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Question 1: Is the future already apparent?

* Climate change projections predict:
— Warmer temperatures, little precipitation change
— Less snow, more rain
— Earlier runoff timing
— Lower low flows

 We have seen less snow
 We have seen earlier timing
* Are we also seeing lower low flows?
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Question 2: Do we really know the reason?

Can we now attribute these lower low-flows to
climate change?

Or phrased alternatively

Are the declines a consequence of warming
temperatures, or ... ?
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Less P => Earlier Timing?




April 1 SWE Sensitivity to 3°C Temperature Increase  fercentchange

After Luce et al., 2014
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The Plot Twist




Declmes |n Annual Runoff from Mountaln Basins 1948 2013
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Orographic
Precipitation
Enhancement




The Missing Mountain Water: Slower
Westerlies Decrease Orographic
Enhancement in the Pacific Northwest USA

C. H. Luce,™* ). T. Abatzoglou,® Z. A. Holden®

Trends in streamflow timing and volume in the Pacific Northwest United States have been
attributed to increased temperatures, because trends in precipitation at lower-elevation stations
were negligible. We demonstrate that observed streamflow declines are probably associated
with declines in mountain precipitation, revealing previously unexplored differential trends.
Lower-troposphere winter (November to March) westerlies are strongly correlated with
high-elevation precipitation but weakly correlated with low-elevation precipitation. Decreases in
lower-tropospheric winter westerlies across the region from 1950 to 2012 are hypothesized to
have reduced orographic precipitation enhancement, yielding differential trends in precipitation
across elevations and contributing to the decline in annual streamflow. Climate projections show
weakened lower-troposphere zonal flow across the region under enhanced greenhouse forcing,
highlighting an additional stressor that is relevant for climate change impacts on hydrology.

espite the importance of mountains as
DH{}LI]'{JF:H of water and the conservation of

biodiversity, particularly in a changing
climate, our understanding of climate change in

13 DECEMBER 2013 WVOL 342 SCIENCE

them is limited because of sparse observational
data and difficult modelng condiions (/). Although
the consequences of increased temperature for
mountain snow are relatively well understood and

severe (2—4), poor information about both histor-
ical and projected changes in mountain precipita-
tion may lead o substantial misjudgment of risks
and maladaptaton. In particular, ecosystems and
water supplies may be more sensitive to declines
in precipitation than to increases in temperature
(5-7).

We synthesized across multiple data sources
to infer substantial historical declines in precip-
itation in the Cascades and Northern Rockies of
the Pacific Northwest (PNW) United States and
linked them to observed changes in atmospheric
circulation. These historical declines contradict
published assessments that there have probably
been no significant declines in PNW precipitation
over the past 60 years (4, &8, ¥). The information
basis for the lack of historical declme 1s the esti-
mation of trends from the U.S. Historical Climate
Network (HCN) precipitation stations in the PN'W

"5, Forest Service Research and Development, 322 East Front
Street, Boise, ID 83702, USA “Department of Geography, Uni-
versity of Idaho, 875 Penmeter Drive, Moscow, 1D 83844, USA
.S, Forest Service Region 1, 200 East Broadway Street, Missouls,
MT 59807, USA

*Corresponding author. E-mail: cluce@fs.fed.us
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The Upshot

1. Precipitation declined over this period in the mountains
2. Don’t assume it is not climate change related
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Two signals:
 Height of showman (timing)
e Size of puddle

Warm
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Effects of Having Trees

 Less annual runoff
e Lower low flows
* Timing ... later in cold snow
... earlier in warm snow




Area (kmz) Gauge Elev (m) Mean Elev (m)

South Fork 1645 1286 2085
Middle Fork 2150 993 1936

In Luce et al., 2012
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% Changes to Monthly Yield from Fire — Boise R.
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Change in Monthly Yield (MM m®)

Changes to Monthly Yield — Boise R.
Fire versus Climate
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Context of Moisture
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Lessons and Reminders

* Keep alternative paths to a result in mind!!

— “Sure you have found a solution, but have you found the only
solution?”

* Trends and Sensitivities are contextual
— Keep spatial patterns in mind
— Use them to find testable relationships

 The Case is still under investigation ...




