 85%: 1.2 pH: -Mechanical tion Hydrometer A-5 --SMU nical Analysis % Passing -100 98.71 93.99 73.03 --meter Analysis % Passing 57.77 47.86 42.82 39.34 35.96 32.35 29.44 25.57 23.24 20.34

13.85 9.10

Landtype No. 19 Location: NE4, Sec.29, T.34S., R.9W. Depth: -Liquid Limit: 53 Plasticity Index: 15 Maximum Density - p.c.f.: 93.4 Optimum Moisture - %: 26 Specific Gravity, #10(-) only: 2.60 California Bearing Ratio 95%: 5.0 90%: 4.1 85%: 2.4 pH: -Classification Mechanical Hydrometer AASHO A-7-5(7) -UNIFIED OH -Mechanical Analysis Sieve Size % Passing 3 2 1/2 -2 -1 1/2 100 99.53

99.33

-

99.33

90.38

77.94

-

-

-

Hydrometer Sieve Size	
STEVE STZE	% Passing
#20	72.19
#40	66.26
#60	61.92
#100	58.27
#200	54.19
Dia. MM 1/	
.0251	54.63
.0163	52.49
.0099	47.16
.0073	41.82
.0053	33.08
.0028	30.94
.0012	21.34

3/4

1/2

3/8

#4

#10

#40

#100

#200

Landtype No. 19 Location: SE%,SE%,Sec.9,T.41S.,R.12W. Depth: -

Hydrometer A-7-5(12) MH
ng
-
g
3 ⁴

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

184

Landtype No. 19

11220		
Loca	tion:	NW4,SE4,Sec.18,T.40S.,R.12W.
Dept	:h: -	
Liqu	id Li	mit: 49
Plas	ticit	y Index: 14
Maxi	imum D	ensity - p.c.f.: 89.3
Onti	mum M	loisture - %: 27.3
Spec	ific	Gravity, #10(-) only: -
Cali	forni	a Bearing Ratio
	95%:	
	90%:	3.9
	85%:	
pH:	-	

Classification	Mechanical	Hydrometer	Ţ
AASHO	-	A-7-5	
UNIFIED	-	ML	0-
-		-	-
Mechanica Sieve Size	1 Analysis <u>% Passin</u>	a	3
		2	
3 2 1/2 1 1/2	100 100		
2 1 1/2	100 100		
	98.71		
3/4 1/2	98.71		
3/8 #4	93.39 87.52 81.37		
#10 #40	-		
#100 #200	:		× .
4			
Hydromete Sieve Size	r Analysis % Passir	ng	
#20 #40 #60 #100	77.12 73.36 69.57 65.58		
#200 Dia. MM <u>1</u> /	59.94		
.0289 .0187 .0111	53.56 49.95 45.62		
.0080 .0057 .0029	42.59 39.70 34.94		
.0013	27.43		

1/ Particle size computed from hydrometer readings.

	Landtype	No.	19
--	----------	-----	----

Location: NE4,5 Depth: - Liquid Limit: 4 Pasticity Inder Maximum Density Optimum Moisturr Specific Gravity California Bear 95%: 14.5 90%: 9.2 85%: 5.7	19 - p.c.f.: 94 - %: 23.6 /, #10(-) only	.6
рН: -		*
Classification	Mechanical	Hydrometer
AASHO	-	A-7-5
UNIFIED		SMU

Mechanical	Analysis
Sieve Size	% Passing
3	-
3 2 1/2 2 1 1/2 1	·
2	100
1 1/2	98.95
1	98.24
3/4	96.16
1/2	-
3/8	89.97
#4	78.87
#10	64.39
#40	-
#100	-
#200	-
Hydrometer Sieve Size	r Analysis % Passing
	- 100 may
#20	58.27
#40	54.60
#60	51.71
#100	48.44
#200	44.19
Dia. MM 1/	
	20 97
.0233	39.87
.0233 -	37.49
.0233 - .0151 .0092	37.49 34.78
.0233 .0151 .0092 .0066	37.49 34.78 33.42
.0233 .0151 .0092 .0066 .0049	37.49 34.78 33.42 30.77
.0233 .0151 .0092 .0066	37.49 34.78 33.42

Landtype No. 21		
Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 2.7 90%: 0.4 85%: - pH: -	32 x: 6 - p.c.f.: 10 e - %: 20.6 y, #10(-) only)2.1
Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-4(0) ML	A-4(0) ML
Mechanical		-
Sieve Size	<u>% Passing</u>	1
3 2 1/2	100	
2 1/2	100	
2 1 1/2	100 100	
1 1/2	100	
3/4	100	
1/2	99.47	
3/8	99.05	
#4	97.77	
#10	93.50	
#20 #40	78.70 68.95	
#60	63.15	
#100	58.07	
#200	51.90	20
Hydrometer	Analysis	-12
Sieve Size	% Passing	1
#20	78.70	
#40	68.95	
#60	63.15	
#100 #200	58.07	
Dia. MM 1/	51.90	
.0250	68,20	
.0160	66,91	
.0093	65.62	
.0066	64.33	
.0048	61.75	
.0024	55.30	

Landtype No. 22

Landtype No. 22		
Location: SM4, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 5.4 90%: 2.6 85%: 1.1 PH: -	37 x: 10 - p.c.f.: 97 e - %: 21.7 y, #10(-) only	2
Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-4(4) ML	A-4(4) ML
Mechanical <u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #20 #40 #60 #100 #200	Analysis <u>% Passing</u> 100 100 100 100 100 99.77 98.36 90.34 76.00 69.37 64.07 60.96 58.43 55.05	
Hydrometer Sieve Size	Analysis % Passing	
#20 #40 #60 #100 #200 Dia. MM <u>1</u> /	69.37 64.07 60.96 58.43 55.05	
.0273 .0179 .0106 .0078 .0056 .0028 .0012	32.11 29.05 25.98 22.91 20.61 16.01 11.08	

Remarks: Maximum particle size is 3/4". The shape of the + #10 particles is angular. The MH appears to be weathered mudstone. Dispersion by mechanical agation for 1 minute.

55.30

32.83

.0024

.0012

Remarks: Maximum particle size is 3/4". Particles retained on the 1/2" sieve are angular in shape. Particles passing the 1/2 " sieve and retained on the #10 are rounded to subrounded in shape.

 $\underline{1}$ Particle size computed from hydrometer readings.

Landtype No. 26 Location: NE%,SE%,Sec.10,T.40S.,R.12W. Depth: - Liauid Limit: NA								
					Plasticity Index			L
					Maximum Density	- p.c.f.: 82	.0	N
Optimum Moisture Specific Gravity	- %: 32.2		0					
		: 2.52	5					
California Beari 95%: 8.2	ng Katio							
90%: 5.1								
85%: 3.0								
pH: -			F					
Classification	Mechanical	Hydrometer	7					
		Succession STR	-					
AASHO	-	A-4(0)						
UNIFIED	-	OL						
Mechanical			-					
Sieve Size	% Passing		101					
3 2 1/2 2 1 1/2	-							
2 1/2	-							
1 1/2	5							
1 1/2	100							
3/4	99.36							
1/2								
3/8	93.47							
#4 #10	84.32 74.30							
#40	74.50							
#100	-							
#200								
			· · ·					
Hydrometer Sieve Size	Analysis % Passing		101					
The second s	11		2					
#20	67.17							
#40 #60	61.74 58.69							
#100	56.86							
#200	54.86							
Dia. MM 1/			1					
.0288	47.20							
.0193	40.41 34.15							
.0117	30.70							
.0062	27.05							
0021	20.26							

Landtype No. 26		9 C 2
Location: NE%, Depth: - Liquid Limit: : Plasticity Inde Maximum Density Optimum Moisturn Specific Gravity California Bear 95%: 4.2 90%: - 85%: - pH: -	39 - p.c.f.: 92 e - %: 24.9 v. #10(-) only	.5
Classification	Mechanical	Hydrometer
AASHO UNIFIED	:	A-4(0) SMU
Mechanical Sieve Size	Analysis % Passing	
3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200	100 100 96.74 95.05 8.9 71.34 56.42 -	
Hydrometer Sieve Size	Analysis % Passing	
#20 #40 #60 #100 #200	49.21 45.92 43.95 41.50 36.84	
Dia. MM <u>1</u> / .0294 .0207 .0114 .0082 .0058 .0030 .0013	29.96 25.94 23.70 20.67 18.87 14.85 11.72	

Landtype No. 27 Landtype No. 31 Location: NW4, NW4, Sec. 11, T. 40S., R. 12W. Depth: -Liquid Limit: 53 Plasticity Index: 13 Maximum Density - p.c.f.: 85.1 Optimum Moisture - %: 29.2 Specific Gravity, #10(-) only: 2.59 California Bearing Ratio 95%: 8.3 90%: 5.1 85%: 2.5 pH: pH: Classification Mechanical Hydrometer AASHO A-7-5(6) UNIFIED OH Mechanical Analysis Sieve Size % Passing 3 100 3 2 1/2 -95.77 1 1/2 95.77 95.77 1 3/4 95.77 1/2 -3/8 90.82 #4 81.67 #4 #10 72.35 #10 #40 -#40 #100 -#100 #200 -#200 Hydrometer Analysis Sieve Size % Passing #20 67.89 #20 #40 62.92 #40 #60 59.69 #60 #100 56.64 #100 #200 54.11 #200 Dia. MM 1/ Dia. MM 1/ .0290 43.81 .0265 .0191 39.42 .0178 .0113 35.97 .0108 .0082 32.83 .0078

Location: SE¼, SE¼, Sec.13, T.365., R.8W. Depth: -Liquid Limit: 26 Plasticity Index: 3 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: -California Bearing Ratio 95%: -90%: -85%: --Classification Mechanical Hydrometer AASHO A-2-6(0) -UNIFIED SMU Mechanical Analysis Sieve Size % Passing 100 2 1/2 -1 1/2 97.78 94.58 3/4 91.75 1/2 85.62 3/8 80.57 68.53 55.49 ---Hydrometer Analysis Sieve Size % Passing 48.78 44.04 41.40 39.05 34.01 25.76

21.40

17.67

15.80

13.93

10.35

7.44

1/ Particle size computed from hydrometer readings.

20.36

13.89

.0031

.0013

29.17

24.05

18.09

.0059

.0013

.003

189

.0056

.0028

.0012

Location: SE%,S Depth: - Liquid Limit: 3 Plasticity Index Maximum Density Optimum Moisture Specific Gravity California Beari 95%: 3.7 90%: 1.5 85%: - pH: -	7 : 11 - p.c.f.: 10 - %: 19.8 , #10(-) only	2.2
Classification	Mechanical	Hydrometer
AASHO UNIFIED	1.1	A-6(3) SMU
Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200	Analysis % Passing 100 96.02 91.66 90.14 79.56 70.16 60.32 -	Ī

-

andtype	No.	32	
ocation:	N	₩‰,NV	Na, Se

iquid Limit: Plasticity Inde Maximum Density Dptimum Moisture Specific Gravity California Bear 95%: 9.5 90%: 4.6 85%: 2.3	<: 7 - p.c.f.: 92 a - %: 24.2 y, #10(-) only	
pH: -		
Classification	Mechanical	Hydromete
AASHO UNIFIED	2	A-5(0) SMU
Mechanical Sieve Size	% Passin	ā
Sieve Size	<u>% Passin</u> -	ā
3 2 1/2 2 1 1/2 1	<u>% Passin</u> - 100 97.10 95.02	Ē
Sieve Size	<u>% Passin</u> - 100 97.10 95.02 91.68 88.77 85.86	
Sieve Size 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4	<u>% Passin</u> 100 97.10 95.02 91.68 88.77 85.86 74.53	
<u>3</u> 2 1/2 2 1 1/2 1 3/4 1/2 3/8	<u>% Passin</u> - 100 97.10 95.02 91.68 88.77 85.86	

48.73

44.51

41.75

39.42

36.29

32.29

29.75

26.26

24.07

22.98

15.85

10.03

Hydrometer	r Analysis	Hydrometer Ana
Sieve Size	% Passing	Sieve Size
#20	54.49 49.11	#20 #40
#40 #60	45.74	#60 #100
#100 #200	42.83 39.67	#200
Dia. MM 1/ .02722	36.54	Dia. MM <u>1</u> / .0279
.01762	34.88	.0183
.01052	31.89 29.82	.0079
.0055	27.74 23.26	.0057
.0013	17.52	.0013

	Land	type	No.	36
--	------	------	-----	----

Location	: NWa.	NE%.Sec.	13.T.34	4S.,R.12W.
Depth:	-		10 20 8 A 4120	
Liquid L	imit:	53		
Plastici				
Maximum	Density	- p.c.f	.: 109	9.4
Optimum				
Specific	Gravit	y, #10(-) only:	2.72
Californ	ia Bear	ing Rati	0	
95%:	7.2			
	3.6			
85%:	1.2			
pH: -				
Classifi	cation	Mechan	ical	Hydrometer

AASHO UNIFIED	2	A-2-7(0) SMU
Mechanical	Analysis	
Sieve Size	% Passing	
3	-	
2 1/2	-	
2	100	
2 1 1/2	98.43	
1	93.91	
3/4	90.61	
1/2		
3/8	78,48	
#4	59.10	
#10	39.80	
#40	-	
#100	-	
#200	-	

Hydrometer Analysis

% Passing

30.01

24.70

22.12

20.09

18.15

16.07

14.49

12.59

11.01

9.95

7.32

4.58

Sieve Size

#20

#40

#60

#100

#200

Dia. MM 1/

.0293

.0189

.0114

.0082

.0059

.0030

.0013

	33.52
3/4	98.04
1/2	-
3/8	93.52
#4	76.09
#10	54.74
#40	34.74
#100	
#200	65
#200	
Hydrometer	Analysis
Sieve Size	% Passin
#20	43.03
#40	37.63
#60	34.42
#100	32.30
#200	28.78
Dia. MM 1/	20110
.0293	24.78
.0191	21.52
.0114	18.62
.0082	
	16.44
.0059	14.63
.0030	10.43
.0012	7.03
. OUTL	1.05

Landtype No. 36

90%: 6.6 85%: 3.0

Classification

AASHO

Sieve Size

2 1/2

1 1/2

3

2

1

UNIFIED

Depth: -Liquid Limit: NP Plasticity Index: NP

pH: -

Location: SE%, SW%, Sec. 32, T. 37S., R. 12W.

Maximum Density - p.c.f.: 92.8 Optimum Moisture - %: 23.5 Specific Gravity, #10(-) only: 2.75 California Bearing Ratio 95%: 10.3

Mechanical

-

-

% Passing

-

-

-

99.32

100

Mechanical Analysis

Hydrometer

A-2-4(0) SMD

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

190

Landtype No. 37

Location: NW4, NE4, Sec. 28, T. 374S., R. 12W.
Depth: -
Liquid Limit: 51
Plasticity Index: 11
Maximum Density - p.c.f.: 90.7
Optimum Moisture - %: 30.2
Specific Gravity, #10(-) only: 3.16
California Bearing Ratio
95%: 5.8
90%: 3.4
85%: 2.1
pH: -

Classification Mechanical Hydrometer AASHO A-7-5(6) -UNIFIED ML -Mechanical Analysis Sieve Size % Passing 3 -2 1/2 -100 1 1/2 98.43 97.94 3/4 96.59 1/2 -3/8 93.54 #4 86.52 #10 74.74 #40 -#100 -#200 -Hydrometer Analysis Sieve Size % Passing #20 69.64 #40 65.87 #60 63.22 #100 60.81 #200 57.35

42 ×: 6 - p.c.f.: 10 e - %: 21.7 y, ∉10(-) on1y ing Rațio)1.4 /: -
Mechanical	Hydrometer
A-2-7(0) SMU	A-2-7(0) SMU
Analysis % Passing	
Analysis X russing 100 100 100 96.89 94.76 91.37 87.06 73.17 57.19 - - - X Passing	
51.14 44.62 40.25 36.75 33.01 29.47 27.12 23.82	
	<pre>x: 6 - p.c.f.: 10(e - %: 21.7 y, #10(-) only ing Ratio <u>Mechanical</u> A-2-7(0) SMU <u>Analysis</u> <u>% Passing</u> 100 100 100 100 96.89 94.76 91.37 87.06 73.17 57.19 - - - - - - <u>Analysis</u> <u>% Passing</u> 51.14 44.62 40.25 36.75 33.01 29.47 27.12</pre>

Landtype No. 37

Landtype No. 38

Location: SW4, NE4, Sec. 15, T. 33S., R. 12W.	
Depth: -	
Liquid Limit: NP	
Plasticity Index: NP	
Maximum Density - p.c.f.: 114.7	
Optimum Moisture - %: 14.7	
Specific Gravity, #10(-) only: 2.65	
California Bearing Ratio	
95%: 10,9	
90%: 7.6	
85%: 7.3	
pH: -	

Mechanical	Hydrometer
2	A-1-9(0) GMD
Analycic	
% Passing	
-	
100	
79.69	
29.77	
-	
-	
-	
	Analysis % Passing

22.92

18.45

16.07

14.16

12.21

10.23

9.47

8.57

7.51

6.6

4.72

2.54

#20

#40

#60

#100

#200

Dia. MM 1/ .0300

.0194

.0115

.0083

.0060

.0030

.0013

Plasticity Index: 9.4 Maximum Density - p.c.f.: 101.6 Optimum Moisture - %: 22.0 Specific Gravity, #10(-) only: 2.697 California Bearing Ratio 95%: 7.0 90%: 3.6 85%: 0.2 pH: -Classification Mechanical Hydrometer AASHO A-4(1) -UNIFIED -SMU Mechanical Analysis Sieve Size % Passing 3 100 2 1/2 -91.96 1 1/2 91.96 87.61 3/4 84.93 1/2 82.47 3/8 79.65 #4 71.61

26.47

23.85

19.77

15.56

Location: SW%, SW%, Sec.13, T.34S., R.11W.

Landtype No. 41

Depth: -Liquid Limit: 39.6

#4 #10	71.61
	60.25
#40	-
#100	-
#200	
Hydrometer	Analysis
Sieve Size	% Passin
#20	55.35
#40	51.22
#60	48.08
#100	44.86
#200	39.57
Dia. MM 1/	
.0266	35.44
.0174	32.18
.0104	28.92

.0075

.0055

.0027

.0011

1/ Particle size computed from hydrometer readings.

Landtype No. 41 Location: NE4, Sec.6, T.32S., R.11W. Depth: -Liquid Limit: 28 Plasticity Index: 9 Maximum Density - p.c.f.: 131.1 Optimum Moisture - %: 8.5 Specific Gravity, #10(-) only: 2.79 California Bearing Ratio 95%: 14.7 90%: -85%: pH: -Classification Mechanical Hydrometer AASHO A-2-6(0) ÷ GC UNIFIED -

Mechanica1	Analysis
Sieve Size	% Passing
3	100
2 1/2	-
2	94.86
1 1/2	88.89
i	81.37
3/4	77.27
1/2	-
3/8	64.36
#4	50.50
#10	38,68
#40	-
#100	-
#200	· •

Hydrometer Analysis

Sieve Size

#20

#40

#60

#100

#200

Dia. MM 1/

.0283

.0184

.0111

.0080

.0058

.0029

.0013

% Passing

30.03

24.23

21.34 19.08

16.32

11.10

9.87

8.43

7.39

6.51

5.11

3.55

Plasticity Index Maximum Density Optimum Moisture Specific Gravity	- p.c.f.: 110	0.4
Specific Gravity	y, #10(-) only	: 2.62
California Bear	ing Ratio	
95%: 15.9 90%: 6.9		14
85%: -	1	
pH: -		
Classification	Mechanical	Hydromet
AASHO	-	A-1-6(0
UNIFIED		GMU
Mechanical Sieve Size	Analysis % Passing	A. A. A.
3	100	
2 1/2 2 1 1/2 1	97	
1 1/2	92.31	
1 1/2	87.82	
3/4	82.83	
1/2	-	
3/8	66.33	
#4	50.70	
#10	37.95	
#40	-	
#100	-	
#200	-	
	N-1-14	
Hydrometer Sieve Size	% Passing	「「石窟
STORE STEE		
#20	31.87	
#40	26.71	
#60	23.48	
#100	20.51	
#200	17.46	
Dia. MM 1/	15 05	
.0318	15.85	
.0205	14.49 12.86	
.0121	12.03	
.0086	10.93	
.0082	8.64	

Landtype No. 41

Liquid Limit: 33

Plasticity Index: 6

Depth: -

Location: SE%,SE%,Sec.3,T.32S.,R.10W.

Landtype No. 42

1 1/2

3/4

1/2

3/8

#4

#10

#40

#100

#200

Location: SM4, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 22.8 90%: 7.0 85%: 3.0	40 x: 8 - p.c.f.: 1 e - %: 16.3 y, #10(-) on1	12.4
pH: -		
Classification	Mechanical	Hydrometer
AASHO UNIFIED	2	A-2-7(0) SMU
Mechanical		3
Sieve Size	% Passin	9
3 2 1/2	-	
2 1/2		

-

97.10

94.66

94.66

85.40

73.94

46.42

-

-

-

100

Location: NW4, Sec.5, T.32S., R.11W. Depth: -Liquid Limit: 32 Plasticity Index: 9 Maximum Density - p.c.f.: 109.8 Optimum Moisture - %: 16.1 Specific Gravity, #10(-) only: 2.54 California Bearing Ratio 95%: 7.9 90%: -85%: 1 pH: -Classification Mechanical Hydrometer AASHO A-2-6(0) UNIFIED SC -Mechanical Analysis Sieve Size % Passing 3 -2 1/2 -100 2 1 1/2 98.71 97.27 3/4 95.40 1/2 91.80 3/8 #4 87.94 #10 82.20 #40 _ #100 -#200

Landtype No. 42

Hydrometer	Analysis
Sieve Size	% Passing
#20	38.17
#40	32.51
#60	30.30
#100	28.70
#200	25.81
Dia. MM 1/	
.0282	22.62
.0183	20.52
.0109	18.12
.0079	16.32
.0057	14.52
.0029	10.79
.0012	8.14

Hydrometer Analysis Sieve Size % Passing #20 75.61 #40 61.70 #60 50.24 #100 41.87 #200 34.08 Dia. MM 1/ .0322 27.28 .0209 23.26 .0126 18.09 .009 17.23 .0065 13.92 .0032 9.76 .0014 7.03

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

194

Landtype No. 45 Location: SWa, NE%, Sec. 32, T. 33S., R. 13W. Depth: -Liquid Limit: 62 Plasticity Index: 15 Maximum Density - p.c.f.: 88.0 Optimum Moisture - %: 27.1 Specific Gravity, #10(-) only: 2.71 California Bearing Ratio 95%: 22.1 90%: 15.3 85%: 8.8 pH: -Classification Mechanical Hydrometer A-2-7 AASHO -UNIFIED SMU -Mechanical Analysis Sieve Size % Passing 3 2 1/2 --1 1/2 -

100

99.71

-

94.70

76.00

47.77

-

-

#200	
Hydrometer	Analysis
Sieve Size	% Passing
#20	36.28
#40	31.66
#60	29.31
#100	27.59
#200	25.67
Dia. MM 1/	
.0268	24.37
.0175	22.75
.0103	21.13
.0075	19.51
.0054	18.49
.0027	15.85
.0012	13.58

3/4

1/2

3/8

#4

#10

#40

#100

Landtype No. 48 Location: NE%, NW%, Sec. 30, T. 32S., R. 14W. Depth: -Liquid Limit: 32 Liquid Limit: 32 Plasticity Index: 5 Maximum Density - p.c.f.: 106.4 Optimum Moisture - %: 18.8 Specific Gravity, #10(-) only: 2.68 California Bearing Ratio 95%: 17.0 90%: 10.3 85%: 2.3 1 pH: -Classification Mechanical Hydrometer A-1-6(0) AASHO UNIFIED GMU -Mechanical Analysis Sieve Size % Passing -2 1/2 100 1 1/2 97.81 93.93 89.04 3/4 1/2 80.62 3/8 73.87 #4 53.16 #10 34.37 #40 -#100

-

#200

Location: SEM Depth: - Liquid Limit: Plasticity Ind Maximum Density Optimum Moistu Specific Gravi California Bea 95%: 13.8 90%: 8.1 85%: 4.0 pH: -	ex: 12 y - p.c.f.: 1 re - %: 22.3 ty, #10(-) on1	00.6
Classification	Mechanical	Hydrometer
AASHO UNIFIED	2	A-2-7 SMU
Mechanical Sieve Size	Analysis % Passin	- ī
3	-	7 4
2 1/2	-	
2 1 1/2	-	
1 1/2	100	
3/4	99.71	
1/2	98.21	
3/8	96.31	
#4	82.40	
#10	53.45	
#40 #100	-	
#200	2	
	· · ·	- 8
Hydrometer Sieve Size	Analysis % Passing	- ī
#20	42.69	
#40	34.24	
#60	30.59	
#100 #200	28.14	
Dia. MM 1/	25.32	
.0274	22,91	
.0179	20.51	
.0106	18.72	
.0076	16.92	
.0055	14.53	
.0028	10.86	
.0012	7.80	

Landtype No. 50

Landtype No. 51 Location: SE%, SW%, Sec. 14, T. 385., R. 11W. Depth: -Liquid Limit: NP Plasticity Index: NP Maximum Density - p.c.f.: 98.6 Optimum Moisture - %: 91.2 Specific Gravity, #10(-) only: 2.67 California Bearing Ratio 95%: -90%: -

85%: -

Classification	Mechanical	Hydrometer
AASHO	-	A-4(0)
UNIFIED	-	SMD
Mechanical	Analysis	
Sieve Size	% Passing	
3	-	
3 2 1/2 1 1/2 1	-	
1 1/2	100	
	99.11	
3/4	95.90	
1/2		
3/8	86.94	
#4	79.59	
#10	70.02	
#40	-	
#100	-	
#200	-	

Hydrometer	Analysis	
Size	% Passing	
0	42.69	
	34.24	
	30.59	
0	28.14	
0	25.32	
MM 1/		
74	22,91	
79	20.51	
06	18.72	
76	16,92	
55	14.53	
28	10.86	
12	7.80	

Hydrometer Sieve Size	% Passin
	1400111
#20	65.20
#40	61.41
#60	56.18
#100	47.63
#200	37,50
Dia. MM 1/	
.0307	26.41
.0202	21.77
.0120	18.36
.0087	15.96
.0062	14.11
.0031	11.25
.0013	8,02

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

Landtype No. 51	e n		Landtype No. 51		
Location: NW%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 6.0 90%: 4.0 85%: 2.4 pH: -	53 x: 15 - p.c.f.: 93 e - %: 26.6 y. #10(-) only	3.6	Location: SE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: - 90%: - 85%: - pH: -	38 x: 11 - p.c.f.: 1 e - %: - y, #10(-) only	3 3
Classification	Mechanical	Hydrometer	Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-7-(8) -	A-5(2) SMU	AASHO UNIFIED	-	A-2-6(0) GMU
Mechanical	Analysis		Mechanical	Analysis	
Sieve Size	% Passing	ī	Sieve Size	% Passing	
3	100		3 2 1/2	100	
2 1/2 2 1 1/2	100		2 1/2		
2	100		2	90.94	
1 1/2	100		1 1/2	81.32	
1	99.42		3/4	68.45 61.35	
3/4	99.03		1/2	01.35	
1/2	93.09		3/8	50,56	
3/8 #4	85.85		#4	41.07	
#10	76.69		#10	32.95	
#40	-		#40	-	
#100	-		#100	-	
#200	-		#200	-	
Hydrometer	Analysis	_	Hydrometer		
Sieve Size	% Passing	1	Sieve Size	% Passing	
#20	70.16		#20	29.43	
#40	65.56		#40	27.22	
#60	62.47		#60	25.27	
#100	60.03		#100	23.10	
#200	57.13		#200	20,93	
Dia. MM 1/	E2 02		Dia. MM <u>1</u> / .030	16.34	
.023	53.03		.019	14.87	
	48.96		.012	12.74	
.015	44 43				
.0092	44.43				
.0092	41.63		.0083	11.32	
.0092					

Landtype No. 52	2		Landtype No. 52		
Location: SW4, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Spcific Gravit California Bean 95%: - 90%: - 85%: - pH: -	45 ex: 10 y - p.c.f.: 9: re - %: 23.0 ty, #10(-) onl;	3.9	Location: NM4, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 7.2 90%: 3.8 85%: 1.6 pH: -	48 x: 12 - p.c.f.: 98 e - %: 22.3 y, #10(-) only	.1
Classification	Mechanical	Hydrometer	Classification	Mechanical	Hydromet
AASHO UNIFIED	Ι	A-5(1) SMU	AASHO UNIFIED	2	A-7-5(2 SMU
Mechanical	Analysis	•	Mechanica]	Applucie	
Sieve Size	% Passing	Ī	Sieve Size	% Passing	
3 2 1/2 2	-		3 2 1/2 2		
2 1 1/2 1 3/4	96.59 95.40 92.82		1 1/2 1 3/4	100 98.92 95.1	
1/2 3/8 #4	84.41 72.20		3/4 1/2 3/8 #4	92.49 89.79 78.94	
#10 #40	59.66 -		#10 #40	64.61	
#100 #200			#100 #200	Ξ	
Hydrometer Sieve Size	Analysis % Passing	-	Hydrometer Sieve Size	Analysis % Passing	
#20 #40	51.38 47.50	,	#20 #40	57.57 51.87	
#60 #100 #200	45.20 42.91 38.59		#60 #100 #200	48.28 45.05 41.45	
Dia. MM <u>1</u> / .0283 .0183 .0110 .0080	28.02 25.82 22.17 20.41		Dia. MM <u>1</u> / .0244 .0162 .0099 .0072	36.54 33.83 30.10 27.73	
.0058 .0030 .0013	18.73 14.12 10.90		.0053 .0028 .0012	25.01 19.11 14.62	

Hydrometer

A-7-5(2) SMU

1/ Particle size computed from hydrometer readings.

Depth: -		
	,SE¼,Sec.17,T.39S.	9K.11W.
iquid Limit:		
Plasticity Inde		
Maximum Density	- p.c.f.: 91	
Optimum Moistur	re - %: 25.4 ty, #10(-) only:	2 574
California Bear	ing Ratio	2.3/4
95%: 6.6	ing natio	
90%: 4.6		
85%: 2.5		
pH: -		
Classification	Mechanical Hy	drometer
AASHO	- A	-2-7(0)
UNIFIED		-2-7(0) MU
Mechanical	Analysis	
Sieve Size	% Passing	
3 2 1/2 1 1/2	-	
2 1/2	-	
1 1/2	-	
1 1/2	100	
3/4	93.63	
1/2	87.23	
3/8	81.42	
#4 .	66.24 47.31	
#10 #40	47.31	
#100	2	
#200	-	
Hydrometer		
Sieve Size	<u>% Passing</u>	
#20	39.70	
#40	35.08	
#60 #100	32.43 30.46	
#200	28.43	
	60.10	
Jia. mm 1/	24.97	
Dia. MM <u>1</u> / .0259		
.0259 .0172	22.91	
.0259 .0172 .0104	22.91 20.23	
.0259 .0172 .0104 .0077	22.91 20.23 18.03	
.0259 .0172 .0104	22.91 20.23	

Location: NE場, Depth: -	SWWa,Sec.25,T	.40S.,R.12W.
Liquid Limit: Plasticity Inde	k: 12	
Maximum Density Optimum Moistury	e - %: 25.6	
Specific Gravit California Bear		ly: 2,628
95%: 11.0 90%: 7.3		
85%: 3.2 pH: -	1	
Classification	Mechanical	Hydrometer

AASHO UNIFIED	-	A-2-7(0) GMU
Mechanical	Analycic	
Sieve Size	% Passing	
3	-	
3 2 1/2 1 1/2 1	-	
2	-	
1 1/2	100	
	97.78	
3/4	96.13	
1/2	89.40	
3/8 #4	81.75	
	49.29	
#10 #40	49.29	
#100	-	
#200	-	
#200	- Analysis	
	- Analysis <u>% Passing</u>	
#200 Hydrometer	<u>% Passing</u> 44.41	
#200 Hydrometer Sieve Size #20 #40	<u>% Passing</u> 44.41 40.15	
#200 Hydrometer Sieve Size #20 #40 #60	<u>% Passing</u> 44.41 40.15 37.37	
#200 Hydrometer Sieve Size #20 #40 #60 #100	<u>% Passing</u> 44.41 40.15 37.37 35.28	
#200 Hydrometer Sieve Size #20 #40 #60 #100 #200	<u>% Passing</u> 44.41 40.15 37.37	
#200 <u>Hydrometer</u> <u>Sieve Size</u> #20 #40 #60 #100 #200 Dia. MM 1/	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03	
#200 <u>Hydrometer</u> <u>Sieve Size</u> #20 #40 #60 #100 #200 Dia. MM <u>1</u> / .0293	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03 29.23	
#200 Hydrometer Sieve Size #20 #40 #60 #100 #200 Dia. MM 1/ .0293 .0191	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03 29.23 26.74	
#200 <u>Hydrometer</u> <u>Sieve Size</u> #20 #40 #60 #100 #200 Dia. MM <u>1</u> / .0293 .0191 .0113	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03 29.23 26.74 24.03	
#200 <u>Hydrometer</u> <u>Sieve Size</u> #20 #40 #60 #200 Dia. MM <u>1</u> / .0293 .0191 .0113 .0082	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03 29.23 26.74 24.03 22.09	
#200 <u>Hydrometer</u> <u>Sieve Size</u> #20 #40 #60 #100 #200 Dia. MM <u>1</u> / .0293 .0191 .0113	<u>% Passing</u> 44.41 40.15 37.37 35.28 33.03 29.23 26.74 24.03	

Landtype No. 53

Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistu Specific Gravi California Bear 95%: 10.7 90%: 5.8 85%: 1.7 pH: -	ex: 5 y - p.c.f.: 10 re - %: 19.6 tv. #10(-) only	1.6
Classification	Mechanical	Hydrometer
AASHO UNIFIED	-	A-2-5(0) GMU
3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200	100. 97.52 93.47 90.36 	
Hydrometer Sieve Size	Analysis % Passing	
#20 #40 #60 #100 #200 Dia. MM 1/	35.38 31.28 28.66 26.12 22.88	
.0325 .0211 .0126 .0091	17.97 16.02 13.51 11.55	

Landtype No. 53

Location: SW4, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 90%: 6.8 90%: 4.2 85%: 2.3 pH: -	49 x: 12 - p.c.f.: 99 e - %: 22.3 y, #10(-) only	0.7
Classification	Mechanical	Hydromete
AASHO	-	A-2-7(0)
UNIFIED	-	SMU
Mechanical		
Sieve Size	% Passing	
3	-	
3 2 1/2	-	
2	100	
1 1/2	97.03	
1	95.95	
3/4 1/2	95.20	
3/8	88.43	
#4	76,14	
#10	56.91	
#40	-	
#100	-	
#200	-	
Hydrometer Sieve Size	Analysis % Passing	
#20	46.20	
#40	39.56	
#60 #100	36.14	
#200	33.13 29.78	
Dia. MM 1/	29.78	
.0276	26.78	
.0181	24.74	
.0109	21.82	
.0079	20.07	
.0058	17.74	21 m
.0029	14.59	APRIL 1
.0013	10.44	

1/ Particle size computed from hydrometer readings.

.0013

Landtype No. 53			Landt
Location: NE4, Depth: - Liquid Limit: Plasticity Inde: Maximum Density Optimum Moistury Specific Gravity California Bear 95%: 4.5 90%: 2.6 85%: 1.4 pH: -	35 x: 16 - p.c.f.: 11 e - %: 15.9 y, #10(-) only	2.1	Locat Depth Liqui Plast Maxim Optin Speci Calif S S E PH:
Classification	Mechanical	Hydrometer	Class
AASHO UNIFIED	Ξ	A-6(4) SC	/ t
Mechanical <u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200	Analysis % Passing 100 98.08 96.15 93.28 - 85.95 77.68 67.64 - -		<u>Steve</u> 3 2 2 1 1 1 1 <i>#</i> 44 <i>#</i> 10 <i>#</i> 40 <i>#</i> 40 <i>#</i> 40 <i>#</i> 40 <i>#</i> 41 <i>#</i> 42
Hydrometer Sieve Size #20 #40 #60	Analysis <u>% Passing</u> 61.87 59.92 52.53		<u>Sieve</u> #20 #40 #60
#100 #200 Dia. MM <u>1</u> / .027 .018 .011 .0085 .0057 .0029	49.90 45.78 36.44 33.07 28.02 24.66 22.13 16.16		#10 #20 Dia. .02 .01 .00 .00 .00

Landtype No. 53

Depth: - Liquid Limit: Plasticity Inde Maximum Density	ex: 9 y - p.c.f.: 95, re - %: 23.8 ty, #10(-) only:	.6
Classification	Mechanical	Hydrometer
AASHO UNIFIED	3	A-2-5(0) GMU
Hardenster	. Ann 1	
Sieve Size	1 Analysis <u>%</u> Passing	
3	-	
3 2 1/2 2 1 1/2	-	
2	100	
1 1/2	97.38	
	94.64	
3/4	90.78	
1/2	78.55	
3/8 #4	65.42	
#4 #10	53.39	
#40	55.55	
#100	_	
#200	-	
Sieve Size	r Analysis % Passing	
#20	46.12	
#40	40.77	
#60	37.59 35.07	
#100 #200	32.40	
Dia. MM 1/	52.40	
.0280	26.53	
.0183	24.45	
.0110	21.19	
.0082	18.22	
.0059	15.67	
.0031	10.03	
.0014	5.52	
.0014	0.00	

Landtype No. 55

Location: NW4,SE4,Sec.13,T.39S.,R.12W. Depth: -
Liquid Limit: 44
Plasticity Index: 10
Maximum Density - p.c.f.: 87.5
Optimum Moisture - %: 27.2
Specific Gravity, #10(-) only: 2.63
California Bearing Ratio
95%: 4.1
90%: 1.8
85%: 0.5
pH: -

Classification	Mechanical	Hydrometer
AASH0		A-5(4)
UNIFIED	-	OL
Mechanical	Analucio	
Sieve Size	% Passing	
3 2 1/2 1 1/2	-	
2 1/2		
2	100	
1 1/2	98.07	
	97.44	
3/4	96.27	
1/2	-	
3/8	89.86	
#4	80.40	
#10	71.48	
#40	-	
#100	-	
#200	-	
Hydrometer Sieve Size		
516VE 512E	% Passing	
#20	69.10	
#40	67.02	
#60	65.37	
#100	62.38	
#200	51.75	
Dia. MM 1/		
.0254	41.03	
.0166	38.53	
.0101	34.87	
	33.04	
.0073		
.0073		
	30.46 24.38	

Location: SE4,SW4,Sec.8,T.36S.,R.12W. Depth: -Liquid Limit: 52 Plasticity Index: 25 Maximum Density - p.c.f.: 99.5 Optimum Moisture - %: 22.8 Specific Gravity, #10(-) only: 2.98 California Bearing Ratio 95%: 5.0 90%: 3.0 85%: 1.7 pH: -

Landtype No. 62

Classification	Mechanical	Hydrometer
AASHO	-	A-7-5(7)
UNIFIED	-	SC

Mechanical	Analysis
Sieve Size	<u>%</u> Passing
3	<u> </u>
2 1/2	-
2	-
2 1 1/2	100
1	98.24
3/4	96.08
1/2	-
3/8	91.18
#4	84.08
#10	74.19
#40	-
#100	-
#200	-

Sieve Size	2	% Passing
#20		66.08
#40		60.57
#60		57.37
#100		50.59
#200		44.89
Dia. MM 1/	(111.05
.026		36.21
.018		31.50
.010		26.69
.0075		24.80
.0054		21.97
.0027		18.11
.0012		13.30

]/ Particle size computed from hydrometer readings.

11.87

$\underline{l}/$ Particle size computed from hydrometer readings.

202

Landtype No. 62			Landtype No. 6
Location: NW%,S Depth: - Liquid Limit: § Plasticity Inde Maximum Density Optimum Moisture Specific Gravity California Beari 95%: 7.2 90%: 3.6 85%: 1.2 pH: -	53 - p.c.f.: 9 - %: 23.4 /, #10(-) on1;	0.3	Location: NEA Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistu Specific Gravi California Bea 95%: 9.8 90%: 3.5 85%: 0.8 pH: -
Classification	Mechanical	Hydrometer	Classification
AASHO UNIFIED	-	A-5(1) SMU	AASHO UNIFIED
Mechanical Sieve Size	Analysis % Passin	-	Mechanica Sieve Size
And the second s	-		3
3 2 1/2 1 1/2	-		2 1/2
1 1/2	100		2 1 1/2
1	97.81		1 1/2
3/4	95.95		3/4
1/2			1/2
3/8 #4	89.75 80.56		3/8 #4
#10	69.10		#4 #10
#40	-		#40
#100	-		#100
#200		- 1	#200
Hydrometer		-	Hydromete
Sieve Size	% Passin	<u>a</u>	Sieve Size
#20	59.50		#20
#40	53.14		#40
#60	49.76		#60
#100	46.94		#100
#200	43.60		#200
Dia. MM 1/ .0285	44.45		Dia. MM <u>1</u> / .0263
.0184	41.40		.0172
.0111	35.29		.0103
.0080	31.63		.0074
.0057	28.58		.0054
.0029	21.25		.0029
.0013	13.68		.0012

e No. 62				
n: NE%,S	SW‰,Sec.9,T.375	5.,R.13W.		
c Gravity nia Bear : 9.8	46 <: 13 - p.c.f.: 99. e - %: 23.9 y, #10(-) only: ing Ratio	2 2.77		
: 3.5 : 0.8				1
	/			
ication	Mechanical	Hydromete	r	
HO FIED	-	A-4(3) ML		
			-	
	Analysis			
ize	% Passing			
2	2			
	-			
2	100			
4	99.12			
2	99.12			10 2
8	94.71			100
	87.95 74.74			Page 1
	-			
	-			
				Test.
drometer	Analysis			and the
ize	% Passing			
	70.39			
	66.36			
	63.07			P
	59.15 53.63			
1/	55.05			
2	46.21			
	42.59			
	38.46 35.36			194
	32.25			
	26.87			
	21.27			

Landtype No. 66	<u>-</u>		Landtype No. 66	i	
Location: SWa Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: - 90%: - 85%: - pH: -	x: 7 - p.c.f.: - e - %: - v. #10(-) onl		Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Moistur Specific Gravit California Bear 95%: 22 90%: - 85%: - pH: -	27 x: 5 - p.c.f.: 12 e - %: 11.9 y, #10(-) only	5
Classification	<u>Mechanical</u>	Hydrometer	Classification	Mechanica1	Hydrometer
AASHO UNIFIED		A-5(0) SMU	AASHO UNIFIED	-	A-1-a GMU
Mechanical		-	Mechanical	Analysis	
Sieve Size	% Passing	1	Sieve Size	% Passing	
3	-		3	-	
2 1/2	-		2 1/2	-	
2 1 1/2	100 96,95		2	-	
1 1/2	94.12		1 1/2	100	
3/4	90.98		1	98.87	
1/2	85.13		3/4	96.68	
3/8	80.60		1/2	85.1	
#4	70.60		3/8	75.69	
#10	57.92		#4 #10	52.69 34.481	
#40	-		#40	COUCE 200 1014-0	
#100	-		#100	-	
#200			#200		
Hydrometer			Hydrometer	Analysis	
Sieve Size	<u>% Passing</u>		Steve Size	% Passing	
#20	53,75		#20	25.64	
#40	50.51		#40	20.63	
#60	48.34		#60	17.74	
#100	46.08		#100	15.46	
#200	40.63		#200	12.73	
Dia. MM 1/			Dia. MM 1/		
.0271	30.04		.0318 -	10.50	
.0179	26.41		.0204	9.51	
.0078	22.05		.0122	7.73	
.0078	19.87		.0087	6.94	
.0029	16.97		.0062	6.34	
	12.61		.0031	4.64	
.0012	7.95		.0013	2.78	

1/ Particle size computed from hydrometer readings.

Landtype No. 67			Landtype No. 71
Location: SWs, Depth: - Liquid Limit: - Masticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 11.9 90%: - 85%: - pH: -	48 x: 14 - p.c.f.: 97 e - %: 24.9 y, #10(-) only		Location: SEMa,See Depth: - Liquid Limit: 34 Plasticity Index: Maximum Density - Optimum Moisture Specific Gravity, California Bearing 95%: 12.6 90%: 6.8 85%: 1.2 pH: -
Classification	Mechanical	Hydrometer	Classification
AASHO UNIFIED	2	A-2-5(2) SMU	AASHO UNIFIED
Mechanical Sieve Size	Analysis % Passing	-	Mechanical A Sieve Size
	-	L 2	3
3 2 1/2	-		2 1/2 2 1 1/2
2			2
	100		
1	98.77		1 .
3/4 1/2	97.15 95.03		1/2
3/8	92.92		3/8
#4	84.38		#4
#10	65.19		#10
#40	-		#40
#100	5		#100 #200
#200			#200
		2	Hydrometer A
Hydrometer Sieve Size	% Passing	ī.	Sieve Size
#20	55,33		#20
#40	49.17		#40
#60	45.78		#60
#100	43.11		#100
#200	39.82		#200
Dia. MM 1/	07.10		Dia. MM 1/
.0293	37.12 34.61		.0270
.0189	34.61		
			0108
.0112	31.61		.0108
.0112 .0081	31.61 29.1		.0079 .0058
.0112	31.61		.0079

Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistu	<pre>lex: 5 y - p.c.f.: 10 re - %: 17.9 ty, #10(-) only ring Ratio</pre>	7.3
Classification	Mechanical	Hydrometer
AASHO UNIFIED	2	A-1-6(0) SMU
Mechanica Sieve Size	1 Analysis % Passing	
	<u> </u>	
3 2 1/2 2 1 1/2	-	
2		
1 1/2	100	
1 3/4	97.14 94.45	
1/2	90.35	
3/8	85.32	
#4	70.95	
#10	52.37	
#40 #100	2	
#200	-	· · · · · · · · · · · · · · · · · · ·
Hydromete	er Analysis	anne a fuit
Sieve Size	% Passing	17. 四
#20	42.80	
#40	34.79 30.26	
#60 #100	27.01	
#200	23,65	
Dia. MM 1/		
.0270	19.49	
.0177	15.21	
.0079	13.52	
.0058	11.15	
.0029	8.64	
.0013	4.64	

Location · SEL	Sec 27 T 250	0 00
Location: SEM Depth: - Liquid Limit: Plasticity Ind Maximum Density Optimum Moistu Specific Gravi California Beau 95%: 23 90%: 14.9 85%: 9.3	32 ex: 5 y - p.c.f.: 10 re - %: 17.5 ty, #10(-) only	15.9
рН: -		
Classification	Mechanical	Hydrometer
AASHO UNIFIED	1.1	А-1-Ь(О) SMU
Mechanical Sieve Size		
	<u>%</u> Passing	
3 2 1/2 2 1 1/2	-	
2 1/2	-	
1 1/2	-	
1	100	
3/4 1/2	99.50	(+)
3/8	97.14	
#4 #10	87.98	
#10 #40	60.83	
#100		
#200	-	
Understand		
Hydrometer lieve Size	Analysis % Passing	
#20	32.16	
#40	22.12	C
#60 #100	18.83 16.61	
#200	14.68	
ia. MM 1/		
.0320	12.36	
.0120	8.63	
.0087	7.12	
.0062	6.40	
.0031	4.10	

Landtype No. 76 Location: NW%,Sec.7,T.37S.,R.8W. Depth: -Liquid Limit: 43 Plasticity Index: 6 Maximum Density - p.c.f.: 94 Optimum Moisture - %: 25.3 Specific Gravity, #10(-) only: 2.76 California Bearing Ratio 95%: 8.9 90%: 4.6 85%: 0.6 pH: -Classification Mechanical Hydrometer AASHO -A-2-5(0) UNIFIED SMU -Mechanical Analysis Sieve Size % Pas % Passing 3 -2 1/2 -2 -1 1/2 100 1 100 3/4 98.79 1/2 -3/8 93.23 83.37 #4 #10 62.92 #40 -#100 -#200 -

Hydrometer Analysis Sieve Size % Pas	ssing
#20 52.	.80
#40 47.	.91
#60 44	
#100 40.	
#200 33.	
Dia. MM 1/	
.0313 23.	05
.0203 19.	
.0121 15.	
.0087 13.	
.0064 11.	
	56
	27

1/ Particle size computed from hydrometer readings.

$\underline{1}/$ Particle size computed from hydrometer readings.

206

Optimum Moisture Specific Gravity California Bear 95%: 5.1 90%: 1.5	36 - p.c.f.: 10 e - %: 21.9 y, #10(-) only ing Ratio	
85%: 0.1		
	W	lludanata
Classification	Mechanical	Hydrometer
AASHO UNIFIED	-	A-4(0) SMU
Mechanical	Analycic	- -
Sieve Size	% Passing	ī
3	-	
3 2 1/2 2 1 1/2	-	
2	-	
1 1/2	100	
1 3/4	99.64 98.24	
1/2	90.24	
3/8	85.91	
#4	72.20	
#10	62.48	
#40	-	
#100	-	
#200	-	<u>-</u> 23
Hydrometer		
Sieve Size	% Passing	1
#20	57.56	
#40	52.81	
#60	50.17	
#100	47.32	
#200 Dia. MM 1/	42.41	
.0288	33,36	
.0188	29.18	
.0113	23.95	
.0081	21.12	
.0059	17.88 12.97	

Landtype No. 76		
Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 6.2 90%: - 85%: -	x: 7 - p.c.f.: 10 e - %: 18.8 y, #10(-) only	
pH: -		
Classification	Mechanical	Hydrometer
AASH0 UNIFIED	-	A-2-4(0) SMU
-		
Mechanical Sieve Size	Analysis % Passing	
3	100	
3 2 1/2 1 1/2	-	
1 1/2	98.74	
	98.74	
3/4 1/2	96.53 88.12	
3/8	81.91	
#4	68.41	
#10 #40	52.97	
#100	-	
#200		- 40
Hydrometer	Analysis	
Sieve Size	% Passing	
#20	43.68	
#40 #60	36.93 32.92	
#100	29.76	
#200	25.96	
Dia. MM <u>1</u> / .0301	22.97	
.0197	20.23	
.0116	18.18	
.0084	15.44	
.0030	11.81	
.0013	8.93	

Landtype No. 77			Landtype No. 77	-	
Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 5.2 90%: - 85%: - PH: -	52 x: 8 - p.c.f.: 89 e - %: 32.6 y, #10(-) only	5.6	Location: NEM, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 5.3 90%: 2.3 85%: 1.0 pH: -	49 x: 14 - p.c.f.: 8 e - %: 30.8 y, #10(-) on1	6.9
<u>Classification</u>	Mechanical	Hydrometer	Classification	Mechanical	Hydromete
AASHO UNIFIED	2	A-5(10) MH	AASHO UNIFIED	-	A-7-5(10) ML
Mechanical Sieve Size	Analysis % Passing		Mechanical Sieve Size	Analysis % Passing	-
	<u>// rassing</u>	ŝ.		<u>» Passing</u>	Ł
3	-		3	-	
2 1/2 2	7		2 1/2		
1 1/2	-		2 1 1/2	-	
1 1/2	-		1 1/2	-	
3/4	100		3/4	-	
1/2	99.94		1/2	100	
3/8	99.84		3/8	98.40	
#4	98.68		#4	96.95	
#10	91.50		#10	90.37	
#40	-		#40	-	
#100	-		#100	-	
#200			#200	-	a.
Hydrometer			Hydrometer	Analysis	
Sieve Size	% Passing		Sieve Size	% Passing	
#20	86.02		#20	86.75	
#40	82.82		#40	81.88	
#60	80.69		#60	77.99	
#100	78.41		#100	74.15	
#200	75.21		#200	69.45	
)ia. MM 1/	1		Dia. MM 1/	(20) - 2/20	
.0261	70.80		.0263	61.94	
.0167	68.57		.0169	59.35	
.0099	64.86		.0102	53.90	
	61.14		.0075	49.47	
.0072					
.0072	57.43		.0055	44.29	
.0072					

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

Landtype No. 7	7		Landtype No. 77			Landtype No. 8	1	
Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistu	lex: 7.3 y - p.c.f.: 73 re - %: 43 ty, #10(-) only	.2	Location: SE4,N Depth: - Liquid Limit: 5 Plasticity Index Maximum Density Optimum Moisture Specific Gravity California Beari 95%: 8.0 90%: 4.5 85%: 2.3 pH: -	55 <: 14 - p.c.f.: 82 2 - %: 34.9 /, #10(-) only	.3	Location: SE& Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistuu Specific Gravi California Beau 95%: 9.6 90%: 6.0 85%: 3.8 pH: -	30 ex: 7 y - p.c.f.: 1 re - %: 12.1 ty, #10(-) on1	25.6
Classification	Mechanical	Hydrometer	Classification	Mechanical	Hydrometer	Classification	Mechanical	Hydromete
AASHO UNIFIED	Ξ.,	A-5(4) MH	AASHO UNIFIED	:	A-7-5(14) MH	AASHO UNIFIED	-	A-2-4 SC-SMU
Mechanica <u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #100 #200	1 Analysis <u>* Passing</u> 100 99.46 99.46 99.29 99.07 94.87 -		Mechanical <u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/4 1/2 3/4 #4 #10 #40 #100 #200	Analysis * Passing - - 100 99.06 99.06 98.98 98.85 97.31 - - -		Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200	Analysis <u>* Passin</u> 100 95.47 91.48 87.38 81.49 74.36 69.01 54.55 39.44 -	- 174
Hydromete <u>Sieve Size</u> #20 #40 #60 #100 #200 Dia. MM <u>1</u> / .0295 .0191 .0113 .0080 .0058 .0029 .0013	r Analysis <u>% Passing</u> 81.34 72.65 66.81 61.13 54.87 45.74 40.62 36.86 34.98 29.86 25.26 18.60		Hydrometer <u>Sieve Size</u> #20 #40 #60 #100 Dia. MM <u>1</u> / .022 .015 .0089 .0065 .0048 .0025 .0012	Analysis <u>* Passing</u> 94.18 90.55 87.14 83.03 77.26 71.58 65.29 61.30 57.33 52.30 46.50 39.07		Hydrometer Sieve Size #20 #40 #60 #100 #200 Dia. Mn 1/ .0292 .0190 .0112 .0080 .0058 .0058 .0029 .0012	Analysis <u>* Passing</u> 30.93 24.83 21.37 18.68 15.95 13.94 12.86 11.67 10.87 9.68 7.86 5.51	

Landtype No. 81 Location: NE4, SE4, Sec. 32, T. 41S., R. 6W. Depth: -Liquid Limit: 28 Plasticity Index: 8 Maximum Density - p.c.f.: 127.6 Optimum Moisture - %: 9.1 Specific Gravity, #10(-) only: 2.80 California Bearing Ratio 95%: .91 90%: .41 85%: pH: -Classification Mechanical Hydrometer AASHO A-4(4) UNIFIED 2 CL Mechanical Analysis Sieve Size % Pas % Passing 3 -2 1/2 --1 1/2 100 1 98.71 3/4 97.60 1/2 -3/8 94.06 #4 89.25 #10 80.75 #40 -#100 -#200 -Hydrometer Analysis Steve Size % Passing #20 74.14 #40 67.36 #60 62.95 #100 58.66 #200 53.55 Dia. MM 1/ .0252 48.20 45.21 .0164 .0098 41.21 .0072 37.22 .0053 32.23 19.06

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

Hydrometer

.0013

-

.0032

.0013

Location: SW4,Sec.22,T.40S.,R.7W. Depth: -Liquid Limit: 33 Plasticity Index: 9 Maximum Density - p.c.f.: 116.5 Optimum Moisture - %: 14.1 Specific Gravity, #10(-) only: 2.673 California Bearing Ratio 95%: 14.2 90%: 6.7 85%: 1.8 pH: -

Classification	Mechanical	Hydrometer
AASHO	-	A-2-4(0)
UNIFIED	-	SMU
Mechanical	Analysis	
Sieve Size	% Passing	
3	100	
2 1/2	-	
2	96,55	
3 2 1/2 1 1/2	94.37	
3/4	91.17	
1/2	86.59	
3/8 #4	82.71 70.32	
#4 #10	55.46	
#40	-	
#100	-	
#200	-	
Hydrometer	Analysis	•
Sieve Size	% Passing	
#20	47.70	
#40	38.78	
#60	32.31	
#100 #200	26.83 20.77	
Dia. MM 1/		
.0322	15.71	
.0209	13.39 11.37	
.0124	9.63	
.0064	8.48	

Landtype No. 81u

Landoppe Not Other Depth: - Liquid Limit: Plastcity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 8.8 90%: 3.4 85%: 0.4 pH: -	- SW4,Sec.9,T.39 NP - p.c.f.: 95 e - %: 23.4 y, #10(-) only	.6
Classification	Mechanical	Hydromete
AASHO UNIFIED	:	A-4(0) SMD
Mechanical Sieve Size 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4 #10 #200 #200	Analysis % Passing 100 89.84 87.67 83.60 80.62 73.69 66.35 -	Ĩ
Hydrometer	Analysis	
<u>Sieve Size</u> #20 #40 #50 #200 Dia. MM 1/ .0294 .0190 .0117 .0084 .0061 .0030 .0013	<u>* Passin</u> 57.38 52.92 49.01 45.03 39.55 29.85 27.52 21.29 18.96 16.01 12.44 4.95	1

Landtype No. 82 Location: NE4,SW4,Sec.2,T.41S.,R.8W. Depth: -Liquid Limit: 32 Plasticity Index: 8 Maximum Density - p.c.f.: 110.0 Optimum Moisture - %: 17.0 Specific Gravity, #10(-) only: 2.70 California Bearing Ratio 95%: 15.4 90%: 9.2 85%: 3.0 pH: -Classification Mechanical Hydrometer AASHO A-2-4(0) -UNIFIED GP-GMU -Mechanical Analysis Sieve Size % Passing 3 2 1/2 1 1/2 100 93.31 3/4 76.91 1/2 -3/8 46.23 #4 31.08 #10 22.18 #40 -#100 #200 -Hydrometer Analysis Sieve Size % Passing #20 16.01 #40 12.47 #60 10.58 #100 9.07 #200 7.46 Dia. MM 1/ .0318 6.09 .0205 5.61

.0121

.0086

.0062

.0031

.0014

Landtype No. 82 Location: SE4,Sec.4,T.41S.,R.8W. Depth: -Liquid Limit: 35 Plasticity Index: 12 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: 2.7192 California Bearing Ratio 95%: -90%: -85%: pH: -Classification Mechanical Hydrometer AASHO A-2-6(0) -UNIFIED SC -Mechanical Analysis Sieve Size % Passing 3 2 1/2 1 1/2 3/4 100 1/2 96.0 3/8 92.0 #4 69.6 #10 43.8 #40 . -#100 -#200 -Hydrometer Analysis

 Approve Size
 % Passing

 #20
 39.4

 #40
 34.2

 #60
 30.7

 #100
 27.4

 #200
 23.3

1/ Particle size computed from hydrometer readings.

6.45

4.55

4.97

4.61

4.12

3.17

Landtype No. 82 Location: SE%,Sec.4,T.41S.,R.8W. Depth: -Liquid Limit: 75 Plasticity Index: 28 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: 2.8277 California Bearing Ratio 95%: -90%: -85%: pH: -Classification Mechanical Hydrometer A-7-5(17) AASHO UNIFIED MH

Mechanical Analysis Sieve Size % Passing 2 2 1/2 1 1/2 3/4 100 1/2 99.0 3/8 94.7 #4 88.3 #10 75.5 #40 #100 64.9 #200 58.9

Depth: -Liquid Limit: 58 Plasticity Index: 21 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: 2.7484 California Bearing Ratio 95%: -90%: -85%: pH: -Mechanical Classification Hydrometer AASHO A-7-5(4) UNIFIED SMU Mechanical Analysis Sieve Size % Passing 3 2 1/2 1 1/2 100 3/4 98 96 88 72 54.7 46.1 1/2 3/8 #4 #10 #40 #100 39.5 #200

Landtype No. 82

Location: SE%,Sec.4,T.41S.,R.8W.

Landtype No. 82u-A 1/ Location: NW%, Sec. 16, T. 40S., R. 6W. Depth: 0-3 inches Liquid Limit: less than 25 Plasticity Index: NP-5 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: -California Bearing Ratio 95%: -90%: -85%: pH: 5.6-6.5 Classification Mechanical Hydrometer AASHO A-4 UNIFIED GM.GM-GC 1.00

Mechanical	Analysis
Sieve Size	% Passing
3	85-100
2 1/2	-
2 1 1/2	-
1 1/2	-
1	-
3/4	-
1/2	-
3/8	-
#4	50-75
#10	45-70
#40	40-70
#100	-
#200	35-65

Location: NW4, Sec. 16, T. 40S., R. 6W. Depth: 3-46 inches Liquid Limit: less than 25 Plasticity Index: NP-5 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: -California Bearing Ratio 95%: -90%: -85%: pH: 6.1-6.5 Classification Mechanical Hydrometer AASHO A-1,A-2 GM,GM-GC UNIFIED -Mechanical Analysis Sieve Size % Passing 70-100 2 2 1/2 1 1/2

20-40

15-35

15-30

-

10-25

Landtype No. 82u-B 2/

3/4

1/2

3/8

#4

#10

#40

#100

#200

 $\frac{1}{2}$ / A refers to topsoil layers. $\frac{1}{2}$ / B refers to subsoil layers.

Location: SW%, Sec.23, T.40S., R.7W. Depth: -Liquid Limit: 51 Plasticity Index: 14 Maximum Density - p.c.f.: 89.7 Optimum Moisture - %: 26.6 Specific Gravity, #10(-) only: 2.66 California Bearing Ratio 95%: 4.3 90%: 2.2 85%: 0.7 pH: -

Classification	Mechanical	Hydrometer	Classification
AASHO UNIFIED	-	A-7-5(6) MH	AASHO UNIFIED
			3
Mechanical			Mechanica
Sieve Size	% Passing		Sieve Size
3 2 1/2 1 1/2	-		3
2 1/2	-		2 1/2 2 1 1/2
2			2
1 1/2	100		1 1/2
	99.44		1
3/4	98.98		3/4
1/2	-		1/2 5
3/8	95.76		3/8
#4	86.89		#4
#10	71.70		#10
#40	-		#40
#100	-		#100
#200	-		#200
Hydrometer	Analucio		
Sieve Size	% Passing		Hydrometer Sieve Size
- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
#20	64.92		#20
#40	60.21		#40
#60	57.30	*	#60
#100	54.78		#100
#200	51.91		#200
Dia. MM <u>1</u> /			Dia. MM <u>1</u> /
.0248	47.35		.0436
.0164	44.60		.0179
.0101	39.36		.0098
.00746	35.92		.0064
.0055	32.14		.0044
.0029	22.26		.0023
.0013	13.23		.0013

Landtype No. 86		
Location: NE%,	Sec.33,T.36S.	,R.8W.
Depth: -		
Liquid Limit:		
Plasticity Index		
Maximum Density		
Optimum Moisture Specific Gravity	e - %: -	0.75
Specific Gravity	y, #10(-) onl	y: 2./5
California Bear	ing Ratio	
95%: -		
90%: -		
85%: Est. 2	2	
Classification	Mechanical	Hydrometer
AASHO	-	A-5(1)
UNIFIED	-	SMU
.*.		
Mechanical		
Sieve Size	% Passin	g
3	1. .	
2 1/2		
2	100	
1 1/2	98	
	98	
3/4 1/2 5	96.59	
3/8	92.63	
#4	85.40	
#10	70.16	
#40	/0.10	
#100		
#200	-	
		-
Hydrometer	Analysis	
Sieve Size	% Passin	a
#20	60.00	
#40	53.40	
#60	49.59	
#100	45.95	
#200	40.59	
Dia. MM <u>1</u> /	06.77	
.0436	26.71	
.0179	25.59	
.0098	22.24	
.0064	17.77	
.0044	15.64	

12.51 9.27

Landtype No. 86 Location: SW%, Sec.27, T.35S., R.8W. Depth: -Liquid Limit: 38 Plasticity Index: 9 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: 2.74 California Bearing Ratio 95%: 6.4 90%: 2.9 85%: 0.2 pH: -Classification Mechanical Hydrometer A-4(2) AASHO UNIFIED SMU Mechanical Analysis Sieve Size % Passing 2 2 1/2 --1 1/2 100 99.27 1 3/4 96.33 1/2 -3/8 89.06 #4 77.89 #10 65.97 #40 -#100 -#200 -Hydrometer Analysis Sieve Size % Passing 59.47 #20 #40 54.59 #60 51.19 #100 47.58

42.88

38.40

35.59

31.32

28.72

26.64

21.64

16.44

#200

Dia. MM 1/

.0279

.0182

.0109

.0078

.0056

.0029

.0012

Landtype No. 86 Location: SW%, Sec.13, T.35S., R.8W. Depth: -Liquid Limit: 38 Plasticity Index: 13 Maximum Density - p.c.f.: 106.9 Optimum Moisture - %: 19.7 Specific Gravity, #10(-) only: 2.758 California Bearing Ratio 95%: 7.6 90%: -85%: pH: -

Classification	Mechanical	Hydrometer
AASHO	-	A-6(2)
UNIFIED	-	SMU
Mechanical	Analysis	
Sieve Size	% Passing	
3	-	
3 2 1/2 1 1/2	-	
2		
1 1/2	100	
	99.58	
3/4	98.76	
1/2 3/8	95,42 91,88	
#4	82.32	
#10	66.84	
#40	00.04	
#100	2	. A
#200	-	
Hydrometer Sieve Size	Analysis % Passing	
#20	58.07	
#40	51.45	
#60	47.27	
#100	44.01	
#200	40.24	
Dia. MM <u>1</u> /	1973 1978	
.0289	36.66	
.0185	34.38	
.0109	31.40	
.0079	28.41	

26.63

22.65

17.97

1/ Particle size computed from hydrometer readings.

1/ Particle size computed from hydrometer readings.

.0056

.0028

Landtype No. 91	<u>u-A 1/</u>	
Location: NW4, Depth: 0-4 inc Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 90%: - 85%: - 9H: 6.1-6.5	hes - x: NP - p.c.f.: - e - %: - y, #10(-) onl	
Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-1,A-2 GM,SM	Ξ
Mechanical Sieve Size	Analysis % Passing	-
	50-75	
3 2 1/2 2 1 1/2	-	
2		
1 1/2	-	
3/4	-	
1/2	÷	
3/8	40.75	
#4 #10	40-75 35-70	
#40	20-50	
#100		
#200	10-30	

Depth: 4-32 Liquid Limit: Plasticity Ind Maximum Densi Optimum Moistu	_ dex: NP ty - p.c.f.: - ure - %: - ity, #10(-) only	
Classification	n <u>Mechanical</u>	Hydrometer
AASHO UNIFIED	A-1,A-2 GM,SM	2
Maghanday	1 Analusta	
Mechanica Sieve Size	al Analysis % Passing	
Sieve Size	<u>%</u> Passing	i de la
Sieve Size		i - V
Sieve Size	<u>%</u> Passing	
Sieve Size	<u>%</u> Passing	i - 145 N
<u>Sieve Size</u> 3 2 1/2 2	<u>%</u> Passing	i - 10
Sieve Size	<u>%</u> Passing	
<u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2	<u>%</u> Passing	i
<u>Sieve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8	<u>% Passing</u> 25-50 - - - - - - - -	i
<u>Steve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4	<u>* Passing</u> 25-50 - - - - - - - - - - - - - - - - - -	
Sieve Size 3 2 1 1/2 1 3/4 1/2 3/8 #4	<u>* Passing</u> 25-50 - - - - - - - - - - - - - - - - - -	
<u>Steve Size</u> 3 2 1/2 2 1 1/2 1 3/4 1/2 3/8 #4	<u>* Passing</u> 25-50 - - - - - - - - - - - - - - - - - -	

Landtype No. 9	3	
Depth: - Liquid Limit: Plasticity Ind Maximum Densit Optimum Moistu	ex: 14 y - p.c.f.: - re - %: - ty, #10(-) only	
рН: -		
Classification	Mechanical	Hydrometer
AASHO UNIFIED	2	A-2-7(1) SMU
Mechanica Sieve Size	Analysis % Passing	
2		• • • · ·
3 2 1/2 2 1 1/2	-	
2	-	
1 1/2	-	
1	100	
3/4 1/2	97.65	
3/8	88.62	
#4	71.85	
#10	46.64	
#40	-	
#100	-	
#200		
Hydrometer	Analysis	
Sieve Size	% Pássing	
#20	34.22	
#40	30.89	
#60	29.58	<u>.</u>
#100 #200	28.32	
#200 ha. MM 1/	26.20	
.0310	21.96	
.0198	21.18	
.0120	16.45	
.0086	15.44	
.0063	13.66	
.0032	10.32	
.0014	6.52	

Landtype No. 95 Location: NW%,Sec.21,T.39S.,R.6W. Depth: -Liquid Limit: 34 Plasticity Index: 6 Maximum Density - p.c.f.: -Optimum Moisture - %: -Specific Gravity, #10(-) only: 2.6545 California Bearing Ratio 95%: -90%: -85%: pH: -Classification Mechanical Hydrometer AASHO UNIFIED A-4(2) ML --Mechanical Analysis Sieve Size % Passing 3 2 1/2 2 1 1/2 7 3/4 1/2 100 98.95 94.20 3/8 #4 #10 #40 86.70 76.14 66.76 59.57 #100

 $\frac{1}{2}$ A refers to topsoil layers. $\frac{2}{2}$ B refers to subsoil layers.

1/ Particle size computed from hydrometer readings.

219

#200

Location: NW%, Sec. 32, T. 39S., R. 5W.	
Depth: 0-16 inches	
Liquid Limit: -	
Plasticity Index: NP	
Maximum Density - p.c.f.: -	
Optimum Moisture - %: -	
Specific Gravity, #10(-) only: -	
California Bearing Ratio	
95%: -	
90%: -	
85%: -	
pH: 5.6-6.0	

Classification	Mechanical	Hydrometer
AASHO	A-1,A-2	
UNIFIED	GM	
Mechanical	Analysis	
Sieve Size	% Passing	
3	70-90	
3 2 1/2 2	-	
	-	
1 1/2	-	
1	-	
3/4	-	
1/2	-	
3/8		
#4	30-60	
#10	25-55	
#40	15-40	
#100	-	
#200	10-25	

Landtype No. 95u-B 2/

Location: NW4,Sec.32,T.39S.,R.5W.	
Depth: 16-55 inches	
Liquid Limit: -	
Plasticity Index: NP	
Maximum Density - p.c.f.: -	
Optimum Moisture - %: -	
Specific Gravity, #10(-) only: -	
California Bearing Ratio	
95%: -	
90%: -	
85%: -	
pH: 5.6-6.5	

Classification	Mechanical	Hydrometer	
AASHO	A-1, A-2	-	
UNIFIED	GM,GS-GM	-	
Mechanical	Analysis		
Sieve Size	% Passing		
3 2 1/2 2 1 1/2 1	50-90		
2 1/2	-		
2	-		
1 1/2	-		
1	-		
3/4	-		
1/2	-		
3/8	-		
#4	25-60		
#10	20-55		
#40	10-40		
#100			
#200	5-30	251 Sta	

Landtype No. 96 Location: SW%, Sec.7, T.355., R.8W. Depth: -Liquid Limit: 45 Plasticity Index: 8 Maximum Density - p.c.f.: 102.5 Optimum Moisture - %: 20.8 Specific Gravity, #10(-) only: 2.70 California Bearing Ratio 95%: 9.2 90%: 4.4 85%: 1.5 pH: -

Classification	Mechanical	Hydrometer
AASHO UNIFIED	1	A-2-7(0) GMU
Mechanical Sieve Size	Analysis % Passing	-
	n rassing	L
3	-	
2 1/2	-	
, 2	100	
2 1 1/2	96.34	
1	90.65	
3/4	86.67	
1/2	-	
3/8	71.04	
#4	56.77	
#10	45.26	
#40	43.20	
#100	-	
#200	-	
#200	-	

Sieve Size	% Passing
#20	40.32
#40	37.13
#60	34.69
#100	32.87
#200	29.96
Dia. MM 1/	
.0238 -	27.27
.0160	24.60
.0098	21.93
.0072	19.75
.0053	18.29
.0027	14.99
.0012	11.01

Landtype No. 99

Location: SE坛,Sec.30,T.36S.,R.9W.
Depth: -
Liquid Limit: NP
Plasticity Index: NP
Maximum Density - p.c.f.: 97.0
Optimum Moisture - %: 23.1
Specific Gravity, #10(-) only: 2.84
California Bearing Ratio
95%: 8.9
90%: 3.5
85%: 9.5
pH: -

Classification	Mechanical	Hydrometer
AASHO	-	A-4(0)
UNIFIED	-	SMD
Mechanical	Analysis	
Sieve Size	% Passing	
3	-	
2 1/2	-	
1 1/2	2	

2 1/2	-
2 1/2	-
1 1/2	-
1	100
3/4	99.02
1/2	-
3/8	96.20
#4	88.37
#10	76.33
#40	-
#100	2
#200	-

Hydrometer	
Sieve Size	<u>%</u> Passing
#20	68.91
#40	59.35
#60	51.51
#100	44.21
#200	36.70
Dia. MM 1/	
.0290 -	25.43
.0191	21.95
.0114	17.70
.0083	15.38
.0060	13.06
.0030	8.89
.0013	5.72

1/ Particle size computed from hydrometer readings.

 $\frac{1}{2}$ A refers to topsoil layers. $\frac{2}{2}$ B refers to subsoil layers.

Loc	ation:	SEL,	Sec.30,	T.36S.,	R.9W.
Dep	th: -				
Lic	uid Li	mit:	55		
	sticit				
				f.: 85	.3
			e - %:		
Spe	cific	Gravit	y. #10(-) only	: 2.85
Cal	iforni	a Bear	ing Rat	in	
Cal	95%:		ing nuc	10	
Cal		11.2	ing hat		
Car	95%:	11.2	ing hat		
pH:	95%: 90%: 85%:	11.2	ing hav		

AASHO UNIFIED

Sieve Size

2 1/2

1 1/2

1/2

3/8

Hydrometer Analysi Sieve Size % P

3

1 3/4

#4

#10

#40

#100

#200

#20

#40

#60

#100 #200

Dia. MM 1/ .0268

.0175

.0103

.0075

.0054

.0027

Mechanical Analysi

1 c.f.: 85 : 35.2 0(-) only atio	5.3	Location: SWs, Depth: 0-12 in Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: - 90%: - 85%: - pH: 6.1-6.5	ches 20-30 x: NP-5 - p.c.f.: - e - %: - y, #10(-) only	
hanical	Hydrometer	Classification	Mechanical	Hydron
2	A-7-5(9) MH	AASHO UNIFIED	A-2,A-1 GM	-
ysis % Passing		Mechanical Sieve Size	Analysis % Passing	
& rassing	L	516Ve 512e	<u>// Passing</u>	
-		3	85-100	
-		2 1/2	-	
-		2 1 1/2	·	
100		1 1/2	<u>_</u>	
99.74		3/4	-	
98.00		1/2	7	
98.00 97.35		3/8 #4	10 55	
97.55		#4	40-55 35-50	
-		#40	30-45	
-		#100		
-		#200	20-35	
ysis				
% Passing				
91.11				
85.10				
79.14				
72.64				
53.88				
48.21 43.95				
39.70				
36.86				
27.36				
20.27				

Landtype No. 99-A 2/

Hydrometer

canacype no. It	10	
Deptn: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit	47 x: 7 y - p.c.f.: 9 y - %: 23.7 xy, #10(-) on1	6.0
Classification	Mechanical	Hydrome
AASHO UNIFIED	:	A-5(4) ML
3 2 1/2 2 1 1/2 1 1/2 1 3/4 1/2 3/8 #4 #10 #40 #100 #200 #200 #10		I –
Hydrometer Sieve Size	Analysis % Passing	
#20 #40 #60 #100 Dia. MM <u>1</u> / .0284 .0185 .0110 .0080 .0057 .0029 .0012	88.52 82.28 77.30 69.95 58.14 44.13 38.93 33.74 28.55 25.96 18.56	
	Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 4.5 90%: 1.8 85%: 1.5 pH: - Classification AASHO UNIFIED Mechanical Sieve Size 3 2 1/2 2 1/2 2 1/2 1 1/2 1 3/4 #10 #40 #100 #200 Hydrometer Sieve Size #20 Hydrometer Sieve Size #20 Dia. MM 1/ .0284 .0185 .0110 .0080 .0057	Location: NE%,Sec.30,T.365. Depth: - Liquid Limit: 47 Plasticity Index: 7 Maximum Density - p.c.f.: 9 Optimum Moisture - %: 23.7 Specific Gravity, #10(-) 01 California Bearing Ratio 95%: 4.5 90%: 1.8 85%: 1.5 pH: - Classification Mechanical AASHO - UNIFIED - Mechanical Analysis Sieve Size % Passing 3 - 2 1/2 - 1 1/2 - 1 1/2 - 1 1/2 - 3/4 100 1/2 - 3/8 99.60 #44 99.24 #10 96.40 #40 - #200 - Medianical Analysis Sieve Size % Passing #20 88.52 #40 82.28 #60 77.30 #100 #6.95 #20 58.14 Dia. MM 1/ .0284 44.13 .0185 38.93 .0110 33.74 .0080 28.55 .0057 25.96

Landtype No. 100

Landtype No. 121

ī

Location: NE4, Depth: 10-20 i iquid Limit: Plasticity Inde Maximum Density Dptimum Moistur Specific Gravit California Bear 95%: 5.8 90%: 3.4 85%: 1.4 H: 6.1	nches 39 x: 6 - p.c.f.: 9 e - %: 23 y, #10(-) on1	7.6
lassification	Mechanical	Hydrometer
AASHO	-	-
UNIFIED	SMu	A-2-6(0)
Mechanical	Analysis	-

Mechanica	1 Analysis
Sieve Size	% Passing
3	100
3 2 1 1/2	100
1 1/2	100
1	100
3/4	100
1/2	100
3/8	100
#4	99.6
#10	99.3
#20	94.6
#40	70.8
#60	50.3
#100	39.6
#200	30.7

Remarks: Maximum particle size is 3/8". Particle shapes are angular.

 $\frac{1}{2}/$ Particle size computed from hydrometer readings. $\frac{2}{2}/$ A refers to topsoil layers.

Hydrometer

Landtype No. 122	
Location: SW%,Sec.14,T.32S.,R.11 Depth: 10-20 inches Liquid Limit: 37 Plasticity Index: NP Maximum Density - p.c.f.: 90.7 Optimum Moisture - %: 27 Specific Gravity, #10(-) only: 2 California Bearing Ratio 95%: 6.5 90%: 3.7 85%: 1.7 pH: 6.1	
Classification Mechanical Hyd	Irometer
AASHO - UNIFIED SMu A-	-1-6(0)
Mechanical Analysis Sieve Size % Passing	
3 100	
3 100 2 100 1 1/2 100	
1 98.1	
3/4 96.2	
1/2 95.9	
3/8 95.2	
#4 90.4 #10 82.1	
#20 65.1 #40 47.5	
#20 65.1 #40 47.5 #60 27.1	
#40 47.5	

Remarks: Maximum particle size is 3/8". Particle shapes are angular.

Depth: 10-20 in	35 - p.c.f.: 82 - %: 33.5 /,#10(-) only	.7
Classification	Mechanical	Hydrometer
AASHO UNIFIED	SMu	
<u>Mechanical</u> <u>Sieve Size</u> 3 2 1 1/2 1	<u>% Passing</u> 100 100 100 100	
3/4 1/2 3/8 #4 #10 #20	100 100 100 99.2 96.7 87.8	
#40 #60 #100 #200	63.2 40.2 20.5 13.90	

Landtype No. 17	6	
Location: NE%, Depth: - Liquid Limit: Plasticity Inde Maximum Density Optimum Moistur Specific Gravit California Bear 95%: 7.2 90%: 3.6 85%: 1.2 pH: -	x: 10 - p.c.f.: 10 e - %: 15.3	09.4
Classification	Mechanical	Hydrometer
AASHO UNIFIED	2	A-2-7(0) SMU
Mechanical		•
Sieve Size	% Passing	15
3 2 1/2 2 1 1/2 1	-	
2 1/2	-	
1 1/2	100	
1 1/2	98.94	
3/4	95.14	
1/2	-	
3/8	86.64	
#4 #10	73.54 57.16	
#40	57.10	
#100	-	
#200		
Hydrometer	Analysis	
Sieve Size	% Passing	
#20	46.20	
#40	38.91	
#60	35.14	
#100 #200	32.15	
Dia. MM 1/	29.16	
.0307	26.61	
.0198	24.09	
.0117	20.56	
.0084 .0057	18.04 16.02	
.0030	11.99	

Landtype No. 177 Location: SW4,NW4,Sec.23,T.33S.,R.12W. Depth: -Liquid Limit: 35 Plasticity Index: 6 Maximum Density - p.c.f.: 107.9 Optimum Moisture - %: 17.3 Specific Gravity, #10(-) only: 2.6851 California Bearing Ratio 95%: 5.4 90%: 2.8 85%: 0.8 pH: -Classification Mechanical Hydrometer AASHO A-1-6(0) -UNIFIED GMU -Mechanical Analysis Sieve Size % Passing 3 100 2 1/2 -2 -1 1/2 84.83 83.04 1 3/4 79.11 72.91 3/8 68.44 #4 57.15 #10 46.91 #40 -#100 #200 -Hydrometer Analysis Sieve Size % Pass % Passing #20 42.18 #40 36.53 #60 32.20 #100 27.46 #200 21.98 Dia. MM 1/

17.68

15.89

13.90

11.92

10.26

7.75

5.24

1/ Particle size computed from hydrometer readings.

.0315

.0204

.0120

.0086

.0062

.0031

APPENDIX IX

SOIL CHEMICAL ANALYSIS

Liquid Limit: 4	1	
Plasticity Index		
Maximum Density	- p.c.f.: 90	0.5
Optimum Moisture Specific Gravity		
California Beari 95%: 5.6 90%: 2.2 85%: 0.5		
рН: -	1. 11	
Classification	Mechanical	Hydrometer
AASHO UNIFIED	A-S(2) ML	A-S(2) ML

Sieve Size	% Passing
3	100
2 1/2	100
2	100
1 1/2	100
1	100
3/4	100
1/2	98.77
3/8	96.98
#4	90.98
#10	82.71
#40	-
#100	-
#200	-

Hydrometer		Hydrometer /
Sieve Size	% Passing	Sieve Size
#20	75.11	#20
#40	71.99	#40
#60	68.64	#60
#100	65.3	#100
#200	60.84	#200
Dia. MM 1/		Dia. MM 1/
.0240	56.55	.030 -
.0159	52.25	.019
.0099	44.50	.0115
.0073	39.12	.0082
.0055	31.59	.0059
.0029	17.60	.0030
.0012	9.22	.0013

1/ Particle size computed from hydrometer readings.

Landtype No. 178

Location: NE ¹ 4, Depth: - Liquid Limit: Plasticity Inde Maximum Density	NP x: NP	
Optimum Moistur		
Specific Gravit	v. #10(-) only	y: 2.79
California Bear	ing Ratio	
95%: 13.8		
90%: 7.7		1.14
85%: 2.2		
рН: -		
Classification	Mechanical	Hydrometer
AASHO	-	A-1-6
UNIFIED	-	SMD

.

Mechanical		
Sieve Size	% Passing	
3	2	
3 2 1/2 1 1/2 1		
2	100	
1 1/2	95.23	
i	92.98	
3/4	90.71	
1/2	-	
3/8	79.80	
#4	66.31	
#10	52.03	
#40	-	
#100	-	
#200	-	
	Andrea	
Hydrometer		
Sieve Size	<u>% Passing</u>	
#20	42.68	
#40	35.10	
#60	30.21	
#100	26.14	
#200	21.76	
D2- 10/ T/		

18.29 16.65 14.95 13.85 12.21 10.08 7.50

192

7-9

5.3 35 124 0.7 0.25 -

	Sample	pH	P		xtractab	le Cation	5	в	Total	CEC	DM				Sum %	NHA AC X	
Land- type	Depth (Inches)	pn	(ppn)	(ppm)	Ca (meq/ 100g)	Mg (meq/ 100g)	Na (meg/ 100g)	(ppm)	Nitrogen (%)	(meq/ 100g)	ом (х)	NH4+ N (ppm)	N03- N (ppm)	Acidity (meq/ 100g)	Base Satur- ation	Base Satur- ation	Ca/Mg
14-1	0-5	6.0	43	456	12.5	4.30	0.26	15.18		21,05	9.14	. 3	82214	and an			
14-2	5-14	6.0	36	672	11.2	4.20	0.30	17.40	-	16,65	9.19			en di	2		-
14-3	14-26	5.9	32	490	13.1	4.80	0,28	14.18	-	13,75	7.48	- Q - 1	1999	21	2		2
14-4	26-50	5.8	19	640	11.6	3,80	0.21	14.59	223	10.02	0.71	-	1995	931 - E	2		
14-5	50-65	5.4	31	105	7.7	2,00	0.21	17.46		14.02	5,34	-		£31	0	-	
15	0-5	5.6	-	51	10.8	4.50	0.15	-		23.05	-	-	1	inter-			-
15	0-6	5.4	-	72	13.9	5.50	0.19	-	-	40.02	22	2	1.1	33 -		-	-
15	0-6	5.2	2	40	4.0	0.89	0,10		-	23.64	-	-	-		÷.		-
15	0-6	5.3		42	5.9	2.20	0.13		-	26.65	-	-	- 214	1000017	-	en. Nel	1
15	7-9	5,2	38	136	1.5	0,59	-		-	20.47	5.17	127.9	25.6	19 E.	÷.	22	
18	0-6	5.7	-	59	10.3	4.20	0.15		121	28.52		-		- 2423	÷.		2
32u-A	0-7	6.2	5	29	2.4	4.5	0.09		-	27.26	5.76	-		16.29	30,9	26.7	0.50
32u-B	7-12	6.7	5	9	1.6	6.9	0.09	-	-	14.82	2,69	2	0	13,74	38.7	58.5	0.23
32u-C	12-24	7.1	5	9	1.2	14.0	0.07	-	-	18,42	1.06	-	-	6.68	69.6	83.3	0.09
45	7-9	5.2	10	152	1.5	0.92	-			19.40	2,53	251.5	59.7	-	-		
45	7-9	5.0	13	186	1.0	0.82		-		25,00	4.05	336,8	25.6		-0 -0	2094 2011	
51	0-4	4.8	11	310	1.8	1.20	0.17		0.15	27.25	10,13	-	2	2	÷.		
51	0-4	5,7	90	620	5,1	1.80	0.15		0.15	24.46	7.95	5	2		÷.		6
51	0-4	4.9	12	250	0.9	0.46	0.13	-	0.13	21.39	7.89			2	8	100	2
51	0-4	6.0	44	352	8.4	2,50	0,10		0.14	24.83	9.71	-		<u> </u>	0		2
52	0-4	4.9	18	336	3.4	1.30	0.15		0.17	27.25	8.75	8	÷.		÷.		ē.
52	0-4	5.3	27	330	5,3	1,90	0.15		0.15	26.41	7.68		2	3			-
52	7-9	4.8	34	170	0.7	0.30	-	÷	-	22.80	5.06	153.0	25.5	÷	÷		÷
62	7-9	4.9	129	112	1.0	0.36	-		-	24.93	7.08	187.6	89.5	2	÷.	1.72	
66	0-6	5.8		55	6.9	0.63	0.23			5.42	7.00	107.0	09.0	÷.			2
76	0-6	5.7		108	12.5	1.30	0.15		1.1	32.62	2		-	-	-		
77	0-6	5.7	-	72	8.5	1.10	0.15	-		32.37		14	2	5	2		÷
82	7-9	5.7	24	156	15.1	4.30	-			18.04	12.32	489.4	182.9	÷.	÷.		
82u-1	0-3	6.0	7	316	15.9	1.30	0.10	18,75		32.59	8.95	405.4	102.3	5	8		
82u-2	3-9	6.4	5	180	8.4	0,69	0.10	10.84		16.14	2.72			-	-		
82u-3	9-19	6.2	4	164	5.5	0,59	0.10	6.74		13.46	1.81	2.23				120	् •
82u-4	19-31	6,1	4	174	5,1	0,59	0,10	13.21	-	11.23	1.69	1.21	- C	2	-	121	2
82u-5	31-46	6.2	7	152	3.5	0.59	0.10	7.33		8,60	0,60	12		8	2	123	
91u-1	0-4	5.4	41	36	1.2	0.20	0.13	10.52		21.48	8.05						-
91u-2	4-14	5.6	31	32	0.4	0.16	0.10	28.33		15.04	7.74		-	-	÷.		2
91u-3	14-32	5.7	30	124	3.2	0.46	0.19	6.22		7.95	3,23				<u>.</u>		2
92u	7-9	5.9	8	320	8.6	1.10		U.LC		32.88	4.05	422 7	25.4	2			
95u-1	0-2	5.7	77	490	8.8	3.40	0.28	23.09		28.14	12,27	422.7	23,4	5	÷		5
95u-2	2-5	5.8	49	274	9.5	3.40	0.20	19.53	1	23.47	12.27	273		2	2) 2		1
95u-3	5-10	6.0	36	640	9.5	4.00	0.21	19.53	-		7.02	0.00			2		2
95u-4	10-30				1.22.0				-	19.33							-
954-5	30-54	6.0	29 22	432 586	11.6	4.20	0.23	5.90		16.32	3.06	1.1		5	5		1
	10=34	9.1	22	586	10.4	3.80	0.26	13.41	· · · ·	13.59	3,50	5 1 0			•		*

..... 227

1

22.00 15.12 268.5 42.6 -

APPENDIX X

TERMS AND DEFINITIONS OF LANDTYPE UNIT CRITERIA 1/

This appendix contains the terms and definitions used in Soil Resource Inventories. These terms and definitions are used in compiling information for the Table of Bedrock Characteristics of Landtype Units; Table of Soil Characteristics of Modal Sites; Table of Some Landtype Unit Characteristics, Features, and Qualities; and the Landtype Unit Descriptions.

Bedrock Characteristics

These terms are found in the Table of Bedrock Characteristics of Mapping Units.

Bedrock

Consolidated, competent rock, which upon weathering produces loose or unconsolidated soil material. In terminology of soil horizon designation, bedrock is designated at the "R" layer. Bedrock material usually requires ripping and/or blasting. Includes soft materials that are unweathered such as some sedimentary rock which can be bladed. (Example: Sandstone.)

<u>Composition</u> - Bedrock components and percentage. (Example: Sandstone (20), Conglomerates (70), Mudstone (10).)

<u>Color</u> - Color is in narrative terms for fresh, unweathered surfaces.

Hardness - Relative rating based on ease of breaking rock with geology hammer:

Hard - Rock cannot be broken or only with great difficulty.

Moderately hard - Rock can readily be broken with hammer but not by hand.

Soft - Rock can be broken by hand.

<u>Degree of Fracturing</u> - Based on the number or frequency of fractures and joints in a rock unit:

Highly fractured - Entire rock unit is completely dissected by fractures and joints less than 1 foot apart.

Moderately fractured - Fractures divide rock unit into units or blocks generally from 1 to 5 feet apart.

Slightly fractured - Only occasional fractures noted.

Massive - No fractures or very few fractures noted.

<u>Fracture System</u> - Pattern which the rock fractures follow. Example: Horizontal, platy, vertical, blocky, random, etc.

Fracture Surface - Indicates the characterisitics of the fracture surface and void space within fractures.

Regular - Smooth, distinct, sharp, clean-fractured surfaces.

Irregular - Rough, irregular, fragmented fracture surface.

 $\underline{1}/$ Unless otherwise noted, the following definitions were developed for use in Soil Resource Inventories, R-6.

TABLE OF LANDTYPE UNIT CRITERIA

BEDROCK CHARACTERISTICS

<u>Competency</u> - Relative inherent strength of rock as it occurs on the landscape, based on degree of weathering, fracturing, hardness, stability, and failures observed:

<u>Competent</u> - No failures within rock unit observed. Rocks of unit are stable and have strong resistance to mass movement.

.

<u>Moderately competent</u> - Some failures are noted. Rocks of the unit are moderately stable and have some resistance to mass movement.

1

<u>Incompetent</u> - Failures are common to rock unit. Rocks of the unit are soft, deeply weathered, and have high potential for mass movement.

No.	Composition	Color (Fresh Surface)	Hardness	Degree of Fracturing	Fracture System	Fracture Surface	Competency	Remarks
0	Undifferentiated	N/A	N/A	N/A	N/A	N/A	N/A	River gravels of varied composition
1	Andesites, basalts, gabbros, diorites, gneiss, metavolcan- ics, metasodiments, rhyollites, and dacites	bbbros, dtorites, to and platy Hiss, metavolcan-moderately cs, metasofinents, wollites, and		Competent	Nard rock outcrop			
2	Sediments, pyro- clastic sediments, tuffs, agglomerates, conglomerates, and sandstones	Variable	Moderately hard	Massive to moderately	Platy and random	Irregular	Moderately competent	Moderately hard rock outcrop
3	Peridotite and serpentine	Yellow through olive green, rust brown, and black	Hard to moderately hard	Highly	8locky and platy	Regular to irregular	Competent to moderately competent	Hard to moderately hard ultrabasic rock outcrop
4	Undifferentiated	Variable	Hard	Highly	Random	Regular to irregular	Incompetent	Land flow and land slump unit on the east side of the Klamath Mountains
5	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Hard	Highly	Blocky	Regular to irregular	Incompetent	Land flow and land slump unit from ultrabasic rock
6	Undifferentiated	Variable	Soft	Highly	Blocky	Irregular	Incompetent	Wet non-forest land
7	Undifferentiated	Variable	Hard	Highly	Blocky	Irregular	Competent	Dry non-forest land
8	Undifferentiated	Variable	Moderate	Highly	Blocky	Irregular	Incompetent	Land flow and land slump unit on the west side of the Klamath Mountains
8c	Colebrooke schist and phyllites	Silver gray	Soft	Highly	Platy	Irregular	Incompetent	Landflow and land slump unit on the west side of the Klamath Mountains
9	Undifferentiated	Variable	Moderate	Highly	Blocky	Regular to irregular	Incompetent	Land flow and land slump unit on the west side of the Klamath Mountains
9c	Colebrooke schist and phyllites	Silver gray	Soft	Highly	Platy	Irregular	Incompetent	Landflow and land slump unit on the west side of the Klamath Mountains
10	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Soft	Highly	Blocky	Irregular	Incompetent	Very deep alluvial ultrabasic material, adjacent to stream
n	Olivine gabbro	Olive green to black	Soft	Highly	81ocky	Irregular	Incompetent.	Very deep colluvial unit, derived from olivine gabbro
12	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Soft	Highly	Blocky	Irregular	Incompetent	Very deep alluvial ultrabasic material, on upper terraces
13	Undifferentiated	Variable	Hard	Highly	Blocky	Regular to irregular	Incompetent	Glacial till and colluvium (above 4,000 feet elevation)
14	Undifferentiated	Variable	Hard	Highly	Blocky	Regular to	Incompetent	Glacial till and colluvium (above 4,000 feet elevation)
15	Undifferentiated	Variable	Hard to soft	Massive	Random	Regular to irregular	Incompetent	Alluvium adjacent to streams
16	Undifferentiated	Variable	Hard to moderately hard	Massive	Random	Regular to frregular	Incompetent	Colluvium on the slope positions
17	Undifferentiated	Variable	Hard to moderately hard	Massive	Random .	Regular to firregular	Incompetent	Colluvium on toe slope positions on the west side of the Klamath Mountains
18	Undifferentiated	Yariable	Moderately hard to hard	Highly	Random	Regular to irregular	Incompetent	Colluvium on toe slope positions on the east side of the Klamath Mountains
19	Undifferentiated	Variable .	Moderately hard to hard	Highly	Random	Regular to irregular	Incompetent	Colluvium on toe slope positions on the west side of the Klamath Mountains
21	Metagabbro	Dark gray	Moderately hard to	Highly	Blocky	Regular to frregular	Competent	Found on the east side of the Klamath Mountains

TABLE OF LANDTYPE UNIT CRITERIA

BEDROCK CHARACTERISTICS

Landtype No.	Composition	Color (Fresh Surface)	Hardness	Degree of Fracturing	Fracture System	Fracture Surface	Competency	Remarks ,
22	Metagabbro	Dark gray	Moderately hard to soft	Highly	81ocky	Regular to irregular	Moderately competent to incompetent	Found on the east side of the Klamath Mountains
26	Dacite, rhyolite, and syenite	Light gray to dark brown	Moderately hard to hard	Highly	Blocky	Regular	Competent	Generally found on north slopes
27	Dacite, rhyolite, and symmite	Light gray to dark brown	Soft to moderately hard	Highly	Single grained to blocky	Irregular	Incompetent to moderately competent	Generally found on north slopes
28	Dacite, rhyolite, and syenite	Light gray to dark brown	Hard to woderately hard	Highly	Blocky	Regular	Competent	Generally found on south slopes
29	Dacite, rhyolite, and syenite	Light gray to dark brown	Moderately hard to soft	Kighly	Single grained to blocky	Irregular	Moderately competent to incompetent	Generally found on south slopes
31	Peridotite and serpentine	Yellow through olive green, rust brown, and black	Moderately hard to hard	H1gh1y	Blocky and platy	Regular to irregular	Moderately competent to competent	Found on the east side of the Klamath Mountains
32	Serpentine and Peridotite	Yellow through olive green, rust brown, and black	Soft to moderately hard	Highly	Platy and blocky	Irregular to regular	Incompetent to moderately competent	Found on the east side of the Klamath Mountains
34	Peridotite and serpentine	Yellow through olive green, rust brown, and black	Hard to moderately hard	Highly	Blocky and platy	Regular	Competent to moderately competent	Found on the east side of the Klamath Mountains
35	Peridotite and serpentine	Yellow through olive green, rust brown, and black	Moderately hard to hard	Highly	Blocky and platy	Regular	Competent to moderately competent	Found on the east side of the Klamath Mountains
36	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Moderately hard	Highly	Blocky and platy	Regular to irregular	Moderately competent	Found on the west side of the Klamath Mountains
37	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Soft to moderately hard	Highly	Platy and blocky	Irregular to regular	Incompetent to moderately competent	Found on the west side of the Klamath Mountains
38	Serpentine and peridotite	Yellow through olive green, rust brown, and black	Moderately hard	Highly	Blocky	Regular to irregular	Moderately competent to incompetent	Found on the west side of the Klamath Mountains
39	Peridotite and serpentine	Yellow through olive green, rust brown, and black	Moderately hard to hard	Highly	Blocky and platy	Regular	Moderately competent	Found on the west side of the Klamath Mountains
41	Bedded sandstones and siltstones of the Umpqua Formation	Light grayish brown to dark brown and black	Moderately hard	Moderately	Horizontal to random	Regular to irregular	Moderately competent	Generally found on the west side of the Klamath Mountains on the south slopes. Localized concentration of siltstones of the Days Creek member of the Uhngua Formation.
42	Bedded sandstones and siltstones of the Umpqua Formation	Light grayish brown to dark brown and black	Moderately hard to soft	Moderately to highly	Horizontal to random	Irregular to regular	Moderately competent to incompetent	Generally found on the west side of the Klamath Mountains. Localized concentration of siltstones of the Days Creek member of the Umpqua Formation.
43	Bedded sandstones and siltstones of the Umpqua Formation	Light grayish brown to dark brown and black	Moderately hard	Moderately	Horizontal to random	Rogular to irregular	Moderately competent	Generally found on the west side of the Klamath Mountains on south slopes. Localized concentration of siltstoms of the Days Creek member of the Umpum Formation.
45	Bedded sandstones and siltstones	Light grayish brown, buff, dark brown, and black	Soft to moderately hard	Highly	Random	Irregular to regular	Incompetent to moderately competent	Found on the west side of the Klamath Mountains.
46	Massive conglom- erates with thin interbeds of poorly sorted sandstone	Light gray to dark brown	Moderately hard to hard	Massive to highly	Blocky to single grained	Regular to irregular	Moderately competent to competent	Generally found on north slopes on the west side of the Klamath Mountains
48	Massive conglom- erates with thin interbeds of poorly	Light gray to dark brown	Moderately hard to hard	Massive to highly	Blocky to single grained	Regular to irregular	Moderately competent to competent	Generally found on south slopes
	sorted sandstone							

TABLE OF LANDTYPE UNIT CRITERIA

BEDROCK CHARACTERISTICS

2

Landtype No.	Composition	Color (Fresh Surface)	Hardness	Degree of Fracturing	Fracture System	Fracture Surface	Competency	Remarks
50	Volcanic rock of the Dothan and Cole- brooke formations	Buff to black	Hard	Highly to locally massive	81ocky	Regular to irregular	Competent	Found on the west side of the Klamath Mountains
51	Sedimentary rock of the Dothan Formation	Buff to dark brown	Moderately hard	Highly ,	Blocky and platy	Regular to irregular	Moderately competent	Found on the west side of the Klamath Mountains. Generally found on north slopes.
52	Sedimentary rock of the Dothan Formation	Buff to black	Soft to moderately hard	Highly	Platy and blocky	lrregular to regular	Moderately competent to incompetent	Found on the west side of the Klamath Mountains. Generally found on north slopes.
53	Sedimentary rock of the Dothan Formation	Buff to dark brown	Moderately hard	Highly	Blocky and platy	Regular to irregular	Moderately competent	Found on the west side of the Klamath Mountains. Generally found on south slopes.
54	Sedimentary rock of the Dothan Formation	Buff to black	Moderately hard to soft	Highly	Platy and blocky	Irregular to regular	Moderately incompetent to incompetent	Found on the west side of the Klamath Mountains. Generally found on south slopes.
55	Sedimentary rock of the Dothan Formation	Buff to black	Soft to moderately hard	Highly	Platy and blocky	lrregular to regular	Incompetent to moderately competent	Found on the west side of the Klamath Mountains $\stackrel{\frown}{\longrightarrow}$
61	Schists and phyllites of the Colebrooke Formation	Silver gray	Moderately hard	Highly	Platy	Regular and irregular	Moderately competent	Found on the west side of the Klamath Mountains
62	Schists and phyllites of the Codebrooke Formation	Silver gray	Soft	Highly	Platy	Irregular and regular	Incompetent to moderately incompetent	Found on the west side of the Klamath Mountains
66	Amphibole gneiss	Buff to dark brown	Moderately hard to hard	Moderately	Blocky to platy	Regular and irregular	Moderately competent to competent	Found on the east side of the Klamath Mountains
67	Amphibole gneiss	Buff to dark brown	Soft to moderately hard	Highly	Blocky to platy	Irregular to regular	Moderately competent	Found on the east side of the Klamath Mountains
68	Amphibole gneiss	Buff to dark brown	Soft	Massive	Blocky to single grained	Irregular	Incompetent to moderately competent	Found on the east side of the Klamath Mountains
71	Marine sediments	Buff to grayish brown	Moderately hard	High1y	Platy	Regular	Moderately competent	Found on the east side of the Klamath Mountains
72	Marine sodiments	Buff to grayish brown	Soft	Highly	Platy	Regular to irregular	Moderately competent to locally incompetent	Found on the east side of the Klamath Mountains
76	Metasediments of the Galice Formation	Buff to black	Hard to moderately hard	Moderately to highly	Platy to blocky	Regular to irregular	Competent to moderately competent	Found on the east side of the Klamath Mountains
77	Metasediments of the Galice Formation	Buff to black	Soft to moderately hard	Highly	Platy to single grained	lrregular to regular	Moderately competent to competent	Found on the east side of the Klamath Mountains
81	Metavolcanics	Pale green to grayish green	Hard to moderately hard	Highly	Blocky	Regular	Moderately competent to competent	Found in the Siskiyou Mountains
82	Metavolcanics	Pale green to gravish green	Moderately hard to soft	Highly	Blocky	Regular	Moderately competent to incompetent	Found in the Siskiyou Mountains
83	Metavolcanics	Pale green to grayish green	Soft to moderately hard	Highly to massive	Variable	Regular to irregular	Incompetent to moderately competent	Found in the Siskiyou Mountains
86	Metavolcanics of the Galice and Rogue Formations	Light gray to greenish gray	Hard	Highly to slightly	Blocky	Regular	Competent	Found on the east side of the Klamath Mountains
87	Metavolcanics of the Galice and Rogue Formations	Light gray to greenish gray	Moderately hard	Highly	Blocky	Regular to irregular	Moderately competent	Found on the cast side of the Klamath Mountains
91	Diorites and grano- diorites	Light gray to dark gray	Hard	Highly	Blocky	Regular	Competent	Found east of the Klamath Mountains and in the Siskiyou Mountains
92	Diorites and grano- diorites	Light gray to dark gray	Moderately hard to soft	Massive to highly	Blocky to single grained	Irregular to regular	Moderately competent	Found east of the Klamath Mountains and in the Siskiyou Mountains

TABLE OF LANDTYPE UNIT CRITERIA

BEDROCK CHARACTERISTICS

No.	Composition	Color (Fresh Surface)	Hardness	Degree of Fracturing	Fracture System	Fracture Surface	Competency	Remarks
93	Diorites and grano- diorites	Light gray to dark gray	Soft	Massive	Single grained	Irregular	Moderately competent to incompetent	Found east of the Klamath Mountains and in the Siskiyo Mountains
95	Diorites and grano- diorites	Light gray to dark gray	Soft to moderately hard	Massive to highly	Single grained t blocky	Irregular to to regula	Moderately	Found east of the Klamath Mountains and in the Siskiyo Mountains
96	Gabbros	Dark gray to black	Hard to moderately hard	Highly to moderately	Blocky	Regular	Competent	Found east of the Klamath Mountains and in the Siskiyou Mountains
97	Gabbros	Dark gray to black	Moderately hard	Highly	Blocky	Regular t irregular	o Moderately competent	Found east of the Klamath Mountains and in the Siskiyou Mountains
98	Gabbros	Dark gray to black	Soft	Massive to slightly	Single grained t blocky	Irregular 0	Moderately competent to incompetent	Found east of the Klamath Mountains and in the Siskiyou Mountains
99	Olivine gabbro	Greenish gray to black	Hard to moderately hard	Highly	Blocky	Regular	Competent to moderately competent	-
100	Olivine gabbro	Greenish gray to black	Moderately hard to soft	Massive to slightly	Single grained t blocky	Irregular o to regular	Moderately	-
120	Thickly bedded sand- stones with thinly bedded siltstones and mudstones of the Type Formation	Suff to gray	Hard to moderately hard	Slightly	Blocky	Regular	Competent	•
	Thickly bedded sand- stones with thinly bodded siltstones and mudstones of the Type Formation	Buff to gray	Moderately bard to bard	Slightly	Blocky	Regular	Competent to moderately competent	-
	Thickly bedded sand- stones with thinly bedded siltstones and mudstones of the Type Formation	Buff to gray	Moderately hard	Slightly to moderately	81ocky	Regular to irregular	Moderately competent to Tocally incompetent	•
	Thickly bedded sand- stones with thinly bedded siltstones and mudstones of the Type Formation	Buff to gray	Soft to moderately hard	Massive to slightly	Single grain to blocky	Irregular to regular	Moderately competent to locally incompetent	•
·	Motasediments of the Galice and related formations	Buff to dark gray	Hard to moderately hard	Moderately to highly	Blocky to platy	Regular	Competent to locally incompetent	Found on the west side of the Klamath Mountains
	Metasediments of the Galice and related formations	Buff to dark gray	Moderately hard	High1y	Blocky to platy	Regular to frregular	Moderately competent to incompetent	Found on the west side of the Klamath Mountains
6	Metasediments of the Galice and related formations	Buff to dark gray	Hard to moderately hard	Moderately to highly	Blocky to platy	Regular	Competent to to locally incompetent	Found generally on south slopes on the west side of the Klamath Mountains
16 M	Motavolcanics of the Galice Formation	Light gray to greenish gray	Hard	Slightly to highly	Blocky	Regular	Competent	Found on the west side of the Klamath Mountains
1 D d	Diorites and guartz Miorites	Light gray to dark gray	Hard	Slightly to moderately	Blocky	Regular	Competent	Found on the west side of the Klamath Nountains. Generally found on the north slopes
z p d	Norites and quartz Norites	Light gray to dark gray	Moderatèly hard	10.00	Blocky	Regular	Moderately competent	Found on the west side of the Klamath Mountains. Generally found on the north slopes.
3 D d	forites and quartz forites	gray	Soft to moderately hard	slightly	Single grained to blocky	Irregular to regular	Moderately competent	Found on the west side of the Klamath Mountains. Generally found on the north slopes.
4 D d	iorites and quartz iorites	Light gray to dark gray	Hard	133.082°°°''''''	Blocky	Regular	Competent	Found on the west side of the Klamath Mountains. Generally found on the south slopes.
5 G.	abbros	Dark gray to black	Hard		Blocky	Regular	Competent	Found on the west side of the Klamath Mountains

233

Landtype Characteristics, Features, and Qualities

Infiltration Rate

Rate of entry of water into soil surface. The rate is dependent upon the type of surface soil texture, rock fragment content, structure, porosity, bulk density, and organic matter

Infiltration Rate Classes

 \underline{Slow} - Water stands on surface for long periods. Soils are fine textured, poorly aggregated, and puddle easily.

<u>Moderate</u> - Water enters soil at commensurated rates of normal rainfall or water application. Water may pond for short periods (a few days) following very intensive rainfall. Soils are medium-textured and well aggregated.

Rapid - Water rarely ponds, enters soil surface very rapidy. Soils are coarse textured, porous, loose, and usually single-grained.

Drainage Class 1/ - The rapidity and extent of removal of water from the soil. Based on soil permeability, infiltration, internal drainage, and topographic position.

<u>Poorly drained</u> - Water table at or near the surface a considerable part of the time. Soils of this class usually occupy level or depressed sites and are frequently ponded. Water is removed so slowly that soil remains wet almost all the

Somewhat poorly drained - Water removed so slowly that the soil remains wet for significant periods, but not all the time.

<u>Moderately well drained</u> - Soil remains wet for a period somewhat longer (up to one month) than the wet season; may be due in part to a slowly permeable layer, high water table, or lateral seepage.

<u>Well drained</u> - Water is removed from soil readily and these soils are saturated only during the wet season for short periods.

Excessively drained - Water is removed from soil rapidly and these soils are rarely ever saturated. Commonly, these soils are coarse-textured or shallow, stony, and/or occur on steep slopes.

Major Drainage Intensity and Pattern

Number of drainage miles per square mile and dominant drainage pattern.

Intensity Classes

<u>Few</u> - 0 to 1 drainage miles per square mile. <u>Common</u> - 1 to 3 drainage miles per square mile. <u>Many</u> - 3 to 5 drainage miles per square mile. <u>Abundant</u> - Greater than 5 drainage miles per square mile.

Patterns - (States drainage pattern)

1/ Very poorly drained and somewhat excessively drained classes are not used.

Productivity

 $\ensuremath{\mathsf{Combined}}$ evaluation of measured and observed production of timber types. Site classes are used.

<u>Timber Site Classes 1</u>/ - Class limits correspond to height (site index) of Douglas-fir and ponderosa pine at 100 years.

Douglas-fir	Ponderosa Pine					
<u>Class I</u> - greater than 185 S.I.	<u>Class I</u> - greater than 105 S.I.					
<u>Class II</u> - 185 S.I. to 155 S.I.	Class II - 95 S.I. to 105 S.I.					
<u>Class III</u> - 155 S.I. to 125 S.I.	Class III - 85 S.I. to 95 S.I.					
Class IV - 125 S.I. to 95 S.I.	Class IV - 65 S.I. to 85 S.I.					
<u>Class V</u> - less than 95 S.I.	Class V - 55 S.I. to 65 S.I.					
	Class VI - 45 S.I. to 55 S.I.					
	Class VII - less than 45 S.I.					

Fertility

Estimated inherent soil fertility and availability of plant nutrients. This rating is derived by correlating measured productivity with soil factors such as texture, pH, color, and organic matter content.

<u>High</u> - These soils generally have medium to fine texture, dark surface colors, are slightly acid to slightly alkaline, and have abundant incorporated organic matter. Nutrient quantities are adequate and readily available.

<u>Moderate</u> - These soils generally have one or more soil factors that limit nutrient quantity and/or availability.

<u>Low</u> - These soils generally have several factors that are limiting. They may be coarse textured, strongly acid or strongly alkaline, and lacking in sufficient organic matter. Nutrient quantity and/or availability is seriously limiting.


Percent Vegetative Cover

Evaluations of total vegetative cover and the cover of three distinct levels of vegetation above the soil surface. Overstory consists of the timber stand canopy. Understory consists of woody shrubs and timber regeneration. Ground cover consists of ferns, grasses, sedges, and mosses.

Total Vegetative Cover - Estimated percent of total vegetative cover with overstory, understory, and ground cover combined. Maximum of 100 percent.

<u>Vegetative Cover by Each Level</u> - Estimated percent vegetative cover according to species composition, with <u>overstory</u>, <u>understory</u>, and <u>ground cover</u> estimated separately. Maximum of 100 percent for each level.

1/ McArdle, Technical Bulletin 201. All other Timber Site Classes are from R-6 Timber Inventory Procedures Handbook.

Vegetative Cover Type