

Subsurface Flow Paths and Summer Low Flows:

Simulating Network Dynamics & Flow Permanence

Steve Wondzell USFS - PNW Research Station Corvallis, OR

Adam Ward and Noah Schmadel Indiana University Bloomington, IN

NSF

How do you know when a stream channel has water?

How do you know when a stream channel has water?

How do you know when a stream channel has water?

Surface

Subsurbee

Surface

Substities

Q_{stream} amount exceeding subsurface capacity

Q_{subsurface} maximum capacity for down valley flow

 $\begin{array}{c} \mathbf{Q}_{\mathsf{total}} \\ \mathsf{total} \ \mathsf{down} \ \mathsf{valley} \ \mathsf{flow} \\ (\mathsf{Q}_{\mathsf{stream}} + \mathsf{Q}_{\mathsf{subsurface}}) \end{array}$

How do you know when a stream channel has water?

Surface

Subsurbee

Surge

Substition

Q_{stream} amount exceeding subsurface capacity

Q_{subsurface} maximum capacity for down valley flow

$\mathbf{Q}_{\mathsf{total}}$

total down valley flow (Q_{stream} + Q_{subsurface})

How can you estimate total down valley flow at any point in network?

Upslope Accumulated Area = 20 ha

How can you estimate total down valley flow at any point in network?

H. J. Andrews Experimental Forest Watershed 1

amount exceeding subsurface capacity

maximum capacity for down valley flow

total down valley flow $(Q_{stream} + Q_{subsurface})$

How can you estimate subsurface capacity at any point in network?

How can you estimate subsurface capacity at any point in network?

 $Q_{subsurface \ capacity}$ $Q = -kA(\Delta h/\Delta X)$

Q ≈ -k(w*d)(slope)

Flowing Channel Length and Contiguous Channel Length

- Stormactivated during wet conditions
- Often flowing but not connected to outlet
- Step-change in Q at confluence
- Network contraction at seasonal lowflow
- Rapid expansion in response to a small storm.

Flowing & connected length expand and contract by hundreds of meters in response to diurnal fluctuations

Hopefully – a better conceptual image of flow dynamics in headwater watersheds

- Might be difficult to apply in most situations:
 - Most streams are ungaged
 - Q ≈ -k(w*d)(slope); but k & d hard to measure
- Model captures expected behavior of watershed
 - Expansion & contraction with changes in Q
 - Threshold behavior when

Q_{total} ≈ Q_{subsurface capacity} difficult to predict extent of wetted network

Adam Ward: <u>adamward@indiana.edu</u> Steve Wondzell: <u>swondzell@fs.fed.us</u>

Advances in Water Resouces 2018 114:64-82

Advances in Water Resources 114 (2018) 64-82

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network

Advance: in Water Resources

Adam S. Ward^{a,*}, Noah M. Schmadel^{a,b}, Steven M. Wondzell^c

^a School of Public and Environmental Affairs, Indiana University, Bloomington IN 47405, USA

^b Now at U.S. Geological Survey, Reston, VA, USA

^c Pacific Northwest Research Station, Forest Service, United States Department of Agriculture, USA

